Observational Studies of the Galaxy Peculiar Velocity Field

Total Page:16

File Type:pdf, Size:1020Kb

Observational Studies of the Galaxy Peculiar Velocity Field OBSERVATIONAL STUDIES OF THE GALAXY PECULIAR VELOCITY FIELD by Philip Andrew James Astrophysics Group Blackett Laboratory Imperial College of Science, Technology and Medicine London SW7 2BZ A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College November 1988 1 ABSTRACT This thesis describes two observational studies of the peculiar velocity field of galaxies over scales of 50-100 Jr1 Mpc, and the consequences of these measurements for cosmological theories. An introduction is given to observational cosmology, emphasising the crucial questions of the nature of the dark matter and the formation of structure. The principal cosmological models are discussed, and the role of observations in developing these models is stressed. Consideration is given to those observations that are likely to prove good discriminators between the competing models, particular emphasis being given to studies of the coherent velocities of samples of galaxies. The first new study presented here uses optical photometry and redshifts, from the literature, for First Ranked Cluster Galaxies (FRCG’s). These galaxies are excellent standard candles, and thus ideal for peculiar velocity studies. A simple one­ dimensional analysis detects no relative motion between the Local Group of galaxies and 60 FRCG’s with redshifts of up to 15000 kms-1. This is shown to imply a streaming motion of the cluster galaxies of at least 600 kms_1 relative to the CBR. The second observational study is a reanalysis of the Rubin et al. (1976a,b) sample of Sc galaxies. Near-IR photometry is used in our reanalysis to minimise the effects of extinction and to facilitate the use of luminosity indicators in reducing the effects of selection biases. The velocity anisotropy found by Rubin et al. is confirmed with the new data, which exdudes the possibility that extinction causes this effect The near-IR Tully-Fisher relation and the B-H colour-magnitude relation are used, to investigate whether the effect is caused by true bulk motions. Both relations are shown to be subject to strong biases and uncertainties resulting from the galaxy selection, and thus do not add significant information on the basis of the measured effect Monte Carlo simulations of the galaxy selection procedure undertaken by Rubin et al. are then described. These show conclusive^ +hat Malmquist bias, combined with an anisotropic sampling depth, can explain the whole effect, which therefore does not provide evidence for large scale galaxy streaming. The consequences of these and other recent results are considered, with particular reference to the Hot Dark Matter vs. Cold Dark Matter controversy. A new study of the galaxy peculiar velotity field, using a new spiral galaxy sample, is then introduced. 2 ACKNOWLEDGEMENTS There are many people who have helped to make the three years of my Ph.D research very enjoyable and fulfilling, but there are three I would particularly like to thank here. The first is of course my supervisor, Bob Joseph, who was a constant source of encouragement and ideas, and who has tried to give me, as with all of his students, a sense of the breadth and richness of astrophysics and cosmology. His enthusiasm and dedication will long remain a source of inspiration for me. The other collaborator in the project described here, Chris Collins, must also receive my warmest thanks. He has spent many hours giving me the benefit of his deep understanding of cosmology, both on observing trips and during my many enjoyable visits to the Royal Observatory, Edinburgh. His friendship and hospitality, and that of his colleagues at ROE, are greatly appreciated. During August and September of 1987,1was lucky enough to be given the opportunity to work at the Joint Astronomy Centre in Hawaii. This was a most enjoyable stay, made possible through the kindness of Gillian Wright, who both provided a roof over my head and her considerable experience of observing at UKIRT. I also benefited greatly from her knowledge of the wider aspects of extragalactic astronomy and image processing, during this and other observing trips in Hawaii. I also thank the rest of the JAC staff for a most enjoyable stay, at a very exciting time. I would also like to acknowledge the day-to-day help and encouragement of my colleagues in the Imperial College Astrophysics group. Special mention should go to Martyn Wells, Simon Chase, Rene Doyon, Arvind Pattni and Jason Spyromilio for practical help and many interesting and informative discussions about physics. There are many others, too numerous to list, whose friendship and help is much appreciated, and from whom I beg forgiveness for not mentioning them individually. Finally, I must thank my family, and particularly my mother and sister Katy, for their continuing support and encouragement throughoutthis period. 