Arxiv:2011.11737V2 [Astro-Ph.HE] 15 Jan 2021
Draft version January 18, 2021 Typeset using LATEX twocolumn style in AASTeX63 The Radio Luminosity-Risetime Function of Core-Collapse Supernovae M. F. Bietenholz,1, 2 N. Bartel,2 M. Argo,3 R. Dua,4 S. Ryder,5, 6 and A. Soderberg7 1Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdorp, 1740, South Africa 2Department of Physics and Astronomy, York University, Toronto, M3J 1P3, Ontario, Canada 3Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK 4Birla Institute of Technology and Science, Pilani Campus, Pilani, India 5Dept. of Physics & Astronomy, Macquarie University, NSW 2109, Australia 6Astronomy, Astrophysics and Astrophotonics Research Centre, Macquarie University, Sydney, NSW 2109, Australia 7formerly at Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA (Accepted for publication in the Atrophysical Journal, January 18, 2021) ABSTRACT We assemble a large set of 2{10 GHz radio flux density measurements and upper limits of 294 different supernovae (SNe), from the literature and our own and archival data. Only 31% of SNe were detected. We characterize the SN radio lightcurves near the peak using a two-parameter model, with tpk being the time to rise to a peak and Lpk the spectral luminosity at that peak. Over all SNe in 1:7±0:9 25:5±1:6 −1 −1 our sample at D < 100 Mpc, we find that tpk = 10 d, and that Lpk = 10 erg s Hz , 25:5 −1 −1 and therefore that generally, 50% of SNe will have Lpk < 10 erg s Hz . These Lpk values are ∼30 times lower than those for only detected SNe.
[Show full text]