Leptochilus Minor Fée (Polypodiaceae), a New Record For

Total Page:16

File Type:pdf, Size:1020Kb

Leptochilus Minor Fée (Polypodiaceae), a New Record For Tropical Natural History 18(2): 135-145, October 2018 2018 by Chulalongkorn University Short Note Regional Differences in Mammalian Pollinators of Mucuna macrocarpa (Leguminosae): a Review SHUN KOBAYASHI1*, TETSUO DENDA1, CHI-CHENG LIAO2, JUMLONG PLACKSANOI3, SURACHIT WAENGSOTHORN3, CHITTIMA ARYUTHAKA4, SOMSAK PANHA5,6, MASAKO IZAWA1 1Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 JAPAN 2Department of Life Science, Chinese Culture University, 55 Huagang Road, Shilin, Taipei 11114 TAIWAN 3Sakaerat Environmental Research Station, Thailand Institute of Scientific and Technological Research, 1 Moo 9 Udom, Wang Nam Khieo, Nakhon Ratchasima 30370 THAILAND 4Faculty of Fishery, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900 THAILAND 5Department of Biology, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 THAILAND 6Center of Excellence on Biodiversity, Ministry of Education and Chulalongkorn University, Bangkok 10400 THAILAND * Corresponding Author: Shun Kobayashi ([email protected]) Received: 17 May 2018; Accepted: 7 August 2018 Many angiosperms are pollinated by the challenges of pollination studies in this animals1. Among them, certain species are genus. Mucuna macrocarpa is an evergreen pollinated exclusively by mammals, woody vine. It produces 30–50 cm long although mammal-pollinated plants are inflorescences bearing 10–30 flowers with fewer in number than insect-pollinated purple and pale green petals (Fig. 1). plants2. Mammal-pollinated plants are Matured flowers emit a fermentation-like known from many taxa which reviewed by odor. Mucuna macrocarpa is distributed Fleming and Kress3. In addition, specific from Southeast Asia to Japan7. In Thailand, groups of mammals are known pollinators. it occurs in evergreen and mixed forests in The most well-known of these are bats, but the central to northern regions8. In the various non-flying mammals pollinate subtropics or temperate regions, it occurs in plants4. evergreen forests. The flowering season This study focuses on Mucuna changes annually and locally, and is thought (Leguminosae). Genus Mucuna includes to take place over one or two months more than 100 species and this genus is between January and May. distributed throughout tropics and Methods of Observation subtropics5. Mucuna has inflorescences with Previous observations have been either relatively large flowers and this genus has direct, in which observers stay in front of been considered to be pollinated by bats or the target flowers, or via video cameras9,10. birds specifically6. However, these methods have limitations, Among pollinators of Mucuna species, given the wariness of mammal visitors and this study reviews the behavior of Mucuna influence of observers on their flower- macrocarpa’s mammalian pollinators and visiting behavior and staying time. In its flower structure. In addition, we discuss addition, night-vision scopes are needed, TROPICAL NATURAL HISTORY. 18(2), OCTOBER 2018 136 FIGURE 1. Inflorescences of Mucuna macrocarpa. and observation of detailed flower-visiting description of flower-visiting behavior from behavior is difficult. Video cameras are photographs. expensive and battery life is short, placing a We used automatic video camera traps to limitation on observation time. In the 1990s, resolve these problems15. There are various automatic camera traps were developed for types of trigger16. Among them, cameras observation of mammalian flower visitors11. with infrared sensors which detect However, detailed observation of flower- differences between air temperature and visiting behavior is