3 CONTENTS ABSTRACT 2 ACKNOWLEDGEMENTS 3 LIST OF TABLES 7 LIST OF FIGURES 8 CHAPTER ONE INTRODUCTION I Cosmological models 1.1 Description of structures of cosmological interest 12 1.2 The gravitational collapse of primordial density fluctuations 15 1.3 Non-gravitational collapse processes 19 1.4 Modifications to the standard (baryon dominated model) 21 1.5 The dark matter 24 II Observational tests of cosmological models n.l Galaxy catalogues and redshift surveys 28 H.2 CBR anisotropies 31 H.3 Structure athighredshift-quasars and primeval galaxies 32 H.4 Density enhancements and streaming motions 32 n. 5 Observational searches for deviations from isotropic Hubble flow n.5a The local velocity field 36 H.5b The large scale velocity field i Studies which support significant streaming motions 38 ii Studies which find no significant streaming motions 41 iii Conclusions from previous streaming motion studies 44 CHAPTER TWO MEASUREMENT OF GALAXY STREAMING USING FIRST RANKED CLUSTER ELLIPTICALS I The cluster galaxy sample and data 4 1.1 Suitability of first ranked cluster galaxies for streaming studies 45 1.2 The data 46 II Data analysis 50 m Solutions for the Local Group motion 53 IV Interpretation of the Local Group velocity relative to First Ranked Cluster Galaxies IV. 1 Comparison with the Local Group motion relative to the CBR 56 IV.2 Comparison with previous studies 58 IV.3 The effect of choice of frame on streaming solutions 60 CHAPTER THREE GALAXY STREAMING FROM AN ALL-SKY SAMPLE OF SCI SPIRALS I The Rubin et aL (1976a,b) study 1.1 Galaxy sample selection 62 1.2 Rubin et al. data and analysis 63 II Criticisms of the Rubin et al. result n.l The Fall and Jones interpretation 63 n.2 Weaknesses in the Rubin et al. data and analysis 64 IQ A reanalysis of the Rubin et al. sample using near-IR photometry 65 m.l Advantages of near-IR photometry 66 m.2 Newdata-near-DR galaxy photometry 68 m.3 Photometric corrections 72 m.4 Galactic and internal extinction corrections 75 m.5 Luminosity indicators HI. 5a The B-H colour-magnitude relation 7 8 HI. 5b The InfraredTully-Fisher relation 80 HI. 6 Solutions for galaxy streaming velocities 83 m.7 The importance of choice of <HM> 86 IV Estimating the likely impact of selection effects 5 IV. 1 A ’Monte Carlo’ simulation of selection effects 88 IV.2 Directionality in the Malmquist bias 97 IV. 3 Conclusions from simulations of selection bias 101 CHAPTER FOUR COMPARISON OF RESULTS WITH PREVIOUS STUDIES, AND CONSEQUENCES FOR COSMOLOGICAL MODELS I Related observational results 1.1 A comparison of recent studies of galaxy peculiar velocities 103 1.2 Other recent results of importance to cosmology 107 II Consequences for cosmological models 108 n.l Neutrino-dominated cosmologies 109 H.2 The cold dark matter model 110 H. 3 Other models-strings and isocurvature fluctuations 111 m Conclusions 112 CHAPTER FIVE FURTHER STUDIES OF GALAXY STREAMING MOTIONS I A new study of the peculiar velocities of field spirals I. 1 Scientific justification 113 1.2 Use of modem instrumentation 114 1.3 Selection criteria 114 1.4 Observational methods: Photometry and luminosity indicators 119 1.5 Observations 123 1.6 Analysis of the new galaxy sample 123 II Further analysis of galaxy streaming using First Ranked Cluster Ellipticals 128 HI Future work 130 REFERENCES 132 APPENDIX 139 PUBLICATIONS 150 6 LIST OF TABLES TableNumber Title Page 2.1 Photometric and redshiftdatafor 48 60 First Ranked Cluster Galaxies. 2.2 Solutions for Local Group motion, 54 relative to the sample of 60 cluster galaxies. 2.3 Local Group motions derived from 59 previous streaming studies. 3.1 Photometric andredshift data for 86 70 Sc galaxies from the Rubin et al. Minimum Bias Subset 3.2 CBR-frame streaming velocities for the 85 86 MBS galaxies, using the Rubin et al. ’Hubble Modulus’ technique. 3.3 CBR-frame streaming velocities for the 87 86 MBS galaxies, with <HM> varied to minimise streaming amplitude or errors. 5.1 Names, coordinates, approximate diameters 115 and inclinations for the sample of 218 Sc galaxies. 7 LIST OF FIGURES Figure Number Title Page 2.1 Sky distribution of 60 cluster galaxies from 51 Sandage and Hardy (galactic coordinates). 2.2 CBR-frame velocity residuals for the 60 57 cluster galaxies, projected onto the galactic plane. The position of the’Great Attractor’ is also shown. 3.1 Sky distribution of 86 Sc galaxies from 69 Rubin etal. (1976) (galactic coordinates). 3.2 Malmquist bias shown as a trend in absolute B & 76 H magnitude with redshift for 86 Sc galaxies. 3.3 B-H colour-magnitude relation for 86 Sc galaxies. 79 3.4 H-band Tully-Fisher relation for 6 8 Sc galaxies. 82 3.5 Distribution of apparent B magnitudes for the 90 86 Rubin et al.
