Ari – Objektauswahl NGC

Total Page:16

File Type:pdf, Size:1020Kb

Ari – Objektauswahl NGC Ari – Objektauswahl NGC NGC 671 NGC 697 NGC 781 NGC 871 NGC 918 NGC 976 NGC 1054 NGC 1134 NGC 673 NGC 711 NGC 786 NGC 876 NGC 919 NGC 984 NGC 1056 NGC 1156 NGC 675 NGC 716 NGC 792 NGC 877 NGC 924 NGC 990 NGC 1088 NGC 1166 NGC 677 NGC 719 NGC 794 NGC 882 NGC 927 NGC 992 NGC 1109 NGC 1168 NGC 678 NGC 722 NGC 803 NGC 900 NGC 928 NGC 1012 NGC 1111 NGC 1236 NGC 680 NGC 765 NGC 810 NGC 901 NGC 932 NGC 1024 NGC 1112 NGC 683 NGC 770 NGC 817 NGC 903 NGC 935 NGC 1028 NGC 1115 NGC 691 NGC 772 NGC 820 NGC 904 NGC 938 NGC 1029 NGC 1116 Sternbild- NGC 694 NGC 774 NGC 821 NGC 915 NGC 962 NGC 1030 NGC 1117 Übersicht NGC 695 NGC 776 NGC 870 NGC 916 NGC 972 NGC 1036 NGC 1127 Zur Objektauswahl: Nummer anklicken Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken Ari Übersichtskarte Auswahl N 671_3_5_7_83_711 _16_74_81_86_92_803_10_17_20_21 Aufsuchkarte Auswahl N 678_80_91_94_95_97_722 Aufsuchkarte Auswahl N 719_770_772_794 Aufsuchkarte Auswahl NGC 765_776 Aufsuchkarte Auswahl N 870-1-6-7_82_927_990_1024_28_29 Aufsuchkarte Auswahl N 900_01_03_04_15_16_19_28_62_84 Aufsuchkarte Auswahl N 918_24_32_35_38_76_92_1030_36_54 Aufsuchkarte Auswahl NGC 972_1012_1056 Aufsuchkarte Auswahl NGC 1088 Aufsuchkarte Auswahl N 1109_11-2-5-6-7_27_34_66_68 Aufsuchkarte Auswahl NGC 1156 Aufsuchkarte Auswahl Auswahl SAO 93276 NGC 1236 AufsuchkarteNGC Auswahl NGC 671_675_677 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 673_683 ÜbersichtskarteNGC Aufsuch- karte Auswahl Aufsuch- NGC 678_680_691_694_695_697 ÜbersichtskarteNGC karte Auswahl NGC 711 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 716 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 719 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 722 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 765 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 770_772 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 774 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 776 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 781 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 786_792 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 794 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 803 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 810 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 817 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 820 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 821 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 870_871_876_877 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 882 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 900_901 ÜbersichtskarteNGC Aufsuch- karte Auswahl Aufsuch- NGC 903_904_915_916_919_928 ÜbersichtskarteNGC karte Auswahl NGC 918 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 924_932_938 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 927 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 935 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 962 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 