Species of Cotoneaster (Rosaceae, Maloideae) Indigenous To, Naturalising Or Common- Ly Cultivated in Central Europe

Total Page:16

File Type:pdf, Size:1020Kb

Species of Cotoneaster (Rosaceae, Maloideae) Indigenous To, Naturalising Or Common- Ly Cultivated in Central Europe Willdenowia 40 – 2010 13 Wolf Bernhard dickoré1* & GerWin kasperek2 Species of Cotoneaster (Rosaceae, Maloideae) indigenous to, naturalising or common- ly cultivated in Central Europe Abstract dickoré W. B. & kasperek G.: species of Cotoneaster (Rosaceae, Maloideae) indigenous to, naturalising or com- monly cultivated in central europe. – Willdenowia 40: 13–45. – online issn 1868-6397; © 2010 BGBM Berlin- dahlem. doi:10.3372/wi.40.40102 (available via http://dx.doi.org/) several alien species of the eurasian genus Cotoneaster are naturalising in central europe, apparently increasingly so, and some on a massive scale. They presumably originate from large-scale cultivation for ground cover, hedges or as ornamental shrubs. The present paper keys and synopses the Cotoneaster species indigenous to, naturalis- ing or commonly cultivated in central europe, on the basis of, relatively limited, both living (wild, adventive and cultivated) and herbarium material. an attempt is made to understand the nature of variation from the genus’ centre of diversification, the mountains of china and the himalayas, which are likewise the origin of most cultivated and naturalising Cotoneaster species. Taxonomic and nomenclatural problems, putatively relating to the presence of apomixis and hybridization in the genus, are discussed. Many of the more than 500 published binomials, including a substantial proportion of those based on cultivated material, seem to be poorly defined, both morphologically and chorologically. of an estimated total of only 50–70 Cotoneaster species worldwide, about 20, mainly chinese spe- cies have been found escaping from cultivation in central europe. presently, about ten species must be considered fully naturalised and, locally at least, invasive. additional key words: taxonomy, ornamental shrubs, alien plants, adventives, neophytes, china Introduction The genus Cotoneaster (Rosaceae, Maloideae) occurs in lar- extensive species inventories were given by flinck & ge parts of mainly continental temperate eurasia (and in- hylmö (1966) and klotz (1982). however, these are cluding northwestern africa, southern india and Taiwan, neither consistent, nor are the vast majority of species excluding Japan). its distribution is often scattered and names accepted or even recognised in regional floras of mainly concentrated in the mountains of the meridional eurasia. a recent monograph by fryer & hylmö (2009) and nemoral zones, while having a clear centre of diver- has added another c. 70 ‘new species’. floras relating sity in china and the himalayas. a probably increasing to central europe (e.g., Jäger & Werner 2005; fischer number of asiatic Cotoneaster species is found alien, es- & al. 2008; kutzelnigg 1994) and larger-scale compila- caping from cultivation or naturalising in central europe. tions (sennikov 2009), as well as garden handbooks and While Cotoneaster is unequivocal in its generic cir- guides to trees and shrubs (schneider 1906; krüssmann cumscription, many species, whether in their native 1976; Bärtels 2001; roloff & Bärtels 2006; Meyer & al. ranges, alien or cultivated, cannot readily be identified. 2006; hrevcova 1999; Jerzak 2007) diverge widely as to The genus is taxonomically difficult, mainly because it nomenclature, circumscription and status of the included comprises nearly 500 published binomials (ipni 2009). species. 1 Botanische staatssammlung München, Menzinger str. 67, 80638 München, Germany; *e-mail: [email protected] (author for correspondence). 2 Universitätsbibliothek Johann christian senckenberg, Bockenheimer landstr. 134–138, 60325 frankfurt am Main, Germany; e-mail: [email protected] 14 dickoré & kasperek: Cotoneaster in central europe The present paper aims at a taxonomic review and texture and indumentum, inflorescence size (number of synopsis of the Cotoneaster species indigenous to, flowers), petal form and colour, fruit size, form, colour, commonly cultivated or naturalising in central europe. indumentum and number of nutlets included. Taxonomic problems in the genus, apparently, relate to Growth forms encompass a wide range of differently several specifics or syndromes, which need to be ad- sized and formed shrubs, ranging from low carpets or dressed in some detail: (a) Cotoneaster is poor in clear- creepers to almost treelike types. however, constructive cut morphological characters; (b) it is of great horticul- features are difficult to describe and also highly variable tural interest and many species were described on the with age and ecology. basis of cultivated strains, often with unknown or cor- leaf duration is an important character, while appar- rupt provenances; (c) native distribution and variation ently in some species ecologically controlled. sometimes of many taxa are poorly known; and (d) indiscriminate deciduous and evergreen types are morphologically al- numbers of species have been described in assuming most indistinguishable. apomixis and hybridisation, but probably often on an indumentum of leaves is often distinctive, while the insufficient factual basis. upper (adaxial) surface often soon becomes glabrous and the lower (abaxial) surface commonly remains strigose or tomentose. Material and methods flower morphology discriminates, possibly not quite The present study is based on a relatively limited material consistently so, between the two subgenera: Cotoneaster from five domains. subg. Cotoneaster has small pink red-tinged or red, cup- (1) native and alien Cotoneaster species of central or bowl-shaped flowers, with petals erect or incurved, europe were studied in the field, mainly in, but not lim- cuneate at base and often erose-dentate along the mar- ited to, the surroundings of Göttingen, southern lower gin; the flowers of C. subg. Chaenopetalum (koehne) G. saxony, and Munich, southern Bavaria, Germany. (2) klotz (in Wiss. Z. friedrich-schiller-Univ. Jena, Math.- herbarium material was revised in the herbaria (abbre- naturwiss. reihe 10: 77. 1982) are mostly white (some- viations according to Thiers 2009) B, hal, hBG, Je, times pink), fully opening stellate, with petals patent, M, MsB, WU and the private herbarium of p. pilsl (salz- often distinctly stalked and mostly entire. probably all burg). images of mainly type specimens were consulted species of Cotoneaster flower for only a very short pe- on the respective platforms of some major herbaria in- riod of time, in spring or early summer, while ripe fruit is cluding a, Gh, k and pe. additional images were ob- present in autumn only, with characters mainly discrimi- tained from specimens deposited at a, dd, Gh and lZ. nating between red or black-coloured, in form, pubes- (3) living accessions were studied in the botanical gar- cence and by number of nutlets included. dens of Berlin, Göttingen, halle and Munich, and in the private garden of G. klotz, Jena. (4) We have collected Taxonomic constraints and examined several species in the field during expedi- tions in china and the himalayas. (5) The literature and acknowledging that it is virtually impossible to have online resources were scanned for diagnostic characters, flowers and fruit on the same Cotoneaster specimen, distribution, other biological features and reports of alien while all traditional dichotomous keys require both for occurrences. identification, some general taxonomic dogmas need Given the huge number of described species and ap- to be scrutinised. it is obvious that the same constraint parent taxonomic ambiguities in Cotoneaster, the present must apply for the bulk of type specimens and original study must remain provisional. The whole genus needs a descriptions in the genus. Theoretically, some related major taxonomic revision including type studies, which caveats can be overcome by repeated visits to a living could only to a minor extent be accomplished within the individual, through cultivation or by considering sec- present framework. furthermore, naturalisations of vari- ondary sources. ous species seem an ongoing, probably also recently ac- in fact, much of the taxonomic information about Co­ celerating process. toneaster is based on either incomplete herbarium speci- mens or on cultivated material. however, the extensive horticultural career of the genus seems to have created Morphology a suite of new problems. an immense pool of cultivated The genus Cotoneaster consists entirely of unarmed selections, forms, strains, mutations or hybrids, often shrubs. as an almost exclusive character, the leaves are with unknown or corrupt provenances and histories, always entire, while otherwise the range of variation re- has emerged in the gardens. in turn, this same stock has sembles that of related genera (Crataegus, Pyracantha, served, deliberately, by chance or by necessity, to amend Sorbus). Morphological characters used to distinguish descriptions and to describe scores of ‘new species’. it, Cotoneaster species are mostly difficult to classify, i.e., thus, seems amazing that, again, the same stock of prob- often variable within wide ranges but between few dis- ably billions of (in europe) cultivated chinese Cotoneas­ crete states. They include growth form, leaf size, form, ter plants gave rise to naturalisations of only a handful of Willdenowia 40 – 2010 15 fairly well-marked species, which mostly are unequivo- seed progeny. a ‘new species syndrome’ (fraser-Jenkins cal among different botanists and sources. 1997), as also evident in Cotoneaster, is then obviously While we have to offer little more than some lucky justified by claiming
Recommended publications
  • APPROVED PLANT LIST Midtown Alliance Tree Well Adoption Program
    APPROVED PLANT LIST Midtown Alliance Tree Well Adoption Program Midtown Alliance launched the Tree Well Adoption program with the primary goal of enriching the experience of Midtown’s workers and residents while encouraging sustainability through the use of low-water, urban tolerant plant species. This list of plants was created to aid individuals and organizations in selecting plant material to plant in their adopted tree wells. This plant list is intended to encourage individual character in the tree wells, rather than restrict creativity in the selection of plants. The plants on the approved list were selected based on the following criteria: • Perennial. All plants listed are perennial, meaning they last for two or more growing seasons. Once established, these plants will require less water to maintain than annuals. • Heat tolerant. Plants in tree wells are exposed to high temperatures caused by vehicles and heat reflected from surrounding buildings, asphalt, and other urban surfaces. They must also be tolerant to high daytime temperatures, typical of Atlanta’s summer months, and cold hardy in the winter months. Atlanta is located in USDA Plant Hardiness Zone 7b/8a. • Water wise. Urban tree wells are surrounded by impervious surfaces and thus, are highly susceptible to periods of drought. Suitable plants must be able to survive periods of low rainfall. • Pollution tolerant. Vehicle exhaust may leave deposits and pollutants on plant foliage, which can kill sensitive plants. • Encourage wildlife. Flowering plants attract insects such as butterflies while others provide food sources for birds and other wildlife. • Grown locally. Many of the plants listed are native to the Atlanta area, and all can be found at local nurseries.
    [Show full text]
  • Shrub List for Brighton 2010
    Shrub List For Brighton 2010 Large Shrubs 10’ -20’ Tall by 6’ – 25’ wide Acer ginnala Amur Maple Acer tataricum Tatarian Maple (better than Amur Maple) Acer grandidentatum Bigtooth Maple Amelanchier alnifolia Saskatoon Serviceberry Amelanchier canadensis Shadblow Serviceberry Caragana arborescens Siberian Peashrub Cercocarpus ledifolius Mountain Mahogany Cotoneaster lucidus Peking Cotoneaster Cowania mexicana Quince Bush, Cliffrose Crataefus ambigua Russian Hawthorn Forestiera neomexicana New Mexican Privet Hippophae rhamnoides Sea Buckthorn Juniperus species Juniper Kolkwitzia amabilis Beauty Bush Pinus mugo Mugo Pine species Prunus americana American Plum Prunus virginiana ‘Shubert’ Canada Red Chokecherry Ptelea trifoliata Wafer Ash or Hop tree Quercus gambelii Gambel Oak Rhus typhina Staghorn Sumac Robinia neomexicana New Mexico Locust Sambucus species Elders Shepherdia argentea Buffaloberry Syringa vulgaris Common Lilac Viburnum lantana Wayfaring Tree, Viburnum Medium Size Shrubs >10’ high by >8’ wide Amorpha fruticosa False Indigo Atriplex canescens Fourwing Saltbush Buddleia davidii Butterfly Bush Cercocarpus montanus Mountain Mahogany Chamaebatiaria millefolium Fernbush Chrysothamnus nauseosus Rubber Rabbitbrush Cornus sericea Redtwig Dogwood Cotinus coggygria Smoke Tree Cotoneaster species Cotoneaster Cytisus scoparius ‘Moonlight’ Moonlight Broom Euonymus alatus Burning Bush Forsythia x intermedia Forsythia Hibiscus syriacus Rose-of-Sharon Juniperus species Juniper Ligustrum vulgare Privet Lonicera species Honeysuckle Mahonia aquifolium Oregon Grape Holly Philadelphus species Mockorange Pyracantha coccinea Firethorn Physocarpus opulifolius Common Ninebark Prunus besseyi Western Sand Cherry Pyracantha coccinea species Firethorn Rhamnus frangula Glossy Buckthorn Ribes species Currant Sambucus species Elder Spiraea x vanhouttei Vanhouttei Spirea Symphoricarpos albus Snowberry Syringa meyeri „Palibin‟ Dwarf Korean Lilac Syringa patula „Miss Kim‟ Dwarf Lilac Viburnum species (dozens of different types) Small Size Shrubs > 5’ tall by >6.
    [Show full text]
  • The Importance of Geographic and Biological Variables in Predicting
    Horticulture Publications Horticulture 6-2013 The mpI ortance of Geographic and Biological Variables in Predicting the Naturalization of Non- Native Woody Plants in the Upper Midwest Mark P. Widrlechner Iowa State University, [email protected] Emily J. Kapler Iowa State University, [email protected] Philip M. Dixon Iowa State University, [email protected] Janette R. Thompson Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/hort_pubs Part of the Ecology and Evolutionary Biology Commons, Forest Management Commons, Horticulture Commons, and the Statistical Models Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ hort_pubs/33. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Horticulture at Iowa State University Digital Repository. It has been accepted for inclusion in Horticulture Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The mpI ortance of Geographic and Biological Variables in Predicting the Naturalization of Non-Native Woody Plants in the Upper Midwest Abstract The es lection, introduction, and cultivation of non-native woody plants beyond their native ranges can have great benefits, but also unintended consequences. Among these consequences is the tendency for some species to naturalize and become invasive pests in new environments to which they were introduced. In lieu of lengthy and costly field trials, risk-assessment models can be used to predict the likelihood of naturalization.
    [Show full text]
  • The Typification of Cotoneaster Symondsii (Rosaceae)
    Phytotaxa 164 (2): 149–153 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.164.2.9 The typification of Cotoneaster symondsii (Rosaceae) JEANETTE FRYER1 & PETER F. ZIKA2,* 1 Cornhill Cottage, Honeycritch Lane, Froxfield, Petersfield, Hampshire, GU32 1BE, England. 2 WTU Herbarium, Box 355325, University of Washington, Seattle, WA 98195-5325, USA. * Author for Correspondence, Email: [email protected] Abstract The binomial Cotoneaster symondsii was published eight years earlier than Cotoneaster simonsii. Some authors have argued that Cotoneaster simonsii should be synonymized under Cotoneaster symondsii, based on priority. Foliar characters provided in the protologue of Cotoneaster symondsii are not a good match for Cotoneaster simonsii. In the absence of original material, a neotype is chosen for Cotoneaster symondsii, in accordance with its protologue, which places it in synonymy with Cotoneaster marginatus. Key words: Cotoneaster subgenus Chaenopetalum, Himalaya, India, nomenclature The binomial Cotoneaster symondsii Moore (1861: 298) was validly published but the original material that formed the basis of the description remains unfound. We were unable to locate any herbarium specimens collected by or seen by Moore when describing C. symondsii. The British Museum received Moore's types and most of his collections that were not ferns (Stafleu & Cowan 1981). We have searched AK, B, BM, CAM, DBN, E, K, KIEV, HILL, OXF, P, WAG, and a number of additional herbaria, but unsuccessfully, and did not find any collections from circa 1860 labeled Cotoneaster symondsii. Moore's (1861) protologue reads: "from Mr. Standish, Bagshot.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • DPR Journal 2016 Corrected Final.Pmd
    Bul. Dept. Pl. Res. No. 38 (A Scientific Publication) Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 ISSN 1995 - 8579 Bulletin of Department of Plant Resources No. 38 PLANT RESOURCES Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 Advisory Board Mr. Rajdev Prasad Yadav Ms. Sushma Upadhyaya Mr. Sanjeev Kumar Rai Managing Editor Sudhita Basukala Editorial Board Prof. Dr. Dharma Raj Dangol Dr. Nirmala Joshi Ms. Keshari Maiya Rajkarnikar Ms. Jyoti Joshi Bhatta Ms. Usha Tandukar Ms. Shiwani Khadgi Mr. Laxman Jha Ms. Ribita Tamrakar No. of Copies: 500 Cover Photo: Hypericum cordifolium and Bistorta milletioides (Dr. Keshab Raj Rajbhandari) Silene helleboriflora (Ganga Datt Bhatt), Potentilla makaluensis (Dr. Hiroshi Ikeda) Date of Publication: April 2016 © All rights reserved Department of Plant Resources (DPR) Thapathali, Kathmandu, Nepal Tel: 977-1-4251160, 4251161, 4268246 E-mail: [email protected] Citation: Name of the author, year of publication. Title of the paper, Bul. Dept. Pl. Res. N. 38, N. of pages, Department of Plant Resources, Kathmandu, Nepal. ISSN: 1995-8579 Published By: Mr. B.K. Khakurel Publicity and Documentation Section Dr. K.R. Bhattarai Department of Plant Resources (DPR), Kathmandu,Ms. N. Nepal. Joshi Dr. M.N. Subedi Reviewers: Dr. Anjana Singh Ms. Jyoti Joshi Bhatt Prof. Dr. Ram Prashad Chaudhary Mr. Baidhya Nath Mahato Dr. Keshab Raj Rajbhandari Ms. Rose Shrestha Dr. Bijaya Pant Dr. Krishna Kumar Shrestha Ms. Shushma Upadhyaya Dr. Bharat Babu Shrestha Dr. Mahesh Kumar Adhikari Dr. Sundar Man Shrestha Dr.
    [Show full text]
  • Cotoneaster Apiculatus
    Cotoneaster apiculatus - Cranberry Cotoneaster (Rosaceae) ------------------------------------------------------------------------------------------------------- Cotoneaster apiculatus is a low arching to mounding Fruits shrub, with glossy small leaves and prominent -red, maturing in late Aug. and a very effective globular red fruits. Cranberry Cotoneaster is often contrast in late summer and early autumn while the utilized as an edging or facer shrub or as a tall foliage is still a glossy dark green groundcover. -0.25" diameter and persistent into early winter -effective display when in mass plantings FEATURES Twigs Form -red-purple with persistent pubescence -low sprawling -older stems olive-brown and lenticeled deciduous shrub or -branches continuously arching with numerous side moderately tall branchlets woody groundcover -buds very small -maturing at 1.5' tall Trunk x 5' wide -not applicable -arching mound and spreading mound USAGE growth habit, with Function branches sometimes -shrub or groundcover effective as an edging, facer, rooting as they touch the ground embankment, mass planting, low barrier, foundation, wall, or -slow growth rate raised planter (short cascading effect) woody plant Culture Texture -full sun to partial shade -fine texture in foliage but medium when bare -prefers moist, well-drained soils but is very urban -open density in foliage and when bare stress tolerant, including poor soils, soil pHs, drought, Assets pruning, salt spray, and some soil compaction -lustrous dark green foliage -propagated by rooted cuttings
    [Show full text]
  • Gori River Basin Substate BSAP
    A BIODIVERSITY LOG AND STRATEGY INPUT DOCUMENT FOR THE GORI RIVER BASIN WESTERN HIMALAYA ECOREGION DISTRICT PITHORAGARH, UTTARANCHAL A SUB-STATE PROCESS UNDER THE NATIONAL BIODIVERSITY STRATEGY AND ACTION PLAN INDIA BY FOUNDATION FOR ECOLOGICAL SECURITY MUNSIARI, DISTRICT PITHORAGARH, UTTARANCHAL 2003 SUBMITTED TO THE MINISTRY OF ENVIRONMENT AND FORESTS GOVERNMENT OF INDIA NEW DELHI CONTENTS FOREWORD ............................................................................................................ 4 The authoring institution. ........................................................................................................... 4 The scope. .................................................................................................................................. 5 A DESCRIPTION OF THE AREA ............................................................................... 9 The landscape............................................................................................................................. 9 The People ............................................................................................................................... 10 THE BIODIVERSITY OF THE GORI RIVER BASIN. ................................................ 15 A brief description of the biodiversity values. ......................................................................... 15 Habitat and community representation in flora. .......................................................................... 15 Species richness and life-form
    [Show full text]
  • Research on Indian Himalayan Treeline Ecotone: an Overview 163
    TROPICAL ECOLOGY © International Society for Tropical Ecology Vol. 59, No. 2 special issue Abbreviation : Trop. Ecol. September 2018 CONTENTS Surendra P. Singh – Research on Indian Himalayan Treeline Ecotone: an overview 163 Avantika Latwal, Priyanka Sah & Subrat Sharma – A cartographic representation of a timberline, 177 treeline and woody vegetation around a Central Himalayan summit using remote sensing method Priyanka Sah & Subrat Sharma – Topographical characterisation of high altitude timberline in the 187 Indian Central Himalayan region Rajesh Joshi, Kumar Sambhav & Surender Pratap Singh – Near surface temperature lapse rate for 197 treeline environment in western Himalaya and possible impacts on ecotone vegetation Subzar Ahmad Nanda, Zafar A. Reshi, Manzoor-Ul-Haq, Bilal Ahmad Lone & Shakoor Ahmad Mir – 211 Taxonomic and functional plant diversity patterns along an elevational gradient through treeline ecotone in Kashmir Ranbeer S. Rawal, Renu Rawal, Balwant Rawat, Vikram S. Negi & Ravi Pathak – Plant species diversity 225 and rarity patterns along altitude range covering treeline ecotone in Uttarakhand: conservation implications P. K. Dutta & R. C. Sundriyal – The easternmost timberline of the Indian Himalayan region: A socio- 241 ecological assessment Aseesh Pandey, Sandhya Rai & Devendra Kumar – Changes in vegetation attributes along an elevation 259 gradient towards timberline in Khangchendzonga National Park, Sikkim Achyut Tiwari, Pramod Kumar Jha – An overview of treeline response to environmental changes in 273 Nepal Himalaya
    [Show full text]
  • Landscape Standards 11
    LANDSCAPE STANDARDS 11 Section 11 describes the landscape guidelines and standards for the Badger Mountain South community. 11.A Introduction.................................................11-2 11.B Guiding Principles..............................................11-2 11.C Common Standards Applicable to all Districts......11-3 11.D Civic and Commercial District Standards................11-4 11.E Residential Standards........................................11-4 11.F Drought Tolerant and/or Native/Naturalized Plant List ......................................................11-5 - 11-11 11.G Refined Plant List....................................11-12 - 11-15 Issue Date: 12-07-10 Badger Mountain South: A Walkable and Sustainable Community, Richland, WA 11-1 11.A INTRODUCTION 11.B GUIDING PRINCIPLES The landscape guidelines and standards which follow are intended to complement the natural beauty of the Badger Mountain Preserve, help define the Badger Mountain South neighborhoods and commercial areas and provide a visually pleasant gateway into the City of Richland. The landscape character of the Badger Mountain South community as identified in these standards borrows heavily from the precedent of the original shrub-steppe landscape found here. However that historical character is joined with other opportunities for a more refined and urban landscape pattern that relates to edges of uses and defines spaces into activity areas. This section is divided into the following sub-sections: Guiding Principles, which suggest the overall orientation for all landscape applications; Common Standards, which apply to all Districts; District-specific landscape standards; and finally extensive plant lists of materials suitable in a variety of situations. 1. WATER CONSERVATION WATER CONSERVATION continued 2. REGIONAL LANDSCAPE CHARACTER a. Drought tolerant plants. d. Design for low maintenance. a.