Recommended publications
  • Nuclear Star Formation in NGC 6240
    A&A 415, 103–116 (2004) Astronomy DOI: 10.1051/0004-6361:20034183 & c ESO 2004 Astrophysics Nuclear star formation in NGC 6240 A. Pasquali1,2,J.S.Gallagher3, and R. de Grijs4 1 ESO/ST-ECF, Karl-Schwarzschild-Strasse 2, 85748 Garching bei M¨unchen, Germany 2 Institute of Astronomy, ETH H¨onggerberg, 8093 Z¨urich, Switzerland 3 University of Wisconsin, Department of Astronomy, 475 N. Charter St., Madison WI 53706, USA e-mail: [email protected] 4 University of Sheffield, Department of Physics and Astronomy, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK e-mail: [email protected] Received 12 August 2003 / Accepted 6 November 2003 Abstract. We have made use of archival HST BVIJH photometry to constrain the nature of the three discrete sources, A1, A2 and B1, identified in the double nucleus of NGC 6240. STARBURST99 models have been fitted to the observed colours, under the assumption, first, that these sources can be treated as star clusters (i.e. single, instantaneous episodes of star formation), and subsequently as star-forming regions (i.e. characterised by continuous star formation). For both scenarios, we estimate ages as young as 4 million years, integrated masses ranging between 7 106 M (B1) and 109 M (A1) and a rate of 1 supernova per × 1 year, which, together with the stellar winds, sustains a galactic wind of 44 M yr− . In the case of continuous star formation, 1 a star-formation rate has been derived for A1 as high as 270 M yr− , similar to what is observed for warm Ultraluminous 3 Infrared Galaxies (ULIRGs) with a double nucleus.
    [Show full text]
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • Evidence of Enhanced Star Formation Efficiency in Luminous And
    Astronomy & Astrophysics manuscript no. main c ESO 2018 October 24, 2018 Evidence of enhanced star formation efficiency in luminous and ultraluminous infrared galaxies⋆ J. Graci´a-Carpio1,2, S. Garc´ıa-Burillo2, P. Planesas2, A. Fuente2, and A. Usero2,3 1 FRACTAL SLNE, Castillo de Belmonte 1, Bloque 5 Bajo A, E-28232 Las Rozas de Madrid, Spain 2 Observatorio Astron´omico Nacional (OAN), Observatorio de Madrid, Alfonso XII 3, E-28014 Madrid, Spain 3 Centre for Astrophysics Research, University of Hertfordshire, College Lane, AL10 9AB, Hatfield, UK e-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Received 4 July 2007; accepted 4 December 2007 ABSTRACT We present new observations made with the IRAM 30m telescope of the J=1–0 and 3–2 lines of HCN and HCO+ used to probe the dense molecular gas content in a sample of 17 local luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). These observations have allowed us to derive an updated version of the power law describing the correlation between the FIR luminosity ′ (LFIR) and the HCN(1–0) luminosity (LHCN(1−0)) of local and high-redshift galaxies. We present the first clear observational evidence ′ that the star formation efficiency of the dense gas (SFEdense), measured as the LFIR/LHCN(1−0) ratio, is significantly higher in LIRGs and ULIRGs than in normal galaxies, a result that has also been found recently in high-redshift galaxies. This may imply a statistically 11 significant turn upward in the Kennicutt-Schmidt law derived for the dense gas at LFIR ≥ 10 L⊙.