972 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 976_992 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 984 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 990 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1012 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1024_1028_1029 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1030_1054 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1036 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1056 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1088 ÜbersichtskarteNGC Aufsuch- karte Auswahl Aufsuch- NGC 1109_1111_1112_1115_1116 ÜbersichtskarteNGC karte Auswahl NGC 1117_1127_1134 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1156 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1166_1168 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 1236 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 671 m mp = 14. 0 1.‘6 x 0.‘6 NGC 671 DetailfotoNGC Übersichts- karte Auswahl NGC 673 m mp = 13. 3 2.‘4 x 1.‘9 NGC 673 DetailfotoNGC Übersichts- karte Auswahl NGC 675 m mp = 15. 3 1.‘1 x 0.‘5 NGC 677 m mp = 13. 5 2.‘0 x 2.‘0 NGC 675_77 DetailfotoNGC Übersichts- karte Auswahl NGC 678 m mp = 13. 3 5.‘0 x 1.‘1 NGC 680 m mp = 13. 0 2.‘9 x 2.‘5 NGC 678_680 DetailfotoNGC Übersichts- karte Auswahl NGC 683 m mp = 14. 0 1.‘0 x 1.‘0 NGC 683 DetailfotoNGC Übersichts- karte Auswahl NGC 691 m mp = 12. 4 3.‘5 x 2.‘7 NGC 691 DetailfotoNGC Übersichts- karte Auswahl NGC 694 m mp = 13. 2 0.‘8 x 0.‘5 NGC 694 DetailfotoNGC Übersichts- karte Auswahl NGC 695 m mp = 13. 7 0.‘7 x 0.‘6 NGC 695 DetailfotoNGC Übersichts- karte Auswahl NGC 697 m mp = 12. 7 4.‘7 x 1.‘8 NGC 697 DetailfotoNGC Übersichts- karte Auswahl NGC 711 m mp = 14. 1 1.‘7 x 0.‘8 NGC 711 DetailfotoNGC Übersichts- karte Auswahl NGC 716 m mp = 13. 9 1.‘8 x 0.‘8 NGC 716 DetailfotoNGC Übersichts- karte Auswahl NGC 719 m mp = 14. 5 1.‘4 x 1.‘1 NGC 719 DetailfotoNGC Übersichts- karte Auswahl NGC 722 m mp = 14. 5 1.‘9 x 0.‘7 NGC 722 DetailfotoNGC Übersichts- karte Auswahl NGC 765 m mp = 14. 0 2.‘7 x 2.‘7 NGC 765 DetailfotoNGC Übersichts- karte Auswahl NGC 770 m mp = 14. 1 1.‘3 x 1.‘0 NGC 772 m mp = 11. 1 7.‘1 x 4.‘5 NGC 770_772 DetailfotoNGC Übersichts- karte Auswahl NGC 774 m mp = 14. 0 2.‘0 x 1.‘5 NGC 774 DetailfotoNGC Übersichts- karte Auswahl NGC 776 m = 13.m2 IC 181 p 1.‘7 x 1.‘7 NGC 776 DetailfotoNGC IC 180 Übersichts- karte Auswahl NGC 781 m mp = 14. 0 1.‘6 x 0.‘5 NGC 781 DetailfotoNGC Übersichts- karte Auswahl NGC 786 m mp = 14. 0 0.‘6 x 0.‘5 NGC 786 DetailfotoNGC Übersichts- karte Auswahl NGC 792 m mp = 14. 1 1.‘8 x 1.‘0 NGC 792 DetailfotoNGC Übersichts- karte Auswahl NGC 794 m mp = 13. 7 1.‘3 x 1.‘1 NGC 794 DetailfotoNGC Übersichts- karte Auswahl NGC 803 m mp = 13. 0 3.‘3 x 1.‘5 NGC 803 DetailfotoNGC Übersichts- karte Auswahl NGC 810 m mp = 14. 9 1.‘7 x 1.‘3 NGC 810 DetailfotoNGC Übersichts- karte Auswahl NGC 817 m mp = 14. 0 0.‘7 x 0.‘3 NGC 817 DetailfotoNGC Übersichts- karte Auswahl NGC 820 m mp = 14. 0 1.‘2 x 0.‘6 NGC 820 DetailfotoNGC Übersichts- karte Auswahl NGC 821 m mp = 11. 8 3.‘5 x 2.