The Meninges As Barriers and Facilitators for the Movement of Fluid, Cells and Pathogens Related to the Rodent and Human CNS

Total Page:16

File Type:pdf, Size:1020Kb

The Meninges As Barriers and Facilitators for the Movement of Fluid, Cells and Pathogens Related to the Rodent and Human CNS The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS Weller, Roy O.; Sharp, Matthew M.; Christodoulides, Myron; Carare, Roxana O.; Møllgård, Kjeld Published in: Acta Neuropathologica DOI: 10.1007/s00401-018-1809-z Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O., & Møllgård, K. (2018). The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathologica, 135(3), 363-385. https://doi.org/10.1007/s00401-018-1809-z Download date: 08. Apr. 2020 Acta Neuropathologica (2018) 135:363–385 https://doi.org/10.1007/s00401-018-1809-z REVIEW The meninges as barriers and facilitators for the movement of fuid, cells and pathogens related to the rodent and human CNS Roy O. Weller1 · Matthew M. Sharp1 · Myron Christodoulides2 · Roxana O. Carare1 · Kjeld Møllgård3 Received: 5 November 2017 / Revised: 2 January 2018 / Accepted: 15 January 2018 / Published online: 24 January 2018 © The Author(s) 2018. This article is an open access publication Abstract Meninges that surround the CNS consist of an outer fbrous sheet of dura mater (pachymeninx) that is also the inner peri- osteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilita- tors in the foetal CNS. There are two separate CSF systems during early foetal life, inner CSF in the ventricles and outer CSF in the subarachnoid space. As the foramina of Magendi and Luschka develop, one continuous CSF system evolves. Due to the lack of arachnoid granulations during foetal life, it is most likely that CSF is eliminated by lymphatic drainage pathways passing through the cribriform plate and nasal submucosa. (2) We then review the fne structure of the adult human and rodent leptomeninges to establish their roles as barriers and facilitators for the movement of fuid, cells and pathogens. Leptomeningeal cells line CSF spaces, including arachnoid granulations and lymphatic drainage pathways, and separate elements of extracellular matrix from the CSF. The leptomeningeal lining facilitates the trafc of infammatory cells within CSF but also allows attachment of bacteria such as Neisseria meningitidis and of tumour cells as CSF metastases. Single layers of leptomeningeal cells extend into the brain closely associated with the walls of arteries so that there are no perivas- cular spaces around arteries in the cerebral cortex. Perivascular spaces surrounding arteries in the white matter and basal ganglia relate to their two encompassing layers of leptomeninges. (3) Finally we examine the roles of ligands expressed by leptomeningeal cells for the attachment of infammatory cells, bacteria and tumour cells as understanding these roles may aid the design of therapeutic strategies to manage developmental, autoimmune, infectious and neoplastic diseases relating to the CSF, the leptomeninges and the associated CNS. Keywords Leptomeninges · CSF · Barriers and facilitators · Developing human and rat brain · Perivascular compartments and spaces · Attachment of Neisseria meningitidis, infammatory cells and tumour cells to leptomeninges · Lymphatic drainage of the CNS Introduction The meninges covering the rodent and human CNS are * Roy O. Weller [email protected] divided primarily into the dura mater or pachymeninx and the arachnoid and pia mater or leptomeninges. Both dura 1 Clinical Neurosciences, South Academic Block, Level and arachnoid encompass the brain and spinal cord and the D, LD66, MP806, Faculty of Medicine University arachnoid forms the outer barrier that contains CSF within of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK the subarachnoid space (SAS). The pia is more closely applied to the brain and spinal cord but is separated from 2 Neisseria Research Laboratory, Molecular Microbiology, MP814, Academic Unit of Clinical and Experimental the CNS tissue on the surface of the CNS by a subpial space Sciences, Sir Henry Wellcome Laboratories, University containing blood vessels and varying amounts of collagen. of Southampton Faculty of Medicine, Southampton General For decades the meninges had been considered to be no Hospital, Southampton SO16 6YD, UK more than a protective shield, but recent evidence suggests 3 Department of Cellular and Molecular Medicine, Faculty that leptomeninges have complex functions as barriers and of Health and Medical Sciences, University of Copenhagen, facilitators for the movement of fuid, solutes and cells at Blegdamsvej 3, 2200 Copenhagen, Denmark Vol.:(0123456789)1 3 364 Acta Neuropathologica (2018) 135:363–385 the surface of the CNS and of fuid and solutes within the experimental studies examining the relationships between CNS parenchyma. Thus, the SAS functions as an important infammatory cells and leptomeninges are performed in distribution system. The fundamental pattern of blood sup- mice and how these studies relate directly to the human ply to the CNS is diferent from that of most other organs in leptomeninges needs to be clearly defned. Although many which a single artery and accompanying veins penetrate the investigations of the leptomeninges are performed through surface at a single point and divide into smaller and smaller the medium of immunocytochemistry, ultrastructural stud- branches within the organ. In the CNS, the arteries branch ies form a valuable contribution to our understanding of and divide into small muscular arteries and arterioles within the exact relationships between the delicate cell layers the SAS prior to entering the brain and spinal cord, the sur- of leptomeninges and other structures within the human face of which is covered by a close network of numerous CNS. For this reason, we illustrate the structure of the small vessels that enter and leave the CNS. The outer barri- adult human leptomeninges largely by their ultrastructure. ers of the brain function as morphogenetic signalling centres Barrier functions of the leptomeninges constitute an [27, 89], dynamic transport systems [108], a stem cell niche emerging feld of research in both human and rodent CNS [27] and regulators of immune cell entry into the CNS [93] and are discussed in this review. However, just as impor- as summarised by Brøchner et al. [14]. tant to the biology and pathology of the CNS is the role The adult CNS is separated from peripheral tissues by a of leptomeninges as facilitators for the movement of fuid, set of structures and physiological mechanisms that are pre- solutes and infammatory cells in relation to the CNS and sent at various interfaces between the CNS parenchyma and it diseases. Leptomeninges as facilitators for attachment surrounding fuids. Five main interfaces can be identifed in and movement of cells are also important in infections the adult brain: (a) the arachnoid barrier, (b) the blood–brain and tumour metastases in the SAS. We will review the barrier, (c) the blood–CSF barrier, (d) circumventricular attachment of bacteria to leptomeningeal cells, especially organs (CVO) barrier formed by tight junctions between with regard to Neisseria meningitidis, and the role that adjacent tanycytes, (e) the inner interface between the CSF leptomeningeal elements may play in the location and and the brain (glia limitans) in the adult. An additional sixth spread of tumour metastases within the SAS. Although in interface, (f) the interface between the CSF and the embry- its early stages, the identifcation of ligands on the surfaces onic brain is present only in the foetus [62, 83]. In the adult, of leptomeningeal cells to which bacteria and tumour cells an arachnoid blood–CSF barrier separates the fenestrated attach has clear implications for therapies in these and blood vessels in the dura from the CSF in the SAS by means other disorders involving the leptomeninges. of a cell layer joined by tight junctions (the arachnoid bar- As often occurs in felds undergoing active investi- rier layer) [65]. Since the arachnoid blood–CSF barrier is gation, misconceptions have arisen and are perpetuated avascular and provides a relatively small surface area, it is within the literature in relation to the leptomeninges and generally considered that it does not contribute signifcantly to the exchange and drainage of fuid associated with the to blood–brain exchange [1]. However in light of recent fnd- CNS. For example, it has been assumed, perhaps wrongly, ings of drug transporters and drug-metabolising enzymes that the SAS is lined by collagen, that there are perivascu- in the arachnoid blood–CSF barrier [108] and taking into lar spaces for the entry of CSF into the brain and for the account that the arachnoid barrier cell layer constitutes a drainage of interstitial fuid (ISF) from the brain. Further- much larger fraction of the brain surface area during early more, the concept of the CSF as a sink for the drainage development, it is clear that the arachnoid blood–CSF bar- of ISF from the brain may need to be re-examined, par- rier is an important and changing interface that should not ticularly as the best estimate is that 85% of ISF from the be ignored. It clearly warrants further investigation in the brain drains to lymph nodes and only 15% of ISF passes developing and adult brain. into the CSF under normal conditions [94]. These experi- In this review, we frst examine the involvement of the ments were performed in the rat using radioiodinated leptomeninges in the development of the human and rat serum albumin. Injections into the caudate nucleus and brains. We then review the structure of the adult leptome- internal capsule resulted in 10–15% of tracer passing into ninges to establish the interrelations between leptomenin- CSF. Injections into the much smaller midbrain resulted ges, CSF, blood vessels and the CNS parenchyma.
Recommended publications
  • Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection
    Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection This guide is for middle and high school students participating in AIMS Anatomy of the Human Brain and Sheep Brain Dissections. Programs will be presented by an AIMS Anatomy Specialist. In this activity students will become more familiar with the anatomical structures of the human brain by observing, studying, and examining human specimens. The primary focus is on the anatomy, function, and pathology. Those students participating in Sheep Brain Dissections will have the opportunity to dissect and compare anatomical structures. At the end of this document, you will find anatomical diagrams, vocabulary review, and pre/post tests for your students. The following topics will be covered: 1. The neurons and supporting cells of the nervous system 2. Organization of the nervous system (the central and peripheral nervous systems) 4. Protective coverings of the brain 5. Brain Anatomy, including cerebral hemispheres, cerebellum and brain stem 6. Spinal Cord Anatomy 7. Cranial and spinal nerves Objectives: The student will be able to: 1. Define the selected terms associated with the human brain and spinal cord; 2. Identify the protective structures of the brain; 3. Identify the four lobes of the brain; 4. Explain the correlation between brain surface area, structure and brain function. 5. Discuss common neurological disorders and treatments. 6. Describe the effects of drug and alcohol on the brain. 7. Correctly label a diagram of the human brain National Science Education
    [Show full text]
  • A Cellular Atlas of the Developing Meninges Reveals Meningeal Fibroblast Diversity and Function
    bioRxiv preprint doi: https://doi.org/10.1101/648642; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 Title: A cellular atlas of the developing meninges reveals meningeal fibroblast diversity and function 5 6 Authors: John DeSisto1,2,3,, Rebecca O’Rourke2, Stephanie Bonney1,3, Hannah E. Jones1,3, Fabien 7 Guimiot4, Kenneth L. Jones2 and Julie A. Siegenthaler1,3,5 8 9 1Department of Pediatrics Section of Developmental Biology, 2Department of Pediatrics Section of 10 Section of Hematology, Oncology, Bone Marrow Transplant, 3Cell Biology, Stem Cells and Development 11 Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA, 12 4INSERM UMR 1141, Hôpital Robert Debré, 75019 Paris, France. 13 14 5Corresponding Author: 15 Julie A. Siegenthaler, PhD 16 University of Colorado, School of Medicine 17 Department of Pediatrics 18 12800 East 19th Ave MS-8313 19 Aurora, CO 80045 USA 20 Telephone #: 303-724-3123 21 E-mail: [email protected] 22 23 Key words (3-6 words): brain development, meninges, pial basement membrane, retinoic acid, human 24 meninges bioRxiv preprint doi: https://doi.org/10.1101/648642; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 Abstract 26 The meninges, a multilayered structure that encases the CNS, is composed mostly of fibroblasts, 27 along with vascular and immune cells.
    [Show full text]
  • Lecture 4: the Meninges And
    1/1/2016 Introduction • Protection of the brain – Bone (skull) The Nervous System – Membranes (meninges) – Watery cushion (cerebrospinal fluid) – Blood-brain barrier (astrocytes) Meninges CSF The Meninges The Meninges • Series of membranes • Three layers • Cover and protect the CNS – Dura mater • Anchor and cushion the brain – Arachnoid mater – • Contain cerebrospinal fluid (CSF) Pia mater The Meninges • Dura mater – “Tough mother” Skin of scalp Periosteum – Strongest meninx Bone of skull Periosteal Dura – Fibrous connective tissue Meningeal mater Superior Arachnoid mater – sagittal sinus Pia mater Limit excessive movement of the brain Subdural Arachnoid villus – space Blood vessel Forms partitions in the skull Subarachnoid Falx cerebri space (in longitudinal fissure only) Figure 12.24 1 1/1/2016 Superior The Meninges sagittal sinus Falx cerebri • Arachnoid mater – “Spider mother” Straight sinus – Middle layer with weblike extensions Crista galli – Separated from the dura mater by the subdural space of the Tentorium ethmoid cerebelli – Subarachnoid space contains CSF and blood vessels bone Falx Pituitary cerebelli gland (a) Dural septa Figure 12.25a The Meninges • Pia mater – “Gentle mother” – Connected to the dura mater by projections from the arachnoid mater – Layer of delicate vascularized connective tissue – Clings tightly to the brain T Meningitis TT121212 Ligamentum flavumflavumflavum L • LL555 Lumbar puncture Inflammation of meninges needle entering subarachnoid • May be bacterial or viral spacespacespace LLL444 • Diagnosed by
    [Show full text]
  • Carcinomatosis of the Meninges of the Spinal Cord and Base of the Brain, Without Involvement of the Parenchyma, Secondary to Carcinoma of the Lung
    CARCINOMATOSIS OF THE MENINGES OF THE SPINAL CORD AND BASE OF THE BRAIN, WITHOUT INVOLVEMENT OF THE PARENCHYMA, SECONDARY TO CARCINOMA OF THE LUNG BERNARD J. ALPERS, M.D., A~D O. NORRIS SMITH, M.D. (From the Laboratories of Neurosurgery and Pathology in the Hospital of the University of Pennsylvania) Metastatic carcinoma of the nervous system limited to the meninges IS rare, but it has been frequently described. Carcinomatosis of this sort is usually confined to the meninges over the cerebral hemispheres and only occa­ sionally spreads to the spinal membranes. Meningeal carcinomatosis con­ fined to the spinal cord and to a portion of the base of the brain without in­ volvement of the cerebrum itself is so unusual that the following case is pre­ sented as an addition to our knowledge concerning metastatic carcinoma of the central nervous system. REPORT OF CASE CASE No. 36-23924: Weakness five months; lumbar pain one month; mass in left upper lobe demonstrable roentgenographically; severe pain in legs; wasting and progressive weak­ ness suggestive of spinal cord lesion; flaccid paralysis; fibrillary tremors in trunk and limb muscles; diminished lower abdominal and leg reflexes; inconclusive Queckenstedt test; pleocytosis in spinal fluid. Necropsy findings: mass in left lung, probably primary carci­ noma; meningeal carcinomatosis oj spinal cord membranes and membranes at base of brain; no tumor in cord or brain. History: J. R., a fifty-six-year-old white farmer, recently employed as a church sexton, was admitted to the medical service of Dr. Alfred Stengel on Sept. 12, 1936, complaining of lower back pain which had confined him to bed for a month.
    [Show full text]
  • Review of Spinal Cord Basics of Neuroanatomy Brain Meninges
    Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Parts of Nervous System Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Neurons and Neuroglia Neuron Human brain contains per 1011-12 (trillions) neurons Body (soma) Perikaryon Nissl substance or Tigroid Dendrites Axon Myelin Terminals Synapses Neuronal types Unipolar, pseudounipolar, bipolar, multipolar Afferent (sensory, centripetal) Efferent (motor, centrifugal, effector) Associate (interneurons) Synapse Presynaptic membrane Postsynaptic membrane, receptors Synaptic cleft Synaptic vesicles, neuromediator Mitochondria In human brain – neurons 1011 (100 trillions) Synapses – 1015 (quadrillions) Neuromediators •Acetylcholine •Noradrenaline •Serotonin •GABA •Endorphin •Encephalin •P substance •Neuronal nitric oxide Adrenergic nerve ending. There are many 50-nm-diameter vesicles (arrow) with dark, electron-dense cores containing norepinephrine. x40,000. Cell Types of Neuroglia Astrocytes - Oligodendrocytes – Ependimocytes - Microglia Astrocytes – a part of hemoencephalic barrier Oligodendrocytes Ependimocytes and microglial cells Microglia represent the endogenous brain defense and immune system, which is responsible for CNS protection against various types of pathogenic factors. After invading the CNS, microglial precursors disseminate relatively homogeneously throughout the neural tissue and acquire a specific phenotype, which clearly distinguish them from their precursors, the blood-derived monocytes. The ´resting´ microglia
    [Show full text]
  • Pal Worksheet: Nervous System, Brain, Brainstem, Cerebellum, Wk9 Brain 1
    Pal worksheet: nervous system, brain, brainstem, cerebellum, wk9 Brain 1. Describe the relationship of white matter to grey matter in the brain – how does this differ from spinal cord? 2. What does white matter consist of, and what is its function - are there any differences between CNS and PNS in terms of this white matter? 3. What does grey matter consist of? Grey matter for the most part consist of the cell bodies of neurons, as well as interneurons and supporting cells – 4. Draw a diagram of the brain from the side: label important sulci and gyri – label the major lobes of the brain – on each lobe list at least two functions that are known to require that particular lobe – label primary motor cortex, primary somatosensory cortex, lateral fissure and central sulcus, primary visual cortex, primary auditory cortex 5. Create an illustration of the meninges of the brain, include any important spaces and traversing structures – make sure the drawing makes clear how sinuses are formed 6. Draw a picture of the ventricles of the brain and include important passageways 7. What flows through the ventricular system? Where does it travel after it exits the ventricular system? Where does it go to once it finishes circulating around the brain and spinal cord? Brainstem 8. List 5 major involuntary/autonomic functions that are regulated/controlled in whole or in part by the brainstem 9. Name the three regions of the brainstem and describe a function that is associated with each region: a. b. c. Cerebellum 10. The cerebellum is involved in motor control.
    [Show full text]
  • Spinal Meninges Neuroscience Fundamentals > Regional Neuroscience > Regional Neuroscience
    Spinal Meninges Neuroscience Fundamentals > Regional Neuroscience > Regional Neuroscience SPINAL MENINGES GENERAL ANATOMY Meningeal Layers From outside to inside • Dura mater • Arachnoid mater • Pia mater Meningeal spaces From outside to inside • Epidural (above the dura) - See: epidural hematoma and spinal cord compression from epidural abscess • Subdural (below the dura) - See: subdural hematoma • Subarachnoid (below the arachnoid mater) - See: subarachnoid hemorrhage Spinal canal Key Anatomy • Vertebral body (anteriorly) • Vertebral arch (posteriorly). • Vertebral foramen within the vertebral arch. MENINGEAL LAYERS 1 / 4 • Dura mater forms a thick ring within the spinal canal. • The dural root sheath (aka dural root sleeve) is the dural investment that follows nerve roots into the intervertebral foramen. • The arachnoid mater runs underneath the dura (we lose sight of it under the dural root sheath). • The pia mater directly adheres to the spinal cord and nerve roots, and so it takes the shape of those structures. MENINGEAL SPACES • The epidural space forms external to the dura mater, internal to the vertebral foramen. • The subdural space lies between the dura and arachnoid mater layers. • The subarachnoid space lies between the arachnoid and pia mater layers. CRANIAL VS SPINAL MENINGES  Cranial Meninges • Epidural is a potential space, so it's not a typical disease site unless in the setting of high pressure middle meningeal artery rupture or from traumatic defect. • Subdural is a potential space but bridging veins (those that pass from the subarachnoid space into the dural venous sinuses) can tear, so it is a common site of hematoma. • Subarachnoid space is an actual space and is a site of hemorrhage and infection, for example.
    [Show full text]
  • MENINGES and CEREBROSPINAL FLUID' by LEWIS H
    MENINGES AND CEREBROSPINAL FLUID' By LEWIS H. WEED Department of Anatomy, John Hopkins University THE divorce of structure from function is particularly difficult in any ana- tomical study: it was only 85 years ago that the two subjects of morphology and physiology were considered to justify separate departments as academic disciplines. But with this cleavage which fortunately has not at any time been a rigid one, only certain investigations could go forward without loss of in- spiration and interpretation when studied apart from the sister science; other researches were enormously hampered and could be attacked only with due regard to structure and function. So it is without apologies that I begin the presentation of the problem of the coverings of the central nervous system -coverings which encompass a characteristic body fluid. Here then is a problem of membranes serving to contain a clear, limpid liquid as a sac might hold it. Immediately many questions of biological significance are at hand: how does it happen that these structures retain fluid; where does the fluid come from; where does it go; is the fluid constantly produced or is it an inert, non-circu- lating medium; is the fluid under pressure above that of the atmosphere; does it move about with changes in the animal body?-but the list of problems springing into one's mind grows too long. Knowledge regarding these many questions has progressed since the first accounts of hydrocephalus were given by writers in the Hippocratic corpus, since discovery of the normal ventricular fluid in Galen's time, since its meningeal existence was first uncovered by Valsalva (1911) and advanced by Cotugno (1779), since the first adequate description by Magendie (1825) 100 years ago.
    [Show full text]
  • High-Yield Neuroanatomy
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]
  • Spinal Cord, Spinal Nerves, and the Autonomic Nervous System
    ighapmLre21pg211_216 5/12/04 2:24 PM Page 211 impos03 302:bjighapmL:ighapmLrevshts:layouts: NAME ___________________________________ LAB TIME/DATE _______________________ REVIEW SHEET Spinal Cord, Spinal Nerves, exercise and the Autonomic Nervous System 21 Anatomy of the Spinal Cord 1. Match the descriptions given below to the proper anatomical term: Key: a. cauda equina b. conus medullaris c. filum terminale d. foramen magnum d 1. most superior boundary of the spinal cord c 2. meningeal extension beyond the spinal cord terminus b 3. spinal cord terminus a 4. collection of spinal nerves traveling in the vertebral canal below the terminus of the spinal cord 2. Match the key letters on the diagram with the following terms. m 1. anterior (ventral) hornn 6. dorsal root of spinal nervec 11. posterior (dorsal) horn k 2. arachnoid materj 7. dura materf 12. spinal nerve a 3. central canalo 8. gray commissure i 13. ventral ramus of spinal nerve h 4. dorsal ramus of spinald 9. lateral horne 14. ventral root of spinal nerve nerve g l 5. dorsal root ganglion 10. pia materb 15. white matter o a b n c m d e l f g k h j i Review Sheet 21 211 ighapmLre21pg211_216 5/12/04 2:24 PM Page 212 impos03 302:bjighapmL:ighapmLrevshts:layouts: 3. Choose the proper answer from the following key to respond to the descriptions relating to spinal cord anatomy. Key: a. afferent b. efferent c. both afferent and efferent d. association d 1. neuron type found in posterior hornb 4. fiber type in ventral root b 2.
    [Show full text]
  • The Meninges As Barriers and Facilitators for the Movement of Fluid, Cells and Pathogens Related to the Rodent and Human CNS
    The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS Weller, Roy O.; Sharp, Matthew M.; Christodoulides, Myron; Carare, Roxana O.; Møllgård, Kjeld Published in: Acta Neuropathologica DOI: 10.1007/s00401-018-1809-z Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O., & Møllgård, K. (2018). The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathologica, 135(3), 363-385. https://doi.org/10.1007/s00401-018-1809-z Download date: 28. Sep. 2021 Acta Neuropathologica (2018) 135:363–385 https://doi.org/10.1007/s00401-018-1809-z REVIEW The meninges as barriers and facilitators for the movement of fuid, cells and pathogens related to the rodent and human CNS Roy O. Weller1 · Matthew M. Sharp1 · Myron Christodoulides2 · Roxana O. Carare1 · Kjeld Møllgård3 Received: 5 November 2017 / Revised: 2 January 2018 / Accepted: 15 January 2018 / Published online: 24 January 2018 © The Author(s) 2018. This article is an open access publication Abstract Meninges that surround the CNS consist of an outer fbrous sheet of dura mater (pachymeninx) that is also the inner peri- osteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilita- tors in the foetal CNS.
    [Show full text]
  • High-Yield Neuroanatomy, FOURTH EDITION
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]