required, because not all animal (surface) temperature are often used flower visitors contribute to pollination, and for field surveys of mammals. In this some visitors rob nectar or drop flowers12-14, method, 1) mammals do not change their and this method does not allow for behaviors, 2) researchers can observe KOBAYASHI ET AL. – MAMMALIAN POLLINATORS OF MUCUNA MACROCARPA 137 FIGURE 2. Flower of Mucuna macrocarpa and floral structures. Banner petal is pale green, wing petals are purple, and carina petals are pale purple. (A): Before flower opening, (B): After flower opening, (C): Hook-like structure (before flower opening), (D): Hook-like structure (after flower opening), (E): Connected part of wing and carina petals, (F): Section of the broken line in Fig. 2A. Large amount of sweet nectar is located inside the calyx (see Fig. 2A). When the flower opens and the banner faces upward, nectar flows down from the hook- like structure (see Fig. 2D) to the tip of the carina. Dotted circle in Figs. 2C and D shows the location of the hook-like structure. throughout the day and night, and 3) flower- five petals — a banner, a pair of wings, and visiting behaviors are recorded in detail. a pair of carina petals (Fig. 2A). Nectar, a This method has been successfully used to reward for visitors, is stored inside the observe flower-visiting mammals17-19. calyx. The stamens and pistil are enclosed Explosive Opening by a pair of carina petals, preventing The flower shape of M. macrocarpa is automatic pollination. However, specific papilionaceous. Papilionaceous flowers have mammals are able to open the flower, TROPICAL NATURAL HISTORY. 18(2), OCTOBER 2018 138 FIGURE 3. Distribution map of Mucuna macrocarpa and study regions. Shaded areas show distribution. Stars indicate study sites. exposing stamens and pistil (Fig. 2B) so that allowing the explosive opener to feed21. In pollination can occur. Once the flower of M. addition, because of the wing petal’s macrocarpa is opened in this manner the attachment to the carina (Fig. 2E, F) stamens and pistil are not enclosed again. depressing the wing petal has the Additionally, the opening of the flower is simultaneous effect of pushing the carina accompanied by explosive release of pollen, down. Thus, flower opening requires the referred to as “explosive opening”. This strength of a mammal pollinator, as even mechanism is also known from other, bee- large bees, such as carpenter bees Xylocopa pollinated genera20. The flowers of these appendiculata circumvolans, cannot open plants cannot open on their own, and at least M. macrocarpa flowers22. cross-pollination by an animal, or explosive Explosive openers were considered opener, is obligatory. pollinators, but their role had not been In M. macrocarpa, flower opening takes experimentally verified9,23,24. While our place when the wing petal is pressed observations on fruit set following artificial downward, and the banner petal pollination in this genus suggest self- simultaneously pressed upward21. Thus, compatibility, fruits were not observed explosive openers must be able to when flowers did not open25. Thus, we accomplish this movement. Successful assume that explosive opening is necessary pollinators must also be able to release the for pollination in this genus, even though pair of hook-like structures at the base of the only one species was tested. banner petal, which press the wing petals Shift of Explosive Openers from both sides, preventing the flower from Explosive openers were identified M. opening automatically21 (Fig. 2C). When macrocarpa’s range, in Kyushu, Okinawa, these hook-like structures are released (Fig. and Taiwan15,18,21 (Fig. 3). Explosive 2D), nectar flows away from the calyx, openers are Japanese macaques Macaca KOBAYASHI ET AL. – MAMMALIAN POLLINATORS OF MUCUNA MACROCARPA 139 FIGURE 4. Explosive openers (effective pollinators) in three study regions. (A): Japanese macaque (Macaca fuscata), (B): Ryukyu flying fox (Pteropus dasymallus), (C): Red-bellied squirrel (Callosciurus erythraeus). fuscata (Fig. 4A) and Japanese martens openers are mammals. When these species Martes melampus in Kyushu; Ryukyu flying open a flower large amounts of pollen are foxes Pteropus dasymallus (Fig. 4B) in removed. Supported by the results of Okinawa; and red-bellied squirrels experiments, we conclude that explosive Callosciurus erythraeus (Fig. 4C), openers are effective pollinators. Formosan striped squirrels Tamiops In Mucuna, explosive openers comprise maritimus and masked palm civets Paguma either one or 2–3 species from the same larvata in Taiwan. Although the openers group, as reported in Table 1. Almost all of described above are available, Japanese them are bats or birds (Table 1). On the macaques are the main openers in Kyushu other hand, mammals from different orders and red-bellied squirrels are the main act as pollinators in different regions of M. openers in Taiwan, by virtue of the large macrocarpa’s range. There were other number of flowers they open when examples of plants pollinated by different compared to other openers. Explosive mammals at different sites. Traveler’s trees openers differ among regions, but all known Ravenala madagascariensis are pollinated TROPICAL NATURAL HISTORY. 18(2), OCTOBER 2018 140 TABLE 1. Explosive openers or flower visitors of Mucuna spp. Study Explosive opener (Flower visitor**) Pollinator Plant name Literature region/Country Species name Common name observation method M. macrocarpa Kyushu Macaca fuscata*** Japanese macaque Video camera trap / 15 (Japan) Direct observation Martes melampus Japanese marten Okinawa Pteropus dasymallus Ryukyu flying fox Direct observation 21 (Japan) Taiwan Callosciurus Red-bellied Video camera trap 18 erythraeus*** squirrel Tamiops maritimus Formosan striped squirrel Paguma larvata Masked palm civet M. sempervirens Kunming Callosciurus erythraeus Red-bellied
Recommended publications
  • Sistema De Clasificación Artificial De Las Magnoliatas Sinántropas De Cuba
    Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver PROGRAMA DE DOCTORADO COOPERADO DESARROLLO SOSTENIBLE: MANEJOS FORESTAL Y TURÍSTICO UNIVERSIDAD DE ALICANTE, ESPAÑA UNIVERSIDAD DE PINAR DEL RÍO, CUBA TESIS EN OPCIÓN AL GRADO CIENTÍFICO DE DOCTOR EN CIENCIAS SISTEMA DE CLASIFICACIÓN ARTIFICIAL DE LAS MAGNOLIATAS SINÁNTROPAS DE CUBA Pedro- Pabfc He.r retira Qltver CUBA 2006 Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver PROGRAMA DE DOCTORADO COOPERADO DESARROLLO SOSTENIBLE: MANEJOS FORESTAL Y TURÍSTICO UNIVERSIDAD DE ALICANTE, ESPAÑA Y UNIVERSIDAD DE PINAR DEL RÍO, CUBA TESIS EN OPCIÓN AL GRADO CIENTÍFICO DE DOCTOR EN CIENCIAS SISTEMA DE CLASIFICACIÓN ARTIFICIAL DE LAS MAGNOLIATAS SINÁNTROPAS DE CUBA ASPIRANTE: Lie. Pedro Pablo Herrera Oliver Investigador Auxiliar Centro Nacional de Biodiversidad Instituto de Ecología y Sistemática Ministerio de Ciencias, Tecnología y Medio Ambiente DIRECTORES: CUBA Dra. Nancy Esther Ricardo Ñapóles Investigador Titular Centro Nacional de Biodiversidad Instituto de Ecología y Sistemática Ministerio de Ciencias, Tecnología y Medio Ambiente ESPAÑA Dr. Andreu Bonet Jornet Piiofesjar Titular Departamento de EGdfegfe Universidad! dte Mearte CUBA 2006 Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver I. INTRODUCCIÓN 1 II. ANTECEDENTES 6 2.1 Historia de los esquemas de clasificación de las especies sinántropas (1903-2005) 6 2.2 Historia del conocimiento de las plantas sinantrópicas en Cuba 14 III.