‘2 NGC 821 DetailfotoNGC Übersichts- karte Auswahl NGC 870 m mp = 16. 5 0.‘2 x 0.‘2 NGC 871 m mp = 14. 1 1.‘3 x 0.‘5 NGC 870_871 DetailfotoNGC Übersichts- karte Auswahl NGC 876 m mp = 14. 5 1.‘6 x 0.‘6 NGC 877 m mp = 12. 5 2.‘3 x 1.‘8 NGC 876_877 DetailfotoNGC Übersichts- karte Auswahl NGC 882 m mp = 14. 6 1.‘1 x 0.‘6 NGC 882 DetailfotoNGC Übersichts- karte Auswahl NGC 900 m mp = 15. 0 1.‘1 x 0.‘7 NGC 901 m mp = 15. 8 0.‘4 x 0.‘4 NGC 900_901 DetailfotoNGC Übersichts- karte Auswahl NGC 903 m mp = 16. 7 0.‘5 x 0.‘3 NGC 904 m mp = 14. 6 1.‘5 x 1.‘0 NGC 903_904 DetailfotoNGC Übersichts- karte Auswahl NGC 915 m mp = 15. 0 0.‘5 x 0.‘5 NGC 916 m mp = 15. 0 0.‘8 x 0.‘3 NGC 915_916 DetailfotoNGC Übersichts- karte Auswahl NGC 918 m mp = 12. 8 3.‘4 x 2.‘1 NGC 918 DetailfotoNGC Übersichts- karte Auswahl NGC 919 m mp = 15. 0 1.‘2 x 0.‘3 NGC 919 DetailfotoNGC Übersichts- karte Auswahl NGC 924 m mp = 13. 4 2.‘3 x 0.‘4 NGC 924 DetailfotoNGC Übersichts- karte Auswahl NGC 927 m mp = 14. 5 1.‘4 x 1.‘4 NGC 927 DetailfotoNGC Übersichts- karte Auswahl NGC 928 m mp = 15. 0 0.‘7 x 0.‘3 NGC 928 DetailfotoNGC Übersichts- karte Auswahl NGC 932 m mp = 13. 4 1.‘8 x 1.‘7 NGC 932 DetailfotoNGC Übersichts- karte Auswahl NGC 935 m mp = 14. 0 1.‘7 x 1.‘1 NGC 935 DetailfotoNGC Übersichts- karte Auswahl NGC 938 m mp = 13. 4 1.‘6 x 1.‘2 NGC 938 DetailfotoNGC Übersichts- karte Auswahl NGC 962 m mp = 14. 0 1.‘7 x 1.‘2 NGC 962 DetailfotoNGC Übersichts- karte Auswahl NGC 972 m mp = 12. 1 3.‘6 x 2.‘0 NGC 972 DetailfotoNGC Übersichts- karte Auswahl NGC 976 m mp = 13. 2 1.‘7 x 1.‘5 NGC 976 DetailfotoNGC Übersichts- karte Auswahl NGC 6645 m mp = 8. 5 10.‘0 NGC 984 DetailfotoNGC Übersichts- karte Auswahl NGC 6652 m mp = 9. 8 3.‘5 NGC 990 DetailfotoNGC Übersichts- karte Auswahl NGC 6656 m mp = 6. 3 24‘ NGC 992 DetailfotoNGC Übersichts- karte Auswahl NGC 6681 m mp = 9. 0 7.‘8 NGC 1012 DetailfotoNGC Übersichts- karte Auswahl NGC 6716 m mp = 6. 9 10‘ NGC 1024_1028_1029 DetailfotoNGC Übersichts- karte Auswahl NGC 6715 m mp = 7. 1 9.‘1 NGC 1030 DetailfotoNGC Übersichts- karte Auswahl NGC 6717 m mp = 9. 2 3.‘9 NGC 1036 DetailfotoNGC Übersichts- karte Auswahl NGC 6723 m mp = 6. 0 11.‘0 NGC 1054 DetailfotoNGC Übersichts- karte Auswahl NGC 6774 25‘ NGC 1056 DetailfotoNGC Übersichts- karte Auswahl NGC 6794 m mp = 13. 9 1.‘5 x 1.‘2 NGC 1088 DetailfotoNGC Übersichts- karte Auswahl NGC 6805 m mp = 14. 3 1.‘1 x 0.‘9 NGC 1109 DetailfotoNGC Übersichts- karte Auswahl NGC 6806 m mp = 13. 8 1.‘5 x 0.‘8 NGC 1111_1112 DetailfotoNGC Übersichts- karte Auswahl NGC 6809 m mp = 7. 1 19‘ NGC 1115_1116 DetailfotoNGC Übersichts- karte Auswahl NGC 6816 m mp = 14. 1 2.‘1 x 0.‘9 NGC 1117 DetailfotoNGC Übersichts- karte Auswahl NGC 6818 m mp = 9. 9 22“ x 15“ NGC 1127 DetailfotoNGC Übersichts- karte Auswahl NGC 6822 m mp = 9. 4 10.‘2 x 9.‘5 NGC 1134 DetailfotoNGC Übersichts- karte Auswahl NGC 6835 m mp = 13. 1 2.‘7 x 0.‘7 NGC 1156 DetailfotoNGC Übersichts- karte Auswahl NGC 6836 m mp = 13. 4 1.‘2 x 1.‘2 NGC 1166_1168 DetailfotoNGC Übersichts- karte Auswahl NGC 6841 m mp = 13. 4 1.‘5 x 1.‘4 NGC 1236 DetailfotoNGC Übersichts- karte.
