What Astronomers Know About Your Galaxy Ngc 6925

Total Page:16

File Type:pdf, Size:1020Kb

What Astronomers Know About Your Galaxy Ngc 6925 WHAT ASTRONOMERS KNOW ABOUT YOUR GALAXY NGC 6925 Constellation Microscopium h m s Right Ascension 20 34 20.566 Declination −31° 58′ 51.20″ Distance 13.57 million light years Magnitude 11.3 Type SAbc NGC is an acronym for the New General Catalog, which was first published in 1888 and contains thousands of celestial objects. CONSTELLATION is the name of the constellation in which your galaxy can be found. You can use the planisphere in the Deluxe Package to locate the time of night and best days of the year to locate your constellation in the sky without a computer or telescope. You can also use the planisphere to learn all your constellations. RIGHT ASCENSION is the celesital equivalent of longitude and divides the sky into 24 hours of celestial longitude. DECLINATION is the celestial latitude. A negative number means the object is below the celestial equator. With the Right Ascension and Declination coordinates, any observatory or large backyard telescope can locate your galaxy in the night sky. DISTANCE is the estimated distance of your galaxy from Earth. MAGNITUDE relates to the brightness of a galaxy. The bigger the number, the fainter the object. The human eye cannot see objects fainter than Magnitude 6. The Andromeda Galaxy is the only galaxy visible to the naked eye under very dark conditions (miles away from city lights). TYPE denotes the kind of galaxy it is. The general classifications are: S = Spiral Galaxy, SB = barred spiral galaxies, E = Elliptical Galaxy, Irr = Irregular Galaxy; from these there are many subtypes. Your galaxy is a SAbc, an intermediate spiral galaxy that is in between the classifications of a spiral galaxy and a barred spiral galaxy. Visit nameagalaxy.com to learn more about galaxy types. .
Recommended publications
  • Observational Studies of the Galaxy Peculiar Velocity Field
    OBSERVATIONAL STUDIES OF THE GALAXY PECULIAR VELOCITY FIELD by Philip Andrew James Astrophysics Group Blackett Laboratory Imperial College of Science, Technology and Medicine London SW7 2BZ A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College November 1988 1 ABSTRACT This thesis describes two observational studies of the peculiar velocity field of galaxies over scales of 50-100 Jr1 Mpc, and the consequences of these measurements for cosmological theories. An introduction is given to observational cosmology, emphasising the crucial questions of the nature of the dark matter and the formation of structure. The principal cosmological models are discussed, and the role of observations in developing these models is stressed. Consideration is given to those observations that are likely to prove good discriminators between the competing models, particular emphasis being given to studies of the coherent velocities of samples of galaxies. The first new study presented here uses optical photometry and redshifts, from the literature, for First Ranked Cluster Galaxies (FRCG’s). These galaxies are excellent standard candles, and thus ideal for peculiar velocity studies. A simple one­ dimensional analysis detects no relative motion between the Local Group of galaxies and 60 FRCG’s with redshifts of up to 15000 kms-1. This is shown to imply a streaming motion of the cluster galaxies of at least 600 kms_1 relative to the CBR. The second observational study is a reanalysis of the Rubin et al. (1976a,b) sample of Sc galaxies. Near-IR photometry is used in our reanalysis to minimise the effects of extinction and to facilitate the use of luminosity indicators in reducing the effects of selection biases.
    [Show full text]
  • On the Relation Between Circular Velocity and Central Velocity Dispersion in High and Low Surface Brightness Galaxies1 A
    The Astrophysical Journal, 631:785–791, 2005 October 1 A # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. ON THE RELATION BETWEEN CIRCULAR VELOCITY AND CENTRAL VELOCITY DISPERSION IN HIGH AND LOW SURFACE BRIGHTNESS GALAXIES1 A. Pizzella,2 E. M. Corsini,2 E. Dalla Bonta`,2 M. Sarzi,3 L. Coccato,2 and F. Bertola2 Received 2005 January 5; accepted 2005 March 24 ABSTRACT In order to investigate the correlation between the circular velocity Vc and the central velocity dispersion of the spheroidal component c , we analyzed these quantities for a sample of 40 high surface brightness (HSB) disk galaxies, eight giant low surface brightness (LSB) spiral galaxies, and 24 elliptical galaxies characterized by flat À1 À1 rotation curves. Galaxies have been selected to have a velocity gradient 2kms kpc for R 0:35R25.Weused these data to better define the previous Vc-c correlation for spiral galaxies (which turned out to be HSB) and elliptical galaxies, especially at the lower end of the c values. We find that the Vc-c relation is described by a linear À1 law out to velocity dispersions as low as c 50 km s , while in previous works a power law was adopted for À1 galaxies with c > 80 km s . Elliptical galaxies with Vc based on dynamical models or directly derived from the H i rotation curves follow the same relation as the HSB galaxies in the Vc-c plane. On the other hand, the LSB galaxies follow a different relation, since most of them show either higher Vc or lower c with respect to the HSB galaxies.
    [Show full text]
  • Emissão Infