Antihyperglycemic Activity of the Leaves from Annona Cherimola Miller and Rutin on Alloxan-Induced Diabetic Rats Fernando Calzada, Jesús Iván Solares-Pascasio, R

Total Page:16

File Type:pdf, Size:1020Kb

Antihyperglycemic Activity of the Leaves from Annona Cherimola Miller and Rutin on Alloxan-Induced Diabetic Rats Fernando Calzada, Jesús Iván Solares-Pascasio, R Pharmacogn. Res. ORIGINAL ARTICLE A multifaceted peer reviewed journal in the field of Pharmacognosy and Natural Products www.phcogres.com | www.phcog.net Antihyperglycemic Activity of the Leaves from Annona cherimola Miller and Rutin on Alloxan-induced Diabetic Rats Fernando Calzada, Jesús Iván Solares-Pascasio, R. M. Ordoñez-Razo1, Claudia Velazquez2, Elizabeth Barbosa3, Normand García-Hernández1, David Mendez-Luna4, José Correa-Basurto4 Medical Research Unit in Pharmacology, UMAE Speciality Hospital-2° Floor CORCE National Medical Center Siglo XXI, IMSS, Av. Cuauhtemoc 330, Col. Doctores, CP 06725, México City, 1Medical Research Unit in Human Genetics UMAE Pediatric Hospital. Medical Center Siglo XXI, IMSS, 2Institute of Health Sciences, Autonomous University of the State of Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Unidad Universitaria, C. P. 42076 Pachuca, Hidalgo, México, 3Postgraduate Studies and Research, Superior School of Medicine of IPN, Plan de San Luís y Díaz Mirón, CP 11340, México City, 4Laboratory of Molecular Modeling and Bioinformátics/ Drug Design, Superior School of Medicine of IPN, Plan de San Luis y Díaz Mirón s/n, 11340 México City, México ABSTRACT SUMMARY Background: Annona cherimola, known as “chirimoya” has been The ethanol extract from Annona cherimola (300 mg/kg, EEAc), reported in Mexican traditional medicine for the treatment of diabetes. subsequent fractions (100 mg/kg) and rutin (30 mg/kg) were studied on Objective: The aims of the present study were to validate and alloxan-induced type 2 diabetic (AITD) and normoglycemic rats. The results assess the traditional use of A. cherimola as an antidiabetic agent. suggest that rutin; an α-glucosidase inhibitor was responsible in part of Materials and Methods: The ethanol extract from A. cherimola (300 mg/ the antihyperglycemic activity of A. cherimola. Its in vivo antihyperglycemic kg, EEAc), subsequent fractions (100 mg/kg), and rutin (30 mg/kg) were activity is in good agreement with the traditional use of A. cherimola for the studied on alloxan-induced type 2 diabetic (AITD) and normoglycemic treatment of diabetes. rats. In addition, oral glucose tolerance test (OGTT) and oral sucrose tolerance test (OSTT) were performed in normoglycemic rats. Molecular docking technique was used to conduct the computational study. Results: Bioassay-guided fractionation of EEAc afforded as major antihyperglycemic compound, rutin. EEAc attenuated postprandial hyperglycemia in acute test using AITD rats (331.5 mg/dL) carrying the glycemic levels to 149.2 mg/ dL. Rutin after 2 h, attenuated postprandial hyperglycemia in an acute assay using AITD rats such as EEAc, with maximum effect (150.0 mg/dL) being seen at 4 h. The antihyperglycemic activities of EEAc and rutin were comparable with acarbose (151.3 mg/dL). In the subchronic assay on AITD rats, the EEAc and rutin showed a reduction of the blood glucose levels since the 1st week of treatment, reaching levels similar to normoglycemic Abbreviations Used: EEAc: The ethanol extract from Annona cherimola, state (116.9 mg/kg) that stayed constant for the rest of the assay. OGTT AITD: Alloxan-induced type 2 diabetic rats, OGTT: Oral glucose tolerance and OSTT showed that EEAc and rutin significantly lowered blood glucose test, OSTT: Oral sucrose tolerance test, DM: levels in normoglycemic rats at 2 h after a glucose or sucrose load such as Diabetes mellitus Access this article online Website: www.phcogres.com acarbose. Computational molecular docking showed that rutin interacted Correspondence: with four amino acids residues in the enzyme α-glucosidase. Conclusion: Dr. Fernando Calzada Bermejo, Quick Response Code: The results suggest that rutin an α-glucosidase inhibitor was responsible Unidad de Investigación Médica en in part of the antihyperglycemic activity of A. cherimola. Its in vivo Farmacología-2° piso CORCE Centro Médico antihyperglycemic activity is in good agreement with the traditional use of Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, A. cherimola for the treatment of diabetes. Col. Doctores, CP 06725, D. F., México. Key words: α-glucosidase, Annona cherimola Miller, Annonaceae, rutin, E-mail: [email protected] type 2 diabetes mellitus DOI: 10.4103/0974-8490.199781 INTRODUCTION that is currently used in Mexico; it is effective; however, hepatotoxicity and abdominal discomfort such as gas, abdominal distention, meteorism, Diabetes mellitus (DM) is a heterogeneous metabolic disorder that bloating, and loose stool has been reported for this drug.