    [Show full text]
  • Ctz78-02 (02) Lee Et Al.Indd 51 14 08 2009 13:12 52 Lee Et Al
    Contributions to Zoology, 78 (2) 51-64 (2009) Variation in the nocturnal foraging distribution of and resource use by endangered Ryukyu flying foxes(Pteropus dasymallus) on Iriomotejima Island, Japan Ya-Fu Lee1, 4, Tokushiro Takaso2, 5, Tzen-Yuh Chiang1, 6, Yen-Min Kuo1, 7, Nozomi Nakanishi2, 8, Hsy-Yu Tzeng3, 9, Keiko Yasuda2 1 Department of Life Sciences and Institute of Biodiversity, National Cheng Kung University, Tainan 701, Taiwan 2 The Iriomote Project, Research Institute for Humanity and Nature, 671 Iriomote, Takatomi-cho, Okinawa 907- 1542, Japan 3 Hengchun Research Center, Taiwan Forestry Research Institute, Pingtung 946, Taiwan 4 E-mail: [email protected] 5 E-mail: [email protected] 6 E-mail: [email protected] 7 E-mail: [email protected] 8 E-mail: [email protected] 9 E-mail: [email protected] Key words: abundance, bats, Chiroptera, diet, figs, frugivores, habitat Abstract Contents The nocturnal distribution and resource use by Ryukyu flying foxes Introduction ........................................................................................ 51 was studied along 28 transects, covering five types of habitats, on Material and methods ........................................................................ 53 Iriomote Island, Japan, from early June to late September, 2005. Study sites ..................................................................................... 53 Bats were mostly encountered solitarily (66.8%) or in pairs (16.8%), Bat and habitat census ................................................................
    [Show full text]
  • The Influence of Invasive Alien Plant Control on the Foraging Habitat Quality of the Mauritian Flying Fox (Pteropus Niger)
    Master’s Thesis 2017 60 ECTS Department of Ecology and Natural Resource Management The influence of invasive alien plant control on the foraging habitat quality of the Mauritian flying fox (Pteropus niger) Gabriella Krivek Tropical Ecology and Natural Resource Management ACKNOWLEDMENTS First, I would like to express my gratitude to my supervisors Torbjørn Haugaasen from INA and Vincent Florens from the University of Mauritius, who made this project possible and helped me through my whole study and during the write-up. I also want to thank to NMBU and INA for the financial support for my field work in Mauritius. I am super thankful to Maák Isti for helping with the statistical issues and beside the useful ideas and critical comments, sending me positive thoughts on hopeless days and making me believe in myself. Special thanks to Cláudia Baider from The Mauritius Herbarium, who always gave me useful advice on my drafts and also helped me in my everyday life issues. I would like to thank Prishnee for field assistance and her genuine support in my personal life as well. I am also grateful to Mr. Owen Griffiths for his permission to conduct my study on his property and to Ravi, who generously provided me transportation to the field station, whenever I needed. Super big thanks to Rikard for printing out and submitting my thesis. I am also thankful to my family for their support during my studies, fieldwork and writing, and also for supporting the beginning of a new chapter in Mauritius. Finally, a special mention goes to my love, who has been motivating me every single day not to give up on my dreams.
    [Show full text]
  • Agrobotanical, Nutritional and Bioactive Potential of Unconve___
    Agrobotanical, nutritional and bioactive potential of unconventional l... http://www.cipav.org.co/lrrd/lrrd19/9/srid19126.htm Guide for Livestock Research for Rural Development 19 (9) Citation of preparation of LRRD News 2007 this paper papers Agrobotanical, nutritional and bioactive potential of unconventional legume - Mucuna K R Sridhar and Rajeev Bhat Microbiology and Biotechnology, Department of Biosciences, Mangalore University, Mangalagangotri 574 199, Karnataka, India [email protected] Abstract Unconventional legumes are promising in terms of nutrition, providing food security, agricultural development and in crop rotation in developing countries. The wild legume, Mucuna consists of about 100 varieties/accessions and are in great demand as food, livestock feed and pharmaceutically valued products. Mucuna seeds consist of high protein, high carbohydrates, high fiber, low lipids, adequate minerals and meet the requirement of essential aminoacids. The seeds also possess good functional properties and in vitro protein digestibility. Hydrothermal treatments, fermentation and germination have been shown to be most effective in reducing the antinutrients of Mucuna seeds. Several antinutritional compounds of Mucuna seeds serve in health care and considerable interest has been drawn towards their antioxidant properties and potential health benefits. All parts of Mucuna plant are reported to possess useful phytochemicals of high medicinal value of human and veterinary importance and also constitute as an important raw material in Ayurvedic and folk medicines. Mucuna seeds constitute as a good source of several alkaloids, antioxidants, antitumor and antibacterial compounds. Seeds are the major source of L-DOPA, which serve as a potential drug in providing symptomatic relief for Parkinson's disease. As cultivar differences in Mucuna influences the quantity of L-DOPA and lectin in seeds, future investigations should direct towards the selection of germplasm with low L-DOPA and lectin for human and animal consumption, while high L-DOPA for pharmaceutical purposes.