    [Show full text]
  • Resolving Cryptic Species Complexes in Diplodia
    RESOLVING CRYPTIC SPECIES COMPLEXES IN DIPLODIA Joana Filipa de Sousa Ramos Reis Lopes Dissertação para obtenção do Grau de Mestre em Engenharia Agronómica - Biotecnologia e Melhoramento de Plantas Orientador: Doutor Alan John Lander Phillips Co-orientador: Doutora Maria Helena Mendes da Costa Ferreira Correia de Oliveira Júri: Presidente: Doutora Cristina Maria Moniz Simões de Oliveira, Professora Associada do Instituto Superior de Agronomia da Universidade Técnica de Lisboa. Vogais: Doutora Maria Helena Mendes da Costa Ferreira Correia de Oliveira, Professora Associada do Instituto Superior de Agronomia da Universidade Técnica de Lisboa; Doutor Alan John Lander Phillips, Investigador Principal da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa; Doutora Maria Cecília Nunes Farinha Rego, Investigadora Auxiliar do Laboratório de Patologia Vegetal “Veríssimo de Almeida”. Lisboa, 2008 Aos meus pais. ii Acknowledgements Firstly, I would like to thank Dr. Alan Phillips to whom I had the privilege to work with, for the suggestion of the studied theme and the possibility to work in his project. For the scientific orientation in the present work, the teachings and advices and for the support and persistency in the achievement of a coherent and consistent piece of work; I would also like to thank Prof. Dr. Helena Oliveira for the support and constant availability and especially for her human character and kindness in the most stressful moments; To Eng. Cecília Rego for the interest, attention and encouragement; To Dr. Artur Alves
    [Show full text]
  • SHRUBS Almond Russian ‘Regal’ (Prunus Tenella ‘Regal’ ) NRCS Selection
    TREE DESCRIPTIONS Big Sioux Nursery, Inc. 16613 Sioux Conifer Road Watertown, SD 57201 1-605-886-6806 1-800-968-6806 E-Mail: [email protected] SHRUBS Almond Russian ‘Regal’ (Prunus tenella ‘Regal’ ) NRCS selection. Introduced from Europe and Asia. Suckers to form small colony. Produces showy pink or white flowers and a hairy inedible fruit. Can tolerate heavy clay and gumbo soils. Doesn’t tolerate waterlogged soil. (Size: 6/32, 12-20”) Aronia 'McKenzie' (Aronia melanocarpa) NRCS Selection. Attractive white flowers, glossy foliage, and black berries. Edible fruit attracts birds. Excellent fall color. (Size 6/32”, 12-20”) Buffaloberry (Shepherdia argentea Native. Suckers to form colony. High pH and drought tolerant. Attractive silver leaves. Red fruit can be used for jelly. Good for wildlife. (Size: 6/32”, 12-20”) Caragana (Caragana arborescens) Introduced from Siberia and Manchuria. Sometimes called pea shrub. Produces yellow flowers in spring. Non-edible seedpods. Fine-leafed. High pH and drought tolerant. Extremely hardy and long lived. (Size: 6/32”, 12-20”) Cherry, Mongolian (Prunus fruticosa) Introduced from Eastern Europe, Asia, Siberia, and Mongolia. Suckers slowly to form a colony. Glossy leaves. Showy white flowers and tart red fruit. Excellent for jelly. (Size: 5/32”, 12-20”) Cherry, Nanking (Prunus tomentosa) Introduced from China and Japan. Showy flowers and sweet red fruit. Good for jelly. Plants may be renewed by cutting to ground. Good for wildlife. (Size: 5/32”, 12-20”) Cherry, Sand (Prunus besseyi) Native. Glossy silver-green leaves. Suckers slightly to produce a low thicket. White flowers in spring and purple fruit in summer.
    [Show full text]