[12] In addition, is characterized by high levels of blood glucose with disturbances of tolerance usually occurs after continued administration for 3 months carbohydrate, lipid, and protein metabolism resulting from defects in suggesting an adaptive response within the intestinal tract.[13,14] Clearly, insulin secretion, insulin action, or both.[1-6] DM affects more than 371 million people worldwide and accounts for >4.8 million deaths each year.[7,8] In the case of México, the estimates indicates that the number of This is an open access article distributed under the terms of the Creative Commons diabetic patients will increase from >2 million in 2002 to >132 million in Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, [9] tweak, and build upon the work non-commercially, as long as the author is credited 2030. According to the Mexican health services, among 2001–2014, DM and the new creations are licensed under the identical terms. was the first cause of mortality among women and the second in men.[9-11] Treatment with oral blood glucose-lowering drugs such as metformin, For reprints contact: [email protected] glibenclamide, rosiglitazone, voglibose, miglitol, and acarbose are used for the control of DM. However, DM and its secondary complications Cite this article as: Calzada F, Solares-Pascasio JI, Ordoñez-Razo RM, continue to be a major problem in the world population. On the other the Velazquez C, Barbosa E, García-Hernández N, et al. Antihyperglycemic activity pharmaceutical drugs are either too expensive or have undesirable side of the leaves from Annona cherimola miller and rutin on alloxan-induced diabetic effects. In the case of acarbose is a well-known α-glucosidase inhibitor rats. Phcog Res 2017;9:1-6. © 2017 Pharmacognosy Research | Published by Wolters Kluwer - Medknow 1 FERNANDO CALZADA, et al.: Antihyperglycemic Activity of Annona cherimola and Rutin there is need for novel drugs such as α-glucosidase inhibitors devoid of Animals side effects, especially hepatotoxicity, they are required to improve the A 3-month-old male albinos Sprague-Dawley rats, (250 and 300 g) and patients’ quality of life. In this sense, medicinal plants are one of the Balb-C mice of either sex (20 ± 4 g) were used. Animals were raised in the useful areas of this research since they constitute an important source Animal House of the National Medical Center “Siglo XXI” from IMSS. of new compounds with potential therapeutic effects.[15] In the case of [16] Investigations using experimental animals were conducted in accordance México, a total of 306 species are used for the treatment of diabetes. by the Official Mexican Rule.[45] They were maintained in a temperature Annona cherimola Miller is one of the many edible fruits species in the room (22°C ± 2°C) on a 12 h light-dark natural cycle. Rodents were fed Annona genus that belongs to the Annonaceae family in the Magnoliales with standard diet and water ad libitum. These studies were conducted with order. It is a semi-deciduous, erect, but low-branched tree, frequently the approval of the Specialty Hospital Ethical Committee of the National branched off at ground level. The plant is native of Ecuador and Peru Medical Center “Siglo XXI” from IMSS (Register: R-2012-3601-18). distributed widely in the tropical or subtropic regions from America, Africa, and Asia and even in the South of Europe.[17,18] In México is Acute oral toxicity study popularly known as “chirimoya, atish (Michoacan), tzon te chkia The acute oral toxicity study was conducted using test guidelines on (Oaxaca), lamatzapotl (Puebla), and yati (Veracruz)”. This species, acute oral toxicity test 423 according to OCDE (2001).