Bulletin No 7.Qxd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dipanjan RAY 1, Anil MOHAPATRA 1*, Sudeepta BISWAS 2, Kamala K. SATPATHY 2, and Subhrendu S. MISHRA3
ACTA ICHTHYOLOGICA ET PISCATORIA (2015) 45 (1): 89–93 DOI: 10.3750/AIP2015.45.1.10 FIRST RECORD OF THE EVERMANN’S SNAKE EEL, OPHICHTHUS LITHINUS (ACTINOPTERYGII: ANGUILLIFORMES: OPHICHTHIDAE), FROM NORTHERN INDIAN OCEAN Dipanjan RAY 1, Anil MOHAPATRA 1* , Sudeepta BISWAS 2, Kamala K. SATPATHY 2, and Subhrendu S. MISHRA 3 1 Marine Aquarium and Regional Center, Zoological Survey of India, Digha, West Bengal, India 2 EnSD, RSEG, EIRSG, IGCAR, Kalpakkam, Tamil Nadu, India 3 Marine Fish Section, Zoological Survey of India, Kolkata, India Ray D., Mohapatra A., Biswas S., Satpathy K.K., Mishra S.S. 2015. First record of the Evermann’s snake eel, Ophichthus lithinus (Actinopterygii: Anguilliformes: Ophichthidae), from northern Indian Ocean. Acta Ichthyol. Piscat. 45 (1): 89–93 . Abstract. A little known species of snake eel, Ophichthus lithinus (Jordan et Richardson, 1908), is reported for the first time from the east coast of India, Bay of Bengal based on two specimens 632 and 720 mm in total length, collected respectively at Digha, West Bengal and Kalpakam, Tamil Nadu, India. This is the first attempt to pro - vide a detailed description of the species from the Indian Ocean. The presently reported findings constitute an extension of the known distributional range of this species from the Western Pacific to the eastern coast of India . Keywords: new record, fish, West Bengal, Tamil Nadu, India, Bay of Bengal The fishes of the family Ophichthidae, commonly pling), nocturnal activity, and a specific habitat preference known as snake eels and worm eels, comprise 59 genera, of (Castle and McCosker 1999). which 45 are belonging to the subfamily Ophichthinae (tail The aim of this study was to describe the morpholog - tip hard, pointed and finless) (McCosker 1998, 1999, 2007) ical characteristics of a rare snake eel species—the and 14 to the subfamily Myrophinae (tail tip flexible and Evermann’s snake eel, Ophichthus lithinus (Jordan et confluent with dorsal and anal fins) (McCosker et al. -
Humboldt Bay Fishes
Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar -
FAMILY Ophichthidae Gunther, 1870
FAMILY Ophichthidae Gunther, 1870 - snake eels and worm eels SUBFAMILY Myrophinae Kaup, 1856 - worm eels [=Neenchelidae, Aoteaidae, Muraenichthyidae, Benthenchelyini] Notes: Myrophinae Kaup, 1856a:53 [ref. 2572] (subfamily) Myrophis [also Kaup 1856b:29 [ref. 2573]] Neenchelidae Bamber, 1915:478 [ref. 172] (family) Neenchelys [corrected to Neenchelyidae by Jordan 1923a:133 [ref. 2421], confirmed by Fowler 1934b:163 [ref. 32669], by Myers & Storey 1956:21 [ref. 32831] and by Greenwood, Rosen, Weitzman & Myers 1966:393 [ref. 26856]] Aoteaidae Phillipps, 1926:533 [ref. 6447] (family) Aotea [Gosline 1971:124 [ref. 26857] used Aotidae; family name sometimes seen as Aoteidae or Aoteridae] Muraenichthyidae Whitley, 1955b:110 [ref. 4722] (family) Muraenichthys [name only, used as valid before 2000?; not available] Benthenchelyini McCosker, 1977:13, 57 [ref. 6836] (tribe) Benthenchelys GENUS Ahlia Jordan & Davis, 1891 - worm eels [=Ahlia Jordan [D. S.] & Davis [B. M.], 1891:639] Notes: [ref. 2437]. Fem. Myrophis egmontis Jordan, 1884. Type by original designation (also monotypic). •Valid as Ahlia Jordan & Davis, 1891 -- (McCosker et al. 1989:272 [ref. 13288], McCosker 2003:732 [ref. 26993], McCosker et al. 2012:1191 [ref. 32371]). Current status: Valid as Ahlia Jordan & Davis, 1891. Ophichthidae: Myrophinae. Species Ahlia egmontis (Jordan, 1884) - key worm eel [=Myrophis egmontis Jordan [D. S.], 1884:44, Leptocephalus crenatus Strömman [P. H.], 1896:32, Pl. 3 (figs. 4-5), Leptocephalus hexastigma Regan [C. T.] 1916:141, Pl. 7 (fig. 6), Leptocephalus humilis Strömman [P. H.], 1896:29, Pl. 2 (figs. 7-9), Myrophis macrophthalmus Parr [A. E.], 1930:10, Fig. 1 (bottom), Myrophis microps Parr [A. E.], 1930:11, Fig. 1 (top)] Notes: [Proceedings of the Academy of Natural Sciences of Philadelphia v. -
Copyrighted Material
06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago). -
Training Manual Series No.15/2018
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”. -
Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S. -
View/Download
