Severe Thunderstorms and Tornadoes Toolkit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Developing a Tornado Emergency Plan for Schools in Michigan
A GUIDE TO DEVELOPING A TORNADO EMERGENCY PLAN FOR SCHOOLS Also includes information for Instruction of Tornado Safety The Michigan Committee for Severe Weather Awareness March 1999 1 TABLE OF CONTENTS: A GUIDE TO DEVELOPING A TORNADO EMERGENCY PLAN FOR SCHOOLS IN MICHIGAN I. INTRODUCTION. A. Purpose of Guide. B. Who will Develop Your Plan? II. Understanding the Danger: Why an Emergency Plan is Needed. A. Tornadoes. B. Conclusions. III. Designing Your Plan. A. How to Receive Emergency Weather Information B. How will the School Administration Alert Teachers and Students to Take Action? C. Tornado and High Wind Safety Zones in Your School. D. When to Activate Your Plan and When it is Safe to Return to Normal Activities. E. When to Hold Departure of School Buses. F. School Bus Actions. G. Safety during Athletic Events H. Need for Periodic Drills and Tornado Safety Instruction. IV. Tornado Spotting. A. Some Basic Tornado Spotting Techniques. APPENDICES - Reference Materials. A. National Weather Service Products (What to listen for). B. Glossary of Weather Terms. C. General Tornado Safety. D. NWS Contacts and NOAA Weather Radio Coverage and Frequencies. E. State Emergency Management Contact for Michigan F. The Michigan Committee for Severe Weather Awareness Members G. Tornado Safety Checklist. H. Acknowledgments 2 I. INTRODUCTION A. Purpose of guide The purpose of this guide is to help school administrators and teachers design a tornado emergency plan for their school. While not every possible situation is covered by the guide, it will provide enough information to serve as a starting point and a general outline of actions to take. -
The Observation of the Lightning Induced Variations in Atmospheric Ions
XV International Conference on Atmospheric Electricity, 15-20 June 2014, Norman, Oklahoma, U.S.A. The Observation of the Lightning Induced Variations in Atmospheric Ions Xuemeng Chen1,*, Hanna E. Manninen1,2, Pasi Aalto1, Petri Keronen1, Antti Mäkelä3, Jussi Paatero3, Tuukka Petäjä1 and Markku Kulmala1 1. Department of Physics, University of Helsinki, Helsinki, Finland 2. Institute of Physics, University of Tartu, Estonia 3. Finnish Meteorological Institute, Helsinki, Finland ABSTRACT: Variations in atmospheric ion concentration were studied in a boreal forest in Finland, with emphasis on the effect of lightning. In general, changes in ion concentrations have diurnal and seasonal patterns. Distinct features were found in ions of different size ranges, namely small ions (0.8 – 1.7 nm) and intermediate ions (1.7 – 7 nm). Preliminary results on two case studies of lightning effect are present, one with rain effect and the other not. Bursts in the concentrations of small ions and intermediate ions were observed in both cases. However, different trends in trace gases were observed for the two cases. Further investigation is needed to reveal the nature of lightning ions and the mechanism in their formation. The work is under progress. INTRODUCTION Atmospheric ions, or air ions, refer to electric charge carriers present in the atmosphere. Distinct features exist in their chemical composition, mass, size as well as number of carried charges. According to Tammet [1998], atmospheric ions can be classified into small or cluster ions, intermediate ions, and large ions based on their mobility (Z) in air, being Z > 0.5 cm2V-1s-1, 0.5 cm2V-1s-1 ≤ Z ≥ 0.03 cm2V-1s-1 and Z< 0.03 cm2V-1s-1, respectively. -
Tornado Safety Q & A
TORNADO SAFETY Q & A The Prosper Fire Department Office of Emergency Management’s highest priority is ensuring the safety of all Prosper residents during a state of emergency. A tornado is one of the most violent storms that can rip through an area, striking quickly with little to no warning at all. Because the aftermath of a tornado can be devastating, preparing ahead of time is the best way to ensure you and your family’s safety. Please read the following questions about tornado safety, answered by Prosper Emergency Management Coordinator Kent Bauer. Q: During s evere weather, what does the Prosper Fire Department do? A: We monitor the weather alerts sent out by the National Weather Service. Because we are not meteorologists, we do not interpret any sort of storms or any sort of warnings. Instead, we pass along the information we receive from the National Weather Service to our residents through social media, storm sirens and Smart911 Rave weather warnings. Q: What does a Tornado Watch mean? A: Tornadoes are possible. Remain alert for approaching storms. Watch the sky and stay tuned to NOAA Weather Radio, commercial radio or television for information. Q: What does a Tornado Warning mean? A: A tornado has been sighted or indicated by weather radar and you need to take shelter immediately. Q: What is the reason for setting off the Outdoor Storm Sirens? A: To alert those who are outdoors that there is a tornado or another major storm event headed Prosper’s way, so seek shelter immediately. I f you are outside and you hear the sirens go off, do not call 9-1-1 to ask questions about the warning. -