Recommended publications
  • Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
    The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al.
    [Show full text]
  • Observational Studies of the Galaxy Peculiar Velocity Field
    OBSERVATIONAL STUDIES OF THE GALAXY PECULIAR VELOCITY FIELD by Philip Andrew James Astrophysics Group Blackett Laboratory Imperial College of Science, Technology and Medicine London SW7 2BZ A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College November 1988 1 ABSTRACT This thesis describes two observational studies of the peculiar velocity field of galaxies over scales of 50-100 Jr1 Mpc, and the consequences of these measurements for cosmological theories. An introduction is given to observational cosmology, emphasising the crucial questions of the nature of the dark matter and the formation of structure. The principal cosmological models are discussed, and the role of observations in developing these models is stressed. Consideration is given to those observations that are likely to prove good discriminators between the competing models, particular emphasis being given to studies of the coherent velocities of samples of galaxies. The first new study presented here uses optical photometry and redshifts, from the literature, for First Ranked Cluster Galaxies (FRCG’s). These galaxies are excellent standard candles, and thus ideal for peculiar velocity studies. A simple one­ dimensional analysis detects no relative motion between the Local Group of galaxies and 60 FRCG’s with redshifts of up to 15000 kms-1. This is shown to imply a streaming motion of the cluster galaxies of at least 600 kms_1 relative to the CBR. The second observational study is a reanalysis of the Rubin et al. (1976a,b) sample of Sc galaxies. Near-IR photometry is used in our reanalysis to minimise the effects of extinction and to facilitate the use of luminosity indicators in reducing the effects of selection biases.
    [Show full text]
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • NASA's Goddard Space Flight Center Laboratory for High Energy
    1 NASA’s Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, Maryland 20771 @S0002-7537~99!00301-7# This report covers the period from July 1, 1997 to June 30, Toshiaki Takeshima, Jane Turner, Ken Watanabe, Laura 1998. Whitlock, and Tahir Yaqoob. This Laboratory’s scientific research is directed toward The following investigators are University of Maryland experimental and theoretical research in the areas of X-ray, Scientists: Drs. Keith Arnaud, Manuel Bautista, Wan Chen, gamma-ray, and cosmic-ray astrophysics. The range of inter- Fred Finkbeiner, Keith Gendreau, Una Hwang, Michael Loe- ests of the scientists includes the Sun and the solar system, wenstein, Greg Madejski, F. Scott Porter, Ian Richardson, stellar objects, binary systems, neutron stars, black holes, the Caleb Scharf, Michael Stark, and Azita Valinia. interstellar medium, normal and active galaxies, galaxy clus- Visiting scientists from other institutions: Drs. Vadim ters, cosmic-ray particles, and the extragalactic background Arefiev ~IKI!, Hilary Cane ~U. Tasmania!, Peter Gonthier radiation. Scientists and engineers in the Laboratory also ~Hope College!, Thomas Hams ~U. Seigen!, Donald Kniffen serve the scientific community, including project support ~Hampden-Sydney College!, Benzion Kozlovsky ~U. Tel such as acting as project scientists and providing technical Aviv!, Richard Kroeger ~NRL!, Hideyo Kunieda ~Nagoya assistance to various space missions. Also at any one time, U.!, Eugene Loh ~U. Utah!, Masaki Mori ~Miyagi U.!, Rob- there are typically between twelve and eighteen graduate stu- ert Nemiroff ~Mich. Tech. U.!, Hagai Netzer ~U. Tel Aviv!, dents involved in Ph.D. research work in this Laboratory. Yasushi Ogasaka ~JSPS!, Lev Titarchuk ~George Mason U.!, Currently these are graduate students from Catholic U., Stan- Alan Tylka ~NRL!, Robert Warwick ~U.
    [Show full text]
  • Download This Article in PDF Format
    A&A 562, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201321493 & c ESO 2014 Astrophysics Li depletion in solar analogues with exoplanets Extending the sample, E. Delgado Mena1,G.Israelian2,3, J. I. González Hernández2,3,S.G.Sousa1,2,4, A. Mortier1,4,N.C.Santos1,4, V. Zh. Adibekyan1, J. Fernandes5, R. Rebolo2,3,6,S.Udry7, and M. Mayor7 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, C/ Via Lactea s/n, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 5 CGUC, Department of Mathematics and Astronomical Observatory, University of Coimbra, 3049 Coimbra, Portugal 6 Consejo Superior de Investigaciones Científicas, CSIC, Spain 7 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland Received 18 March 2013 / Accepted 25 November 2013 ABSTRACT Aims. We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods. In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600–5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results. We confirm significant differences in the Li distribution of solar twins (Teff = T ± 80 K, log g = log g ± 0.2and[Fe/H] = [Fe/H] ±0.2): the full sample of planet host stars (22) shows Li average values lower than “single” stars with no detected planets (60).
    [Show full text]
  • Large-Scale Outflows in Edge-On Seyfert Galaxies. II. Kiloparsec
    Large-Scale Outflows in Edge-on Seyfert Galaxies. II. Kiloparsec-Scale Radio Continuum Emission Edward J. M. Colbert1,2, Stefi A. Baum1, Jack F. Gallimore1,2, Christopher P. O’Dea1, Jennifer A. Christensen1 Received ; accepted arXiv:astro-ph/9604022v1 3 Apr 1996 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 2 Department of Astronomy, University of Maryland, College Park, MD 20742 –2– ABSTRACT We present deep images of the kpc-scale radio continuum emission in 14 edge-on galaxies (ten Seyfert and four starburst galaxies). Observations were taken with the VLA at 4.9 GHz (6 cm). The Seyfert galaxies were selected from a distance-limited sample of 22 objects (defined in paper I). The starburst galaxies were selected to be well-matched to the Seyferts in radio power, recessional velocity and inclination angle. All four starburst galaxies have a very bright disk component and one (NGC 3044) has a radio halo that extends several kpc out of the galaxy plane. Six of the ten Seyferts observed have large-scale (radial extent >1 kpc) radio structures extending outward from the ∼ nuclear region, indicating that large-scale outflows are quite common in Seyferts. Large-scale radio sources in Seyferts are similar in radio power and radial extent to radio halos in edge-on starburst galaxies, but their morphologies do not resemble spherical halos observed in starburst galaxies. The sources have diffuse morphologies, but, in general, they are oriented at skewed angles with respect to the galaxy minor axes. This result is most easily understood if the outflows are AGN-driven jets that are somehow diverted away from the galaxy disk on scales >1 kpc.
    [Show full text]
  • TAAS Monthly Observing Challenge December 2015 Deep Sky Object
    TAAS Monthly Observing Challenge December 2015 Deep Sky Object NGC 772 (GX) Aries ra: 01h 59m 20.1s dec: +19° 00’ 26” Magnitude (visual) = 10.3 Size = 7.2’ x 4.3’ Position angle = 130° Description: NGC 772 (also known as Arp 78) is an unbarred spiral galaxy approximately 130 million light-years away in the constellation Aries. Around 200,000 light years in diameter, NGC 772 is twice the size of the Milky Way Galaxy, and is surrounded by several satellite galaxies – including the dwarf elliptical, NGC 770 – whose tidal forces on the larger galaxy have likely caused the emergence of a single elongated outer spiral arm that is much more developed than the others arms. Halton Arp includes NGC 772 in his Atlas of Peculiar Galaxies as Arp 78, where it is described as a "Spiral galaxy with a small high-surface brightness companion". Two supernovae (SN 2003 hl & SN 2003 iq) have been observed in NGC 772. Source: https://www.wikipedia.org/wiki/NGC_772 AL: Herschel 400 Challenge Object NGC 2371 / 2372 (PN) Gemini ra: 07h 25m 34.8s dec: +29° 29’ 22” Magnitude (visual) = 11.2 Size = 62” Description: NGC 2371-2 is a dual lobed planetary nebula located in the constellation Gemini. Visually, it appears like it could be two separate objects; therefore, two entries were given to the planetary nebula by William Herschel in the "New General Catalogue", so it may be referred to as NGC 2371, NGC 2372, or variations on this name. Source: https://www.wikipedia.org/wiki/NGC_2371-2 AL: Herschel 400, Planetary Nebula Binocular Object NGC 1807 (OC) Taurus ra: 05h 10m 46.0s dec: +16° 31’ 00” Magnitude (visual) = 7.0 Size = 12’ Description: NGC 1807 is an open cluster at the border of the constellations Taurus and Orion near the open cluster NGC 1817.
    [Show full text]
  • Intensity Spots in the Cosmic Microwave Background Radiation and Distant Objects V
    Astronomy Letters, Vol. 27, No. 4, 2001, pp. 207–212. Translated from Pis’ma v Astronomicheskiœ Zhurnal, Vol. 27, No. 4, 2001, pp. 243–249. Original Russian Text Copyright © 2001 by Dubrovich. Formation Mechanisms of “Negative”-Intensity Spots in the Cosmic Microwave Background Radiation and Distant Objects V. K. Dubrovich* Special Astrophysical Observatory, Russian Academy of Sciences, pos. Nizhniœ Arkhyz, Stavropol kraœ, 357147 Russia Received June 2, 2000; in final form, October 2, 2000 Abstract—We consider the formation mechanisms of “negative”-intensity spots in the radio band for various astrophysical conditions. For wavelengths λ < 1.5 mm, the regions of reduced temperature (relative to the cos- mic microwave background radiation, CMBR) are shown to be produced only by high-redshift objects moving at peculiar velocities. The main processes are CMBR Thomson scattering and bremsstrahlung. We show that the effect δT/T can be ~ 10–5 in magnitude. We derive simple analytic expressions, which allow the redshifts, electron densities, and linear sizes of these regions to be estimated from observed spectral and spatial parame- ters. Additional observational methods for refining these parameters are outlined. © 2001 MAIK “Nauka/Inter- periodica”. Key words: theoretical and observational cosmology INTRODUCTION only two formation mechanisms of the “glow.” One of In the last 30 years, much attention has been given them is the Doppler distortion of external, equilibrium, to the search for and a detailed analysis of spatial fluc- and isotropic radiation (CMBR). For this to occur, the tuations in cosmic microwave background radiation object must have a peculiar velocity Vp and some non- zero opacity.
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]
  • Physical Conditions of the Molecular Gas in Metal-Poor Galaxies? L
    A&A 606, A99 (2017) Astronomy DOI: 10.1051/0004-6361/201731000 & c ESO 2017 Astrophysics Physical conditions of the molecular gas in metal-poor galaxies? L. K. Hunt1, A. Weiß2, C. Henkel2; 3, F. Combes4, S. García-Burillo5, V. Casasola1, P. Caselli6, A. Lundgren9, R. Maiolino7, K. M. Menten2, and L. Testi1; 8 1 INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125 Firenze, Italy e-mail: [email protected] 2 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 3 Astronomy Department, King Abdulaziz University, PO Box 80203, Jeddah, Saudia Arabia 4 Observatoire de Paris, LERMA, Collège de France, CNRS, PSL, Sorbonne University UPMC, 75014 Paris, France 5 Observatorio Astronómico Nacional (OAN)-Observatorio de Madrid, Alfonso XII, 3, 28014 Madrid, Spain 6 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany 7 Cavendish Laboratory, University of Cambridge, 19 J.J. Thomson Avenue, Cambridge CB3 0HE, UK 8 ESO, Karl Schwarzschild str. 2, 85748 Garching bei München, Germany 9 Vittja 64, 74793 Alunda, Sweden Received 18 April 2017 / Accepted 8 August 2017 ABSTRACT Studying the molecular component of the interstellar medium (ISM) in metal-poor galaxies has been challenging because of the faint- ness of carbon monoxide emission, the most common proxy of H2. Here we present new detections of molecular gas at low metal- licities, and assess the physical conditions in the gas through various CO transitions for 8 galaxies. For one, NGC 1140 (Z=Z ∼ 0.3), two detections of 13CO isotopologues and atomic carbon, [Ci](1–0) and an upper limit for HCN(1–0) are also reported.
    [Show full text]
  • A DEEP SEARCH for PROMPT RADIO EMISSION from THERMONUCLEAR SUPERNOVAE with the VERY LARGE ARRAY Laura Chomiuk1,11, Alicia M
    Draft version July 1, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 A DEEP SEARCH FOR PROMPT RADIO EMISSION FROM THERMONUCLEAR SUPERNOVAE WITH THE VERY LARGE ARRAY Laura Chomiuk1;11, Alicia M. Soderberg2, Roger A. Chevalier3, Seth Bruzewski1, Ryan J. Foley4,5, Jerod Parrent2, Jay Strader1, Carles Badenes6 Claes Fransson7 Atish Kamble2, Raffaella Margutti8, Michael P. Rupen9, & Joshua D. Simon10 Draft version July 1, 2018 ABSTRACT Searches for circumstellar material around Type Ia supernovae (SNe Ia) are one of the most powerful tests of the nature of SN Ia progenitors, and radio observations provide a particularly sensitive probe of this material. Here we report radio observations for SNe Ia and their lower-luminosity thermonu- clear cousins. We present the largest, most sensitive, and spectroscopically diverse study of prompt (∆t . 1 yr) radio observations of 85 thermonuclear SNe, including 25 obtained by our team with the unprecedented depth of the Karl G. Jansky Very Large Array. With these observations, SN 2012cg joins SN 2011fe and SN 2014J as a SN Ia with remarkably deep radio limits and excellent temporal −1 _ −9 M yr coverage (six epochs, spanning 5{216 days after explosion, yielding M=vw . 5 × 10 100 km s−1 , assuming B = 0:1 and e = 0:1). All observations yield non-detections, placing strong constraints on the presence of circumstellar material. We present analytical models for the temporal and spectral evolution of prompt radio emission from thermonuclear SNe as expected from interaction with either wind-stratified or uniform density media. These models allow us to constrain the progenitor mass loss rates, with limits ranging _ −9 −4 −1 −1 from M .
    [Show full text]
  • Arxiv:Astro-Ph/9906499V1 30 Jun 1999
    to appear in AJ Globular Cluster Systems I: V − I Color Distributions Karl Gebhardt 1,3 University of California Observatories / Lick Observatory, University of California, Santa Cruz, CA 95064 Electronic mail: [email protected] Markus Kissler-Patig 2 European Southern Observatory, Karl–Schwarzschild–Str. 2, 85748 Garching, Germany University of California Observatories / Lick Observatory, University of California, Santa Cruz, CA 95064 Electronic mail: [email protected] ABSTRACT We have compiled data for the globular cluster systems of 50 galaxies from the HST WFPC2 archive, of which 43 are type S0 or earlier. In this paper, we present the data set and derive the V − I color distributions. We derive the first four moments of the color distributions, as well as a measure for their non–unimodality. The number of globular clusters in each galaxy ranges from 18 (in NGC 2778) to 781 (NGC 5846). For those systems having more than 100 clusters, seven of sixteen (44%) show significant bimodality. Overall, roughly half of all the systems in our sample show hints of a bimodal color distribution. In general, the distributions of the faint galaxies are consistent with unimodality, whereas those of the brighter galaxies are not. We also find a number of systems with narrow color distributions—with both mean red and arXiv:astro-ph/9906499v1 30 Jun 1999 blue colors—suggesting that systems exist with only metal–rich or only metal–poor globular clusters. We discuss their possible origins. In comparing the moments of the V − I distributions with various
    [Show full text]