[46] Twenty-four alone or in combinations with others have been used in Mexican Balb-C mice fasted overnight but allowed free access to water ad libitum traditional medicine for the treatment of several diseases such as fever, were randomly assigned into the following four groups of six mice of cough, worms, and headache as well as anti-inflammatory. In addition, either sex (three males and three females). Control received distilled to treat gastrointestinal disorders such stomach pain, diarrhea, and water and three groups received the extract at the doses of 30 mg/kg, [16,19,20] dysentery; at present, it is used to treat diabetes. Phytochemical 300 mg/kg and 3000 mg/kg. The mice were not fed for 4 h following [20-24] investigations revealed the presence of alkaloids, flavonoids, sterols, administration. The signs of toxic effects and/or mortality were observed [25-27] [28,29] [30,31] terpenoids, cyclic peptides, and acetogenins. With regard 4 h after administration then, for next 48 h. The general behavior of mice to pharmacological investigations have been reported that A. cherimola was observed daily in a period of 14 days for mortality, toxic effects, [31-33] [23] extracts possess genotoxic, cytotoxic, antihypercholesterolemic, and/or changes in behavioral pattern. At the end of the experiments, [34] [22] [35] [25] antihyperlipidemic antidepressant, cryoprotective, anxiolytic, the animals were sacrificed in a CO chamber. Then, the internal organs [36] [37] [38] [17,20] 2 antiprotozoal, antisecretory, antiarthritic, antibacterial, (stomach, gut, lungs, kidney, heart, spleen, and liver) were extracted, and [17] [39,40] antifungal, anti-inflammatory, antioxidant, and inhibitor of the pathological observations were performed. mitochondrial complex I properties.[30] In addition, antihyperglycemic activities of the ethanol extract of the leaves from A. cherimola Induction of experimental diabetes in rats [41,42] (EEAc) have been reported.
Recommended publications
  • ISTA List of Stabilised Plant Names 7Th Edition
    ISTA List of Stabilised Plant Names 7th Edition ISTA Nomenclature Committee Chair Dr. M. Schori Published by All rights reserved. No part of this publication may be The International Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted in Richtiarkade 18, CH- 8304 Wallisellen, Switzerland any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2021 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 Valid from: 16.06.2021 ISTA List of Stabilised Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 7th Edition 2 ISTA List of Stabilised Plant Names Table of Contents A .............................................................................................................................................................. 7 B ............................................................................................................................................................ 21 C ...........................................................................................................................................................
    [Show full text]
  • Nomenclatural and Taxonomic Notes on Annona (Annonaceae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2001 Band/Volume: 103B Autor(en)/Author(s): Rainer H. Artikel/Article: Nomenclatural and taxonomic notes on Annona (Annonaceae). 513-524 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 B 513-524 Wien, Dezember 2001 Nomenclatural and taxonomic notes on Annona (Annonaceae) H. Rainer* Abstract In the course of monographic studies on the genus Annona (Annonaceae) some cases of nomenclatural and taxonomic changes and need for typifications turned up and are herewith presented. Raimondia is included in Annona due to its general resemblance in morphological and anatomical characters, its species already described as Annona are reestablished, and one new combination is made. The new combinations are Annona cacans WARM, subsp. glabriuscula (R.E.FR.) H.RAWER and Annona deceptrix (WESTRA) H.RAINER. Key words: Annonaceae, Annona, Raimondia, Flora Neotropica, typification. Zusammenfassung Während der monographischen Studien an der Gattung Annona (Annonaceae) wurden einige nomenkla- torische und taxonomische Änderungen evident, sowie in einigen Fällen Typifizierungen notwendig, die hier präsentiert werden. Die Gattung Raimondia wird wegen ihrer weitgehenden Übereinstimmung in mor- phologischen wie anatomischen Merkmalen in Annona eingegliedert. Die schon unter Annona beschriebe- nen Arten werden wiederhergestellt und eine Neukombination durchgeführt. Die beiden Neukombinationen betreffen Annona cacans WARM, subsp. glabriuscula (R.E.FR.) H.RAINER und Annona deceptrix (WESTRA) H.RAINER. Introduction In the course of the studies for a monograph of the neotropical taxa of the genus Annona (Annonaceae), the number of collections increased substantially compared to the mate- rial available to FRIES (1931), the last comprehensive treatment of the genus.