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other.
    [Show full text]
  • On the Relation Between Circular Velocity and Central Velocity Dispersion in High and Low Surface Brightness Galaxies1 A
    The Astrophysical Journal, 631:785–791, 2005 October 1 A # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. ON THE RELATION BETWEEN CIRCULAR VELOCITY AND CENTRAL VELOCITY DISPERSION IN HIGH AND LOW SURFACE BRIGHTNESS GALAXIES1 A. Pizzella,2 E. M. Corsini,2 E. Dalla Bonta`,2 M. Sarzi,3 L. Coccato,2 and F. Bertola2 Received 2005 January 5; accepted 2005 March 24 ABSTRACT In order to investigate the correlation between the circular velocity Vc and the central velocity dispersion of the spheroidal component c , we analyzed these quantities for a sample of 40 high surface brightness (HSB) disk galaxies, eight giant low surface brightness (LSB) spiral galaxies, and 24 elliptical galaxies characterized by flat À1 À1 rotation curves. Galaxies have been selected to have a velocity gradient 2kms kpc for R 0:35R25.Weused these data to better define the previous Vc-c correlation for spiral galaxies (which turned out to be HSB) and elliptical galaxies, especially at the lower end of the c values. We find that the Vc-c relation is described by a linear À1 law out to velocity dispersions as low as c 50 km s , while in previous works a power law was adopted for À1 galaxies with c > 80 km s . Elliptical galaxies with Vc based on dynamical models or directly derived from the H i rotation curves follow the same relation as the HSB galaxies in the Vc-c plane. On the other hand, the LSB galaxies follow a different relation, since most of them show either higher Vc or lower c with respect to the HSB galaxies.
    [Show full text]
  • Comprehensive Broadband X-Ray and Multiwavelength Study of Active Galactic Nuclei in Local 57 Ultra/Luminous Infrared Galaxies Observed with Nustar And/Or Swift/BAT
    Draft version July 26, 2021 Typeset using LATEX twocolumn style in AASTeX631 Comprehensive Broadband X-ray and Multiwavelength Study of Active Galactic Nuclei in Local 57 Ultra/luminous Infrared Galaxies Observed with NuSTAR and/or Swift/BAT Satoshi Yamada ,1 Yoshihiro Ueda ,1 Atsushi Tanimoto ,2 Masatoshi Imanishi ,3, 4 Yoshiki Toba ,1, 5 Claudio Ricci ,6, 7, 8 and George C. Privon 9 1Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan 2Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan 3National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588, Japan 4Department of Astronomical Science, Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 5Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan 6N´ucleo de Astronom´ıade la Facultad de Ingenier´ıa,Universidad Diego Portales, Av. Ej´ercito Libertador 441, Santiago, Chile 7Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People's Republic of China 8George Mason University, Department of Physics & Astronomy, MS 3F3, 4400 University Drive, Fairfax, VA 22030, USA 9National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA (Received April 13, 2021; Revised June 11, 2021; Accepted Jul, 2021) ABSTRACT We perform a systematic X-ray spectroscopic analysis of 57 local ultra/luminous infrared galaxy systems (containing 84 individual galaxies) observed with Nuclear Spectroscopic Telescope Array and/or Swift/BAT. Combining soft X-ray data obtained with Chandra, XMM-Newton, Suzaku and/or Swift/XRT, we identify 40 hard (>10 keV) X-ray detected active galactic nuclei (AGNs) and con- strain their torus parameters with the X-ray clumpy torus model XCLUMPY (Tanimoto et al.
    [Show full text]
  • Bias Mitigation in Galaxy Zoo Using Machine Learning Techniques
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Bias Mitigation in Galaxy Zoo Using Machine Learning Techniques Permalink https://escholarship.org/uc/item/7241p065 Author Silva do Nascimento Neto, Pedro Publication Date 2019 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Bias Mitigation in Galaxy Zoo Using Machine Learning Techniques DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Pedro Silva do Nascimento Neto Dissertation Committee: Professor Wayne Hayes, Chair Professor Aaron Barth Professor Eric Mjolsness 2019 c 2019 Pedro Silva do Nascimento Neto DEDICATION To my beloved wife, Elise. ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES x LIST OF ALGORITHMS xii ACKNOWLEDGMENTS xiii CURRICULUM VITAE xv ABSTRACT OF THE DISSERTATION xvii 1 Introduction 1 2 Spiral Galaxy Recognition Using Arm Analysis and Random Forests 4 2.1 Introduction . 5 2.1.1 Related Work . 8 2.1.2 Regression, Not Classification, Because Galaxy Morphology Is Contin- uous, Not Discrete . 11 2.2 Methods . 13 2.3 Results . 17 2.3.1 Features, Trees, and Forests . 17 2.3.2 Adding SpArcFiRe Features . 18 2.3.3 Feature Quality . 26 2.3.4 Comparison with Other Regression Methods . 28 2.4 Conclusions . 30 3 The Chirality Bias in Galaxy Zoo 1 32 3.1 Introduction . 33 3.2 Nature of the bias . 36 3.2.1 More S-wise than Z-wise spins for all values of \spirality" .
    [Show full text]
  • In IAU Symp. 193, Wolf-Rayet Phenomena in Stars and Starburst
    Synthesis Models for Starburst Populations with Wolf-Rayet Stars Claus Leitherer Space Telescope Science Institute1, 3700 San Martin Drive, Baltimore, MD 21218 Abstract. The prospects of utilizing Wolf-Rayet populations in star- burst galaxies to infer the stellar content are reviewed. I discuss which Wolf-Rayet star features can be detected in an integrated stellar pop- ulation. Specific examples are given where the presence of Wolf-Rayet stars can help understand galaxy properties independent of the O-star population. I demonstrate how populations with small age spread, such as super star clusters, permit observational tests to distinguish between single-star and binary models to produce Wolf-Rayet stars. Different synthesis models for Wolf-Rayet populations are compared. Predictions for Wolf-Rayet properties vary dramatically between individual models. The current state of the models is such that a comparison with starburst populations is more useful for improving Wolf-Rayet atmosphere and evo- lution models than for deriving the star-formation history and the initial mass function. 1. Wolf-Rayet Signatures in Young Populations The central 30 Doradus region has the highest concentration of Wolf-Rayet (WR) stars in the LMC. Parker et al. (1995) classify 15 stars within 2000 (or 5 pc) of R136 as WR stars, including objects which may appear WR-like due to very dense winds (de Koter et al. 1997). This suggests that about 1 out of 10 ionizing stars around R136 is of WR type. The WR stars can be seen in an ultraviolet (UV) drift-scan spectrum of the integrated 30 Dor population obtained by Vacca et al.
    [Show full text]
  • Emissão Infra - Vermelha De Galáxias Iras
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA EMISSÃO INFRA - VERMELHA DE GALÁXIAS IRAS Charles José Bonatto Tese realizada sob a orientação da Dra. Miriani G. Pastoriza e apresentada ao Instituto de Física da UFRGS, em preenchi- mento parcial dos requisitos para a obtenção do título de Doutor em Física. Porto Alegre 1992 *Trabalho financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Aos meus pais, irmãos e cunhados. Agradecimentos À Miriani Pastoriza por sua orientação e confiança; À Sebastian Lípari por ter fornecido as observações de CASLEO; A todo o pessoal do Departamento de Astronomia, pelos bons momentos que têm sido proporcionados; Ao pessoal da Biblioteca, em especial à Zuleika e à Ana; A todas as pessoas que direta ou indiretamente contribuíram para este trabalho; Ao CNPq, pelo financiamento deste trabalho; À FAPERGS, pelo apoio financeiro em um dos turnos em Tololo. Resumo Galáxias ativas emitem fortemente no infra-vermelho. Grãos de poeira, aquecidos por fótons Ultra-Violeta e ópticos absorvem estes fótons e os re-emitem no infra-vermelho. Atualmente, esta é a interpretação mais provável para esta emissão no infra-vermelho. Neste trabalho, desenvolvemos um modelo para a emissão e distribuição espacial dos graõs de poeira, incluindo a contribuição de uma lei-de-potência. Usamos galáxias com observações no óptico e no infra-vermelho, separando-as em Seyfert tipo 1 e 2, para analisar as relações entre luminosidades de linhas de emissão no óptico e a luminosidade no infra-vermelho (LIR). Contando o número de galáxias com L r.. dentro de um determinado intervalo, mostramos que as distribuições de LIR de Seyferts tipo 1 e 2 são quase idênticas.