    [Show full text]
  • Proximate Composition and Mineral Analysis of Mucuna Utilis (Velvet Bean)
    IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278-5736.Volume 8, Issue 10 Ver. I (Oct. 2015), PP 42-45 www.iosrjournals.org Proximate Composition and Mineral Analysis of Mucuna utilis (Velvet Bean) Ezeokonkwo Mercy A.*1, Okafor Sunday N.2 1. Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka,410001, Enugu State, Nigeria 2. Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria Abstract: The standard procedures were followed to analyze the proximate composition and mineral analysis of Mucuna utilis. The caloric value was calculated from crude protein, crude fat, crude fiber, carbohydrate, moisture and ash content. The iron (Fe), zinc (Zn), calcium (Ca), manganese (Mn) and magnesium (Mg), sodium (Na), potassium (K) and phosphorus (P) were determined by Atomic Absorption Spectrophotometer. The results showed that Mucuna utilis contained ash (6.0%), crude protein (22.94%), crude fat (2.94%), crude fiber (12.50%), moisture (12.50%) and carbohydrate (43.11%). The energy calculated gave 290.75Kcal/100g. The mineral determination gave the data that Mucuna utilis contained calcium (5.25 mg/g), phosphorus (0.02 mg/g), magnesium (1.63 mg/g), manganese (0.0mg/g), iron (0.95 mg/g), sodium (1.17 mg/g), potassium (0.13 mg/g) and zinc (0.21 mg/g). This study concluded that the tested Mucuna utilis contained highest amount of carbohydrate and lowest amount of crude fibre. Similarly, among minerals tested, Mucuna utilis contained highest amount of calcium and no manganese at all. Keywords: carbohydrate, mineral analysis, Mucuna utilis, protein, proximate composition I.
    [Show full text]
  • The Case of the Endangered Ryukyu Flying Fox
    Public awareness and perceptual factors in the conservation of Title elusive species: The case of the endangered Ryukyu flying fox Vincenot, Christian Ernest; Collazo, Anja Maria; Wallmo, Author(s) Kristy; Koyama, Lina Citation Global Ecology and Conservation (2015), 3: 526-540 Issue Date 2015-01 URL http://hdl.handle.net/2433/196069 © 2015 The Authors. Published by Elsevier B.V. This is an Right open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Type Journal Article Textversion publisher Kyoto University Global Ecology and Conservation 3 (2015) 526–540 Contents lists available at ScienceDirect Global Ecology and Conservation journal homepage: www.elsevier.com/locate/gecco Original research article Public awareness and perceptual factors in the conservation of elusive species: The case of the endangered Ryukyu flying fox Christian Ernest Vincenot a,∗, Anja Maria Collazo b, Kristy Wallmo c, Lina Koyama a a Department of Social Informatics, Graduate School of Informatics, Kyoto University, Kyoto, Japan b Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan c National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Silver Spring, MD, USA article info a b s t r a c t Article history: The success of biological conservation initiatives is not solely reliant on the collection of Received 23 October 2014 ecological information, but equally on public adherence to protection programs. Awareness Received in revised form 7 February 2015 and perception of target species condition the intensity and orientation of public involve- Accepted 7 February 2015 ment in conservation initiatives. Their evaluation is critical in the case of elusive animals, Available online 13 February 2015 for which incertitude surrounding public attitude is maximized.
    [Show full text]
  • Effects of Aqueous Seed Extracts of Mucuna Sloanei (Fabaceae) on Body Weight and Some Biochemical Parameters of Rattus Novergicus
    Vol. 17(28), pp. 885-891, 11 July, 2018 DOI: 10.5897/AJB2017.16112 Article Number: DEEF4BC57771 ISSN: 1684-5315 Copyright ©2018 Author(s) retain the copyright of this article African Journal of Biotechnology http://www.academicjournals.org/AJB Full Length Research Paper Effects of aqueous seed extracts of Mucuna sloanei (Fabaceae) on body weight and some biochemical parameters of Rattus novergicus Ugwu, Godwin C.1*, Ejere, Vincent C.1, Okanya, Chinagorom L.1, Omeje, Joy N.2, Egbuji, Jude 1 3 1 V. , Onu, Martina C. and Chukwuka, Christian O. 1Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria. 2Department of Pharmacognosy and Environmental Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria. 3Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Enugu State, Nigeria. Received 14 June, 2017; Accepted 14 December, 2017 Mucuna sloanei is an annual leguminous plant widely used among the various ethnic groups in Nigeria. The effects of aqueous M. sloanei seed extract on the body weight and some biochemical parameters of 48 normal male Rattus novergicus (albino rats) were investigated for 28 days. The rats were divided into control group (A) which received distilled water and treatment groups (B, C and D) that received oral administration of 100, 200 and 400 mg/kg body weight of the seed extract, respectively. Each group was further divided into three replicates of four rats each. Blood samples were collected before the experiment started (week 0) and at weekly interval from one rat per replicate. The biochemical profiles were determined using bioassay. The lethal dose (LD50) of the aqueous seed extracts of M.
    [Show full text]
  • Ctz78-02 (02) Lee Et Al.Indd 51 14 08 2009 13:12 52 Lee Et Al
    Contributions to Zoology, 78 (2) 51-64 (2009) Variation in the nocturnal foraging distribution of and resource use by endangered Ryukyu flying foxes(Pteropus dasymallus) on Iriomotejima Island, Japan Ya-Fu Lee1, 4, Tokushiro Takaso2, 5, Tzen-Yuh Chiang1, 6, Yen-Min Kuo1, 7, Nozomi Nakanishi2, 8, Hsy-Yu Tzeng3, 9, Keiko Yasuda2 1 Department of Life Sciences and Institute of Biodiversity, National Cheng Kung University, Tainan 701, Taiwan 2 The Iriomote Project, Research Institute for Humanity and Nature, 671 Iriomote, Takatomi-cho, Okinawa 907- 1542, Japan 3 Hengchun Research Center, Taiwan Forestry Research Institute, Pingtung 946, Taiwan 4 E-mail: [email protected] 5 E-mail: [email protected] 6 E-mail: [email protected] 7 E-mail: [email protected] 8 E-mail: [email protected] 9 E-mail: [email protected] Key words: abundance, bats, Chiroptera, diet, figs, frugivores, habitat Abstract Contents The nocturnal distribution and resource use by Ryukyu flying foxes Introduction ........................................................................................ 51 was studied along 28 transects, covering five types of habitats, on Material and methods ........................................................................ 53 Iriomote Island, Japan, from early June to late September, 2005. Study sites ..................................................................................... 53 Bats were mostly encountered solitarily (66.8%) or in pairs (16.8%), Bat and habitat census ................................................................
    [Show full text]
  • Antidiabetic Properties of Mucuna Pruriens L. (D.C.)