    [Show full text]
  • With Annona Macroprophyllata Fruits in Orchards of Chiapas, Mexico
    ISSN Printed: 0034-7744 ISSN digital: 2215-2075 DOI 10.15517/rbt.v69i1.43827 Interaction of Bephratelloides cubensis (Hymenoptera: Eurytomidae) with Annona macroprophyllata fruits in orchards of Chiapas, Mexico José Norman González-Sánchez1, Alma Rosa González-Esquinca1, Claudia Azucena Durán-Ruiz1, Iván De-la-Cruz-Chacón1 & Marisol Castro-Moreno1* 1. Universidad de Ciencias y Artes de Chiapas, Laboratorio de Fisiología y Química Vegetal, Instituto de Ciencias Biológicas, Tuxtla Gutiérrez, Chiapas, 29000, Mexico; [email protected], [email protected], [email protected], [email protected], [email protected] (*Correspondencia). Received 11-IX-2020. Corrected 09-XII-2020. Accepted 17-XII-2020. ABSTRACT. Introduction: Annona macroprophyllata Donn. Smith. (Annonaceae) (syn. Annona diversifolia Saff.) is a valued fruit tree species known as papausa. In Mexico and Central America, this fruit has become an important crop because of its tasty flavor and high pulp content. Its fruits are frequently damaged by the inci- dence of wasps of the genus Bephratelloides Girault (Hymenoptera: Eurytomidae), which develop inside the seeds. Objective: to report the interaction of Bephratelloides cubensis Ashmead during its life cycle in fruits of A. macroprophyllata. Methods: We periodically collected fruits in different states of growth recording a) oviposition, b) the moment of evident infection, c) the development of the wasps inside the seeds, and d) their emergence as adults. We also determined the proportion of damaged fruits and seeds. Results: The data indi- cate that wasps preferred to oviposit on fruits with a diameter of less than 8 cm, oviposition was more frequent between 11:00 am and 03:00 pm., and there was 26 % infestation of fruits, and 9 % of seeds.
    [Show full text]
  • The One Hundred Tree Species Prioritized for Planting in the Tropics and Subtropics As Indicated by Database Mining
    The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass LIMITED CIRCULATION Correct citation: Kindt R, Dawson IK, Lillesø J-PB, Muchugi A, Pedercini F, Roshetko JM, van Noordwijk M, Graudal L, Jamnadass R. 2021. The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining. Working Paper No. 312. World Agroforestry, Nairobi, Kenya. DOI http://dx.doi.org/10.5716/WP21001.PDF The titles of the Working Paper Series are intended to disseminate provisional results of agroforestry research and practices and to stimulate feedback from the scientific community. Other World Agroforestry publication series include Technical Manuals, Occasional Papers and the Trees for Change Series. Published by World Agroforestry (ICRAF) PO Box 30677, GPO 00100 Nairobi, Kenya Tel: +254(0)20 7224000, via USA +1 650 833 6645 Fax: +254(0)20 7224001, via USA +1 650 833 6646 Email: [email protected] Website: www.worldagroforestry.org © World Agroforestry 2021 Working Paper No. 312 The views expressed in this publication are those of the authors and not necessarily those of World Agroforestry. Articles appearing in this publication series may be quoted or reproduced without charge, provided the source is acknowledged.
    [Show full text]
  • Journal of the Washington Academy of Sciences
    JOURNAL OF THE WASHINGTON ACADEMY OF SCIENCES VOLUME I, 1911 BOARD OF EDITORS George K. Burgess Barton W. Evermann Frederick Leslie Ransome BUREAU OF STANDARDS BUREAU OF FI8HERIE8 GEOLOGICAL SURVEY PUBLISHED SEMI-MONTHLY EXCEPT IN JULY, AUGUST AND SEPTEMBER, WHEN MONTHLY, WASHINGTON ACADEMY OF SCIENCES office of publication the waverly press baltimore, md. JOURNAL OF THE WASHINGTON ACADEMY OF SCIENCES Vol. I. JULY 19, 1911. Nos. 1 and 2. METEOROLOGY.—The amount and vertical distribution of water vapor on clear days. W. J. Humphreys. To appear in the Bulletin of the Mount Weather Observatory. It is of especial importance to any one using a bolometer, or a pyrheliometer, to know the approximate amount of water vapor through which the radiation reaching his instrument has passed. With the view of determining average values of this quantity the records of a large number of balloon flights have been exam- ined, and among them 74 found that were obtained on clear dajrs. These have been grouped according to season, and in each case the average vertical distribution of the water vapor found. In all cases the amount of water vapor rapidly decreases with elevation; but whatever the humidity a first approximation to the average total amount of water vapor above any given level is expressed by the equation, d = 2e, in which d is the thickness in millimeters of the equivalent water layer, and e the partial pressure of the water vapor, at the given level, in millimeters of mercury. .OCEANOGRAPHY.—The new Coast and Geodetic Survey tide predicting machine. E. G. Fischer, Coast and Geodetic ' Survey.
    [Show full text]
  • National Exotic Fruit Fly Detection Trapping Guidelines Some Processes, Equipment, and Materials Described in This Manual May Be Patented
    National Exotic Fruit Fly Detection Trapping Guidelines Some processes, equipment, and materials described in this manual may be patented. Inclusion in this manual does not constitute permission for use from the patent owner. The use of any patented invention in the performance of the processes described in this manual is solely the responsibility of the user. APHIS does not indemnify the user against liability for patent infringement and will not be liable to the user or to any third party for patent infringement. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of any individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs). Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. When using pesticides, read and follow all label instructions. First Edition Issued 2015 Contents Exotic Fruit
    [Show full text]
  • WRA Species Report
    Family: Annonaceae Taxon: Annona macroprophyllata Synonym: Annona diversifolia Saff. Common Name: ilama anona blanca llama perpauce Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score -2 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 405 Toxic to animals y=1, n=0 n 406 Host
    [Show full text]
  • Page 1 VOLUME 2 Monographs: Tropical And
    VOLUME 2 Monographs: Tropical and subtropical fruit, inedible peel List of monographs: 1. Abiu, Pouteria caimito (Ruiz & Pav.) Radlk, (Sapotaceae) 2. Aisen, Boscia senegalensis (Pers.) Lam., (Capparaceae (also placed in Brassicaceae)) 3. Akee apple, Blighia sapida K.D. Koenig, (Sapindaceae) 4. Atemoya, Annona cherimola Mill. X A. squamosa L., (Annonaceae) 5. Avocado, Persea americana Mill., (Lauraceae). Also includes: Avocado, Guatemalan, Persea americana Mill. var. guatemalensis, (Lauraceae); Avocado, Mexican, Persea americana Mill. var. drymifolia (Schltdl. & Cham.) S. F. Blake, (Lauraceae) and Avocado, West Indian, Persea americana var. americana, (Lauraceae) 6. Bacury, Platonia insignis Mart., (Clusiaceae (alt. Guttiferae)) 7. Bael fruit, Aegle marmelos (L.) Corrêa, (Rutaceae) 8. Banana, Musa spp. and hybrids, (Musaceae). Also includes: Banana, dwarf, Musa hybrids; Musa acuminata Colla, (Musaceae) and Plantain, Musa x paradisiaca L. (Musaceae) 9. Binjai, Mangifera caesia Jack, (Anacardiaceae) 10. Biriba, Annona mucosa Jacq., (Annonaceae) 11. Breadfruit, Artocarpus altilis (Parkinson) Fosberg, (Moraceae) 12. Burmese grape, Baccaurea ramiflora Lour., (Phyllanthaceae (also placed in Euphorbiaceae)) 13. Canistel, Pouteria campechiana (Kunth) Baehni, (Sapotaceae) 14. Cat's-eyes, Dimocarpus longan Lour. subsp. malesianus Leenh., (Sapindaceae) 15. Champedak, Artocarpus integer (Thunb.) Merr., (Moraceae) 16. Cherimoya, Annona cherimola Mill., (Annonaceae) 17. Cupuacú, Theobroma grandiflorum (Willd. Ex Spreng.) K. Schum., (Malvaceae (also
    [Show full text]
  • Abstract Estrategias Fenológicas De Especies De
    ALMA ROSA GONZÁLEZ-ESQUINCA*, IVÁN DE-LA-CRUZ-CHACÓN, MARISOL CASTRO-MORENO, CHRISTIAN ANABÍ RILEY-SALDAÑA. Botanical Sciences 94 (3): 531-541, 2016 Abstract Background. Phenological descriptions of plant species are used to understand cycles of foliation, flower- DOI: 10.17129/botsci.645 ing and fruiting. These studies provide useful means for understanding the relationships between plants and their environment. Question. What are the the foliar and reproductive strategies of four species of Annona living in the De- ciduous Forest of Chiapas, Mexico? Species studied. Annona lutescens, A. macroprophyllata, A. reticulata and A. purpurea. Study sites. Three areas of deciduous forest were studied (16°31’36’’ N, 92°58’25’’ W, 16°28’82’’ N, 92°57’48’’ W, and 16°21’47’’ N, 92°58’32’’ W), located between the towns of Parral and Chiapa de Corzo, Chiapas, Mexico. Method. Stages of foliation, flowering, fruiting and senescence of 20 individuals per species were doc- umented by written and photographic records during the course of a year. Variable time periods were adapted to the extended BBCH scale. The phenology was correlated with the stages of rain and drought by Spearman’s correlations Results. Phenological characteristics distinguish A. reticulata and A. lutescens as species with a reproduc- tive strategy (flowering and fruiting) synchronized with the dry months, in contrast to A. purpurea and A. macroprophyllata, which show a reproductive strategy associated with the rainy season. The foliation of the four species is phenologically related to the rainy season. Conclusions. The species studied could be grouped according to their leaf pattern as brevideciduous or deciduous and according to their reproductive pattern as having long-term or short-term strategies.
    [Show full text]
  • La Familia Annonaceae Juss. En México
    LACANDONIA, año 10, vol. 10, núm. 2: 71-82, diciembre de 2016 73 La familia Annonaceae Juss. En México *Iván De-la-Cruz-Chacón1, Marisol Castro-Moreno1 Lorena Mercedes Luna-Cázares1, Alma Rosa González-Esquinca1 1Instituto de Ciencias Biológicas. Laboratorio de Fisiología y Química Vegetal Universidad de Ciencias y Artes de Chiapas Libramiento Norte Poniente 1150 Col. Lajas Maciel. C.P. 29032 Tuxtla Gutiérrez, Chiapas, México. [email protected] Resumen Las plantas de la familia Annonaceae están ubicadas en el Orden de las Magnoliales y su distribución es pantropical, aunque mayormente son neo- tropicales. En este artículo se sistematiza la información de los géneros y especies en México, encontrada en diversas bases de datos. En el territorio nacional se encuentran 60 especies ubicadas en 12 géneros, y mayormente distribuidas en el centro y sur del país. Una tercera parte de las anonáceas son endémicas, incluyendo el género Tridimeris. Nueve anonáceas están en la lista roja de la UICN. Chiapas alberga 9 géneros y 37 especies, nueve endémicas. Palabras clave: diversidad, endemismo, listado de plantas. AbstRAct Annonaceae species are placed in the Magnoliales order, they have a Pantropical distribution, although most of they inhabit in the Neotropic. In this article the actual stage of the richness and distribution of Annonaceae family in Mexico are described. In the national territory there are 59 species in 12 genera. Three of for subfamily are living in the center and south of the country. The third part of the family is endemic but also the genera Tridimeris. Six of this species are in risk (UICN list), two species are cultivated.