    [Show full text]
  • Classification of Galaxies Using Fractal Dimensions
    UNLV Retrospective Theses & Dissertations 1-1-1999 Classification of galaxies using fractal dimensions Sandip G Thanki University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Thanki, Sandip G, "Classification of galaxies using fractal dimensions" (1999). UNLV Retrospective Theses & Dissertations. 1050. http://dx.doi.org/10.25669/8msa-x9b8 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Understanding the H2/HI Ratio in Galaxies 3
    Mon. Not. R. Astron. Soc. 394, 1857–1874 (2009) Printed 6 August 2021 (MN LATEX style file v2.2) Understanding the H2/HI Ratio in Galaxies D. Obreschkow and S. Rawlings Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK Accepted 2009 January 12 ABSTRACT galaxy We revisit the mass ratio Rmol between molecular hydrogen (H2) and atomic hydrogen (HI) in different galaxies from a phenomenological and theoretical viewpoint. First, the local H2- mass function (MF) is estimated from the local CO-luminosity function (LF) of the FCRAO Extragalactic CO-Survey, adopting a variable CO-to-H2 conversion fitted to nearby observa- 5 1 tions. This implies an average H2-density ΩH2 = (6.9 2.7) 10− h− and ΩH2 /ΩHI = 0.26 0.11 ± · galaxy ± in the local Universe. Second, we investigate the correlations between Rmol and global galaxy properties in a sample of 245 local galaxies. Based on these correlations we intro- galaxy duce four phenomenological models for Rmol , which we apply to estimate H2-masses for galaxy each HI-galaxy in the HIPASS catalog. The resulting H2-MFs (one for each model for Rmol ) are compared to the reference H2-MF derived from the CO-LF, thus allowing us to determine the Bayesian evidence of each model and to identify a clear best model, in which, for spi- galaxy ral galaxies, Rmol negatively correlates with both galaxy Hubble type and total gas mass. galaxy Third, we derive a theoretical model for Rmol for regular galaxies based on an expression for their axially symmetric pressure profile dictating the degree of molecularization.
    [Show full text]
  • The NGC 1614 Interacting Galaxy Molecular Gas Feeding a “Ring of fire”
    A&A 553, A72 (2013) Astronomy DOI: 10.1051/0004-6361/201220453 & c ESO 2013 Astrophysics The NGC 1614 interacting galaxy Molecular gas feeding a “ring of fire” S. König1,2,S.Aalto3, S. Muller3,R.J.Beswick4, and J. S. Gallagher III5 1 Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, Domaine Universitaire, 38406 Saint-Martin d’Hères, France e-mail: [email protected] 2 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark 3 Chalmers University of Technology, Department of Radio and Space Science, Onsala Space Observatory, 43992 Onsala, Sweden 4 University of Manchester, Jodrell Bank Centre for Astrophysics, Oxford Road, Manchester, M13 9PL, UK 5 Department of Astronomy, University of Wisconsin, 475 N Charter Street, Madison, WI, 53706, USA Received 27 September 2012 / Accepted 1 March 2013 ABSTRACT Minor mergers frequently occur between giant and gas-rich low-mass galaxies and can provide significant amounts of interstellar matter to refuel star formation and power active galactic nuclei (AGN) in the giant systems. Major starbursts and/or AGN result when fresh gas is transported and compressed in the central regions of the giant galaxy. This is the situation in the starburst minor merger NGC 1614, whose molecular medium we explore at half-arcsecond angular resolution through our observations of 12CO (2−1) emission using the Submillimeter Array (SMA). We compare our 12CO (2−1) maps with optical and Paα, Hubble Space Telescope and high angular resolution radio continuum images to study the relationships between dense molecular gas and the NGC 1614 starburst region.
    [Show full text]