    ANTIDIABETIC PROPERTIES OF MUCUNA PRURIENS L. (D.C.) SEED EXTRACT AND ITS TABLET FORMULATIONS BY MAJEKODUNMI, STEPHEN OLARIBIGBE B. Pharm. (Ife); M.Sc. Pharmaceutics & Industrial Pharmacy (Ibadan) A thesis in the Department of PHARMACEUTICS AND INDUSTRIAL PHARMACY Submitted to the Faculty of Pharmacy in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY of the UNIVERSITY OF IBADAN SEPTEMBER, 2012 ii UNIVERSITY OF IBADAN CERTIFICATION I certify that this work was carried out by Mr. Stephen Olaribigbe Majekodunmi in the Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria. ------------------------------------------------------------------- (Supervisor) Prof. Oluwatoyin A. Odeku B.Pharm. (Ife); M.Sc., PhD. (Ibadan) Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria iii UNIVERSITY OF IBADAN DEDICATION This piece of work is dedicated to my redeemer God Almighty for giving me the will, strength and courage to attain this height, renewing my days; and in remembrance of my late parents, Chief James Olawale Majekodunmi, Sakotun of Ikopa and Chief (Mrs.) Marian Omotayo Majekodunmi, Lika of Ikopa, Abeokuta, Ogun State, Nigeria, who bequeathed in me an enduring legacy vital for the realization and completion of this project. To God be the glory. iv UNIVERSITY OF IBADAN ACKNOWLEDGEMENT I am what I am today by the will of God who in His infinite mercies chose to renew my days. I express my heart felt appreciation to God Almighty for the grace to complete this work. My wholehearted, sincere and profound gratitude goes to my supervisor Professor Oluwatoyin A. Odeku for her holistic support, guidance, encouragement and particularly for her consolidated mentoring right from my M.Sc.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Dietary Neurotransmitters: a Narrative Review on Current Knowledge
    nutrients Review Dietary Neurotransmitters: A Narrative Review on Current Knowledge Matteo Briguglio 1,* ID , Bernardo Dell’Osso 2,3, Giancarlo Panzica 4 ID , Antonio Malgaroli 5, Giuseppe Banfi 6, Carlotta Zanaboni Dina 1, Roberta Galentino 1 and Mauro Porta 1 1 Tourette’s Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; [email protected] (C.Z.D.); [email protected] (R.G.); [email protected] (M.P.) 2 Department of Pathophysiology and Transplantation, I.R.C.C.S. Ca’ Granda Foundation, Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] 3 Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA 4 Department of Neuroscience, Rita Levi Montalcini, University of Turin, 10126 Turin, Italy; [email protected] 5 Neurobiology of Learning Unit, Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy; [email protected] 6 Scientific Direction, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; banfi[email protected] * Correspondence: [email protected]; Tel.: +39-338-608-7042 Received: 13 April 2018; Accepted: 8 May 2018; Published: 13 May 2018 Abstract: Foods are natural sources of substances that may exert crucial effects on the nervous system in humans. Some of these substances are the neurotransmitters (NTs) acetylcholine (ACh), the modified amino acids glutamate and γ-aminobutyric acid (GABA), and the biogenic amines dopamine, serotonin (5-HT), and histamine. In neuropsychiatry, progressive integration of dietary approaches in clinical routine made it necessary to discern the more about some of these dietary NTs.
    [Show full text]
  • 1994 IUCN Red List of Threatened Animals
    The lUCN Species Survival Commission 1994 lUCN Red List of Threatened Animals Compiled by the World Conservation Monitoring Centre PADU - MGs COPY DO NOT REMOVE lUCN The World Conservation Union lo-^2^ 1994 lUCN Red List of Threatened Animals lUCN WORLD CONSERVATION Tile World Conservation Union species susvival commission monitoring centre WWF i Suftanate of Oman 1NYZ5 TTieWlLDUFE CONSERVATION SOCIET'' PEOPLE'S TRISr BirdLife 9h: KX ENIUNGMEDSPEaES INTERNATIONAL fdreningen Chicago Zoulog k.J SnuicTy lUCN - The World Conservation Union lUCN - The World Conservation Union brings together States, government agencies and a diverse range of non-governmental organisations in a unique world partnership: some 770 members in all, spread across 123 countries. - As a union, I UCN exists to serve its members to represent their views on the world stage and to provide them with the concepts, strategies and technical support they need to achieve their goals. Through its six Commissions, lUCN draws together over 5000 expert volunteers in project teams and action groups. A central secretariat coordinates the lUCN Programme and leads initiatives on the conservation and sustainable use of the world's biological diversity and the management of habitats and natural resources, as well as providing a range of services. The Union has helped many countries to prepare National Conservation Strategies, and demonstrates the application of its knowledge through the field projects it supervises. Operations are increasingly decentralised and are carried forward by an expanding network of regional and country offices, located principally in developing countries. I UCN - The World Conservation Union seeks above all to work with its members to achieve development that is sustainable and that provides a lasting Improvement in the quality of life for people all over the world.
    [Show full text]