    [Show full text]
  • Phenolic Compounds in Mesoamerican Fruits—Characterization, Health Potential and Processing with Innovative Technologies
    International Journal of Molecular Sciences Review Phenolic Compounds in Mesoamerican Fruits—Characterization, Health Potential and Processing with Innovative Technologies Andrea Gómez-Maqueo 1 , Zamantha Escobedo-Avellaneda 2,* and Jorge Welti-Chanes 2,* 1 Food Structure Team, Clinical Nutrition Research Center, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Research and Technology, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore; [email protected] 2 Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Col. Tecnológico, Monterrey 64849, Nuevo León, Mexico * Correspondence: [email protected] (Z.E.-A.); [email protected] (J.W.-C.) Received: 12 September 2020; Accepted: 29 October 2020; Published: 7 November 2020 Abstract: Diets rich in phenolic compounds have been associated to reducing the risk of metabolic syndrome and its derived disorders. Fruits are healthy components of the human diet because of their vitamin, mineral, fiber and phenolic profile. However, they have a short shelf-life which is limited by microbiological growth and enzymatic activity. Innovative preservation methods such as high hydrostatic pressure, pulsed electric fields, ultrasound, microwave, cold plasma and ultraviolet light have become popular for the processing of fruits because they can preserve nutritional quality. In this review, the phenolic profile and health potential of 38 Mesoamerican fruits were assessed. Phenolic compounds were classified based on their contribution to the diet as flavonoids, phenolic acids, tannin, lignins and stilbenoids. Due to this composition, fruits showed a wide range of bioactivities which included anti-inflammatory, anti-diabetic, anti-hypertensive and anti-obesity activities, among others.
    [Show full text]
  • Glucosidase Inhibitor
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 591313, 6 pages http://dx.doi.org/10.1155/2013/591313 Research Article Aqueous Extract of Annona macroprophyllata: A Potential -Glucosidase Inhibitor F. Brindis,1 M. E. González-Trujano,2 M. González-Andrade,3 E. Aguirre-Hernández,4 and R. Villalobos-Molina1 1 Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma´ de Mexico,´ Avenida de los Barrios 1, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico 2 Laboratorio de Neurofarmacolog´ıa de Productos Naturales de la Direccion´ de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatr´ıa Ramon´ de la Fuente Muniz,˜ Calzada Mexico-Xochimilco´ 101, Colonia San Lorenzo Huipulco, 14370 Mexico´ City, DF, Mexico 3 Instituto Nacional de Medicina Genomica´ (INMEGEN), Periferico´ sur 4809, Arenal Tepepan, Tlalpan, Secretar´ıa de Salud, 14610 Mexico´ City, DF, Mexico 4 Departamento de Ecolog´ıa y Recursos Naturales Facultad de Ciencias, Universidad Nacional Autonoma´ de Mexico,´ Ciudad Universitaria Coyoacan,´ 04510 Mexico´ City, DF, Mexico Correspondence should be addressed to F. Brindis; [email protected] Received 29 April 2013; Accepted 25 July 2013 Academic Editor: Ruth C. R. Meex Copyright © 2013 F. Brindis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Annona genus contains plants used in folk medicine for the treatment of diabetes. In the present study, an aqueous extract prepared from Annona macroprophyllata (Annonaceae, also known as A. diversifolia)leaveswasevaluatedonboththeactivityofyeast -glucosidase (an in vitro assay) and sucrose tolerance in Wistar rats.
    [Show full text]