Hurricane Knowledge
Hurricane Knowledge Storm conditions can vary on the intensity, size and even the angle which the tropical cyclone approaches your area, so it is vital you understand what the forecasters and news reporters are telling you. Tropical Depressions are cyclones with winds of 38 mph. Tropical Storms vary in wind speeds from 39-73 mph while Hurricanes have winds 74 mph and greater. Typically, the upper right quadrant of the storm (the center wrapping around the eye) is the most intense portion of the storm. The greatest threats are damaging winds, storm surge and flooding. This is in part why Hurricane Katrina was so catastrophic when bringing up to 28-foot storm surges onto the Louisiana and Mississippi coastlines. A Tropical Storm Watch is when tropical storm conditions are possible in the area. A Hurricane Watch is when hurricane conditions are possible in the area. Watches are issued 48 hours in advance of the anticipated onset of tropical storm force winds. A Tropical Storm Warning is when tropical storm conditions are expected in the area. A Hurricane Warning is when hurricane conditions are expected in the area. Warnings are issued 36 hours in advance of tropical storm force winds. Here are a few more terms used when discussing hurricanes: Eye: Clear, sometimes well-defined center of the storm with calmer conditions. Eye Wall: Surrounding the eye, contains some of the most severe weather of the storm with the highest wind speed and largest precipitation. Rain Bands: Bands coming off the cyclone that produce severe weather conditions such as heavy rain, wind and tornadoes. -
The Error Is the Feature: How to Forecast Lightning Using a Model Prediction Error [Applied Data Science Track, Category Evidential]
The Error is the Feature: How to Forecast Lightning using a Model Prediction Error [Applied Data Science Track, Category Evidential] Christian Schön Jens Dittrich Richard Müller Saarland Informatics Campus Saarland Informatics Campus German Meteorological Service Big Data Analytics Group Big Data Analytics Group Offenbach, Germany ABSTRACT ACM Reference Format: Despite the progress within the last decades, weather forecasting Christian Schön, Jens Dittrich, and Richard Müller. 2019. The Error is the is still a challenging and computationally expensive task. Current Feature: How to Forecast Lightning using a Model Prediction Error: [Ap- plied Data Science Track, Category Evidential]. In Proceedings of 25th ACM satellite-based approaches to predict thunderstorms are usually SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19). based on the analysis of the observed brightness temperatures in ACM, New York, NY, USA, 10 pages. different spectral channels and emit a warning if a critical threshold is reached. Recent progress in data science however demonstrates 1 INTRODUCTION that machine learning can be successfully applied to many research fields in science, especially in areas dealing with large datasets. Weather forecasting is a very complex and challenging task requir- We therefore present a new approach to the problem of predicting ing extremely complex models running on large supercomputers. thunderstorms based on machine learning. The core idea of our Besides delivering forecasts for variables such as the temperature, work is to use the error of two-dimensional optical flow algorithms one key task for meteorological services is the detection and pre- applied to images of meteorological satellites as a feature for ma- diction of severe weather conditions. -
Preparedness and Partnerships: Lessons Learned from the Missouri Disasters of 2011 a Focus on Joplin
Preparedness and Partnerships: LESSONS LEARNED FROM THE MISSOURI DISASTERS OF 2011 A Focus on Joplin Coordination Incident Command Documentation Communication ESS RES DN PO RE N A S P E E R P R E N C O O I V T E A R G I Y T I M x Preparedness and Partnerships: LESSONS LEARNED FROM THE MISSOURI DISASTERS OF 2011 A Focus on Joplin TABLE OF CONTENTS E xecutive Summary _________________________________________________________ 2 The Missouri Hospital Association as a Response Organization ____________________ 8 Lessons Learned ___________________________________________________________ 10 Planning ______________________________________________________11 Communication _______________________________________________ 21 Resources and Assets __________________________________________ 24 Safety and Security ____________________________________________ 26 Staffing Responsibilities _________________________________________ 29 Staffing ________________________________________________ 29 Volunteers ______________________________________________ 31 Utilities Management __________________________________________ 32 Patient, Clinical and Support Activities ____________________________ 33 Medical Surge ___________________________________________ 33 References and Acknowledgements ___________________________________________ 36 Disclaimer: This report reflects information gathered from many hospital staff through surveys, interviews, presentations and individual and group discussions. The information relates individual and organization-specific identified -
2013 Tornado and Severe Weather Awareness Drill
2013 Tornado and Severe Weather Awareness Drill Scheduled for Thursday April 18, 2013 The 2013 Tornado Drill will consist of a mock tornado watch and a mock tornado warning for all of Wisconsin. This is a great opportunity for your school, business and community to practice your emergency plans. DRILL SCHEDULE: 1:00 p.m. – National Weather Service issues a mock tornado watch for all of Wisconsin (a watch means tornadoes are possible in your area. Remain alert for approaching storms). 1:45 p.m. - National Weather Service issues mock tornado warning for all of Wisconsin (a warning means a tornado has been sighted or indicated on weather radar. Move to a safe place immediately). 2:00 p.m. – End of mock tornado watch/warning drill The tornado drill will take place even if the sky is cloudy, dark and/or rainy. If actual severe storms are expected in the state on Thursday, April 18, the tornado drill will be postponed until Friday, April 19 with the same times. If severe storms are possible Friday, the drill will be cancelled. Information on the status of the drill will be posted at ReadyWisconsin.wi.gov. Most local and state radio, TV and cable stations will be participating in the drill. Television viewers and radio station listeners will hear a message at 1:45 p.m. indicating that “This is a test.” The mock tornado warning will last about one minute on radio and TV stations across Wisconsin and when the test is finished, stations will return to normal programming. In addition, alerts for both the mock tornado watch and warning will be issued over NOAA weather radios. -
Tornado Preparedness Checklist
Tornado Preparedness Checklist A tornado is one of nature’s most destructive storms. Unlike a hurricane or tropical storm, a tornado can develop with little warning, sometimes within minutes of the start of a thunderstorm, leaving little time to react. "e wind associated with a tornado can exceed 300 miles per hour, which can cause catastrophic damage. Every area in the United States has the potential of being impacted by a tornado. Tornadoes peak in the southern states from March to May, and from late spring to early summer in the northern states. "e importance of being prepared for a tornado cannot be overstated. "e following checklist can help you to prepare your business for the e#ects of a tornado. 9 BEFORE THE TORNADO Have a plan to provide emergency noti$cations (warning system) to all employees, clients, visitors and customers in the event of a tornado. Assign the responsibility of monitoring external weather conditions to several employees. Be sure to have adequate coverage for all hours of operation, including accommodations for when these individuals will be out of the o%ce. Determine multiple reliable sources (weather websites, weather blogs, etc.) and tools to monitor real-time weather conditions. Locate multiple locations that can be used for shelter by employees during a tornado. Typically, an interior room with concrete or masonry walls is the safest. Most local $re departments will assist companies in the identi$cation of suitable tornado shelters. Post tornado shelter and evacuation maps in common areas throughout your facility. Identify a separate and unique alarm tone/siren/announcement to notify employees and guests to proceed to the designated tornado shelter. -
Climatic Information of Western Sahel F
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 10, 3877–3900, 2014 www.clim-past-discuss.net/10/3877/2014/ doi:10.5194/cpd-10-3877-2014 CPD © Author(s) 2014. CC Attribution 3.0 License. 10, 3877–3900, 2014 This discussion paper is/has been under review for the journal Climate of the Past (CP). Climatic information Please refer to the corresponding final paper in CP if available. of Western Sahel V. Millán and Climatic information of Western Sahel F. S. Rodrigo (1535–1793 AD) in original documentary sources Title Page Abstract Introduction V. Millán and F. S. Rodrigo Conclusions References Department of Applied Physics, University of Almería, Carretera de San Urbano, s/n, 04120, Almería, Spain Tables Figures Received: 11 September 2014 – Accepted: 12 September 2014 – Published: 26 September J I 2014 Correspondence to: F. S. Rodrigo ([email protected]) J I Published by Copernicus Publications on behalf of the European Geosciences Union. Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 3877 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract CPD The Sahel is the semi-arid transition zone between arid Sahara and humid tropical Africa, extending approximately 10–20◦ N from Mauritania in the West to Sudan in the 10, 3877–3900, 2014 East. The African continent, one of the most vulnerable regions to climate change, 5 is subject to frequent droughts and famine. One climate challenge research is to iso- Climatic information late those aspects of climate variability that are natural from those that are related of Western Sahel to human influences. -
City of Kenner Emergency Operations Plan (COKEOP), Augmenting the Basic Plan (BP)