ANGUILLIFORMES (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 27.0 - 12 April 2021 Order ANGUILLIFORMES (part 2 of 3) Family OPHICHTHIDAE Snake Eels and Worm Eels 66 genera/subgenera · 355 species Subfamily Ophichthinae Snake Eels Allips McCosker 1972 allos, another; ips, worm, i.e., a worm-shaped eel in addition to Evips, described in the same paper Allips concolor McCosker 1972 colored uniformly, referring to uniform brown color in isopropanol Aplatophis Böhlke 1956 aplatos, terrible or unapproachable, referring to fearsome appearance of large mouth and “extremely highly developed” dentition; ophis, snake, conventional termination for generic names of snake eels, referring to snake-like shape Aplatophis chauliodus Böhlke 1956 chaulios, referring to deep-sea genus Chauliodus (Stomiidae); odon, tooth, referring to prominent, tusky teeth that both genera feature Aplatophis zorro McCosker & Robertson 2001 “for the remarkable coloration of the pore pattern along the face, reminiscent of the slash mark of the swordsman Zorro” Aprognathodon Böhlke 1967 a-, without; pro-, in front of; gnathos, jaw; odon, tooth, referring to lack of anterior teeth in upper jaw Aprognathodon platyventris Böhlke 1967 platys, flat; ventralis, of the belly, referring to flattened pre-anal region Apterichtus Duméril 1806 a-, without, pteron, fin, referring to absence of fins; ichtus, variant spelling of ichthys, fish Apterichtus anguiformis (Peters 1877) Anguis, slow worm genus; formis, shape, referring to elongate, worm-like -
Introduction to the Systematics and Biodiversity of Eels (Orders Anguilliformes and Saccopharyngiformes) of Taiwan
Zootaxa 4060 (1): 005–018 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4060.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:E35316E7-6D4C-458C-8E42-A11596E519DD Introduction to the systematics and biodiversity of eels (orders Anguilliformes and Saccopharyngiformes) of Taiwan HSUAN-CHING HO1,2, JOHN E. MCCOSKER3, DAVID G. SMITH4 & KWANG-TSAO SHAO5* 1National Museum of Marine Biology & Aquarium, Pingtung, Taiwan 2Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan 3California Academy of Sciences, San Francisco, California, U.S.A. 4Smithsonian Institution, Museum Support Center, Suitland, MD, U.S.A. 5Biodiversity Research Center, Academia Sinica, Taipei, Taiwan *Corresponding author: E-mail: [email protected] Abstract The eel fauna (orders Anguilliformes and Saccopharyngiformes) of Taiwan is one of the richest in the world. Recent ge- netic and morphological studies have improved the taxonomic resolution and increased the known diversity of the eels of Taiwan, and the overall diversity is comparable to that of adjacent marine zoogeographic regions with rich biodiversity, such as Australia and the Philippines. In this special issue, we verified the historical records and examined numerous re- cently collected specimens, and conclude that the eel fauna of Taiwan is represented by 207 species in 75 genera and 14 families, with several undescribed species still likely to be discovered. The Muraenidae (71 species), Ophichthidae (60), Congridae (29) and Synaphobranchidae (17) are the most abundant and species-rich in Taiwanese waters. We add 42 spe- cies to the Taiwanese fish fauna, including one new genus and 13 new species. -
Suculentophichthus Nasus, a New Genus and New Species of Snake Eel from the Northern Gulf of Aqaba, Red Sea(Teleostei: Ophichth
Suculentophichthus nasus, a new genus and new species of snake eel from the northern Gulf of Aqaba, Red Sea (Teleostei: Ophichthidae) RONALD FRICKE Im Ramstal 76, 97922 Lauda-Königshofen, Germany Email: [email protected] Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany (temporarily out of office) DANIEL GOLANI National Natural History Collections and Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel BRENDA APPELBAUM-GOLANI Mt. Scopus Library, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel ZooBank: http://www.zoobank.org/urn:lsid:zoobank.org:pub:2572CA21-445F-4ABE-BE65-1A9BBBE50776 Abstract A new genus and species of snake eel, Suculentophichthus nasus, is described on the basis of a single specimen collected with a beach seine in 0.5–1 m depth at the northern beach of Eilat, Israel, Gulf of Aqaba, Red Sea. The new genus is characterized within the subfamily Ophichthinae by the tail which is much longer than the head and trunk; median fins low; origin of dorsal fin well in advance of pectoral-fin base; lower part of pectoral-fin base arising opposite upper one-fourth of gill opening, and occupying the upper one third of gill opening; gill openings sublateral, elongate, nearly vertical and crescentic, shorter than isthmus; eye moderately developed, its center above posterior third of upper jaw, its posterior margin well in advance of rictus; jaws moderately developed, lower jaw fits into upper jaw; snout conical, tapering evenly, its tip rounded; underside of snout with a median sulcus exposing the teeth in advance of the anterior nostril bases; anterior nostrils within short tubes; a large, succulent-leaf shaped flap behind anterior nostril; posterior nostril a hole above upper lip; teeth conical, erect, numerous, and small, anteriorly biserial and posteriorly uniserial on maxillary and biserial on mandible; a series of 6 vomerine teeth; and two preopercular pores. -
Involving Snake Eels (Teleostei: Ophichthidae) in Commercially Important Black Jewfish Protonibea Diacanthus (Sciaenidae) and Other Teleost Species
Memoirs of the Queensland Museum | Nature 62 Queensland Museum Network respectfully acknowledges the Traditional Owners and Custodians of the lands, seas and regions across the state of Queensland. © The State of Queensland, Queensland Museum 2020 PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 Print ISSN 2204-1478 Online NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au A Queensland Government Project Typeset at the Queensland Museum Observations of ‘pseudoparasitism’ involving snake eels (Teleostei: Ophichthidae) in commercially important Black Jewfish Protonibea diacanthus (Sciaenidae) and other teleost species Barton, D.P. 1,2,6 Pogonoski, J.J.3 Appleyard, S.A.3 Johnson, J.W.4 Hammer, M.P.5 1. Fisheries Research, Northern Territory Department of Primary Industries & Resources, Berrimah NT; 2. Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT; 3. CSIRO National Research Collections, Australian National Fish Collection, GPO Box 1538 Hobart, Tas; 4. Ichthyology, Queensland Museum, South Brisbane, Qld; 5. Museum and Art Gallery of the Northern Territory, PO Box 4646, Darwin, NT; 6. -
Annotated Checklist of Eels (Orders Anguilliformes and Saccopharyngiformes) from Taiwan
Zootaxa 4060 (1): 140–189 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4060.1.16 http://zoobank.org/urn:lsid:zoobank.org:pub:E57EEA21-F6D3-4032-B7B4-8FAEAD74D574 Annotated checklist of eels (orders Anguilliformes and Saccopharyngiformes) from Taiwan HSUAN-CHING HO1,2, DAVID G. SMITH3, JOHN E. MCCOSKER4, YUSUKE HIBINO5, KAR-HOE LOH6, KENNETH A. TIGHE3 & KWANG-TSAO SHAO7,* 1National Museum of Marine Biology & Aquarium, Pingtung, Taiwan 2Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan 3Smithsonian Institution, Museum Support Center, Suitland, MD, U.S.A. 4California Academy of Sciences, San Francisco, U.S.A. 5Fisheries Research Laboratory, Mie University, Mie, Japan 6Institute of Ocean and Earth Sciences, University of Malaya, Malaysia 7Biodiversity Research Center, Academia Sinica, Taipei, Taiwan *Corresponding author. E-mail:[email protected] Abstract An annotated checklist of eels, orders Anguilliformes and Saccopharyngiformes, occurring in Taiwanese waters is pre- sented. The checklist is the result of a series of systematic studies conducted by the authors in the past few years. The eel fauna of Taiwan is one of the richest in the world with a total of 206 species in 74 genera and 13 families in Anguilliformes and a single species in Saccopharyngiformes. The most species-rich families are the Muraenidae with 71 species, followed by the Ophichthidae with 60 species, the Congridae with 29 species, and the Synaphobranchidae with 17 species. More- over, three genera and 42 species have been described based on at least one type specimen collected from Taiwan. -
Fishes of the Indian River Lagoon and Adjacent Waters, Florida
FISHES OF THE INDIAN RIVER LAGOON AND ADJACENT WATERS, FLORIDA by R. Grant Gilmore, Jr. Christopher J. Donohoe Douglas W. Cooke Harbor Branch Foundation, Inc. RR 1, Box 196 Fort Pierce, Florida 33450 and David J. Herrema Applied Biology, Inc. 641 DeKalb Industrial Way Decatur, Georgia 30033 Harbor Branch Foundation, Inc. Technical Report No. 41 September 1981 Funding was provided by the Harbor Branch Foundation, Inc. and Florida Power & Light Company, Miami, Florida FISHES OF THE INDIAN RIVER LAGOON AND ADJACENT WATERS, FLORIDA R. Grant Gilmore, Jr. Christopher Donohoe Dougl as Cooke Davi d Herrema INTRODUCTION It is the intent of this presentation to briefly describe regional fish habitats and to list the fishes associated with these habitats in the Indian River lagoon, its freshwater tributaries and the adjacent continental shelf to a depth of 200 m. A brief historical review of other regional ichthyological studies is also given. Data presented here revises the first regional description and checklist of fishes in east central Florida (Gilmore, 1977). The Indian River is a narrow estuarine lagoon system extending from Ponce de Leon Inlet in Vol usia County south to Jupiter Inlet in Palm Beach County (Fig. 1). It lies within the zone of overlap between two well known faunal regimes (i.e. the warm temperate Carolinian and the tropical Caribbean). To the north of the region, Hildebrand and Schroeder (1928), Fowler (1945), Struhsaker (1969), Dahlberg (1971), and others have made major icthyofaunal reviews of the coastal waters of the southeastern United States. McLane (1955) and Tagatz (1967) have made extensive surveys of the fishes of the St.