CITY OF KENNER EMERGENCY OPERATIONS PLAN Annex “A” HURRICANE AND STORM PLAN (H&SP) Issued: June 1, 2007 Revised: November 1, 2011 City of Kenner, Louisiana Hurricane and Storm Plan June 1, 2007 I. PURPOSE The purpose of the City of Kenner Hurricane & Storm Plan (hereafter referred to as “Plan” or “H&SP”) is to describe the emergency response of City agencies in the event of a hurricane or severe storm. This document is intended to serve as a guide for the delivery and coordination of governmental services prior to, during, and following a storm incident. The guidelines set forth will facilitate the City’s Emergency Planning Advisory Group (EPAG) and executive’s decision-making regarding preparation, response and management of storm incidents. II. SCOPE This Plan is an administrative directive governing the operations of the City of Kenner, its subordinate agencies and departments. This document in no way purports to cover all aspects of storm related disaster/emergency or recovery management. Rather, it is intended to provide City personnel with an outline of those essential functions and duties to be performed in the event of a hurricane or storm event. - 1 - Revised: November 1, 2011 City of Kenner, Louisiana Hurricane and Storm Plan June 1, 2007 TITLE I. PLAN IMPLEMENTATION III. HURRICANE AND STORM PLAN IMPLEMENTATION The City of Kenner Hurricane and Storm Plan (H&SP) is a component of the City of Kenner Emergency Operations Plan (COKEOP), augmenting the Basic Plan (BP). Upon learning or receiving information from any source of a developing, pending, or actual hurricane or storm event, the Mayor or his/her designee may implement all or any portion of the COKEOP-BP or H&SP. -
Lesson 5: How Are Air Quality Data Communicated to the Public?
Lesson 5: How Are Air Quality Data Communicated to the Public? Grade Level: 7-12 | PASS Skills: Process Standard (1:3), 3, (4:2-5, 8)/ Standard 1:3, 2:2a, 5:10 (High School) Objectives: Students will be able to access and use air quality tools to interpret air quality data. Materials: Computers with internet access, Monitoring Site Data Student Worksheet (.pdf) Pre‐requisite Knowledge: Unit recognition and unit conversion practice will be beneficial to students when completing the accompanying activity. Students must be able to calculate averages. Activity: Students will use the Air Quality Division web site to record monitoring data, make calculations, and interpret/represent data using a variety of tools. Data interpretation and mathematical skills will be employed in this activity. Implementation Tips: Allow the students to research the following website for specific information regarding the AQI (http://airnow.gov/index.cfm?action=aqibasics.aqi). Discuss the color scale and category descriptors that are represented by ranges of AQI scores. Demonstrate to students how they can check the AQI for major cities in Oklahoma (OKC, Lawton, and Tulsa) using the Air Quality web site (http://www.deq.state.ok.us/aqdnew/AQIndex/AQI.htm) and the AIRNow website (http://www.airnow.gov/index.cfm?action=airnow.main) by clicking on the state from the map. The same color coding that is used for the AQI is also used on the map featured on AIRNow, making it easier for the public to check the air quality in their area. Notes to Teacher: Teachers are encouraged to sign up to receive air quality health advisories to notify their students on the days when the air quality is poor, especially for those students who fall in the category of sensitive groups. -
Analysis of Lightning and Precipitation Activities in Three Severe Convective Events Based on Doppler Radar and Microwave Radiometer Over the Central China Region
atmosphere Article Analysis of Lightning and Precipitation Activities in Three Severe Convective Events Based on Doppler Radar and Microwave Radiometer over the Central China Region Jing Sun 1, Jian Chai 2, Liang Leng 1,* and Guirong Xu 1 1 Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China; [email protected] (J.S.); [email protected] (G.X.) 2 Hubei Lightning Protecting Center, Wuhan 430074, China; [email protected] * Correspondence: [email protected]; Tel.: +86-27-8180-4905 Received: 27 March 2019; Accepted: 23 May 2019; Published: 1 June 2019 Abstract: Hubei Province Region (HPR), located in Central China, is a concentrated area of severe convective weather. Three severe convective processes occurred in HPR were selected, namely 14–15 May 2015 (Case 1), 6–7 July 2013 (Case 2), and 11–12 September 2014 (Case 3). In order to investigate the differences between the three cases, the temporal and spatial distribution characteristics of cloud–ground lightning (CG) flashes and precipitation, the distribution of radar parameters, and the evolution of cloud environment characteristics (including water vapor (VD), liquid water content (LWC), relative humidity (RH), and temperature) were compared and analyzed by using the data of lightning locator, S-band Doppler radar, ground-based microwave radiometer (MWR), and automatic weather stations (AWS) in this study. The results showed that 80% of the CG flashes had an inverse correlation with the spatial distribution of heavy rainfall, 28.6% of positive CG (+CG) flashes occurred at the center of precipitation (>30 mm), and the percentage was higher than that of negative CG ( CG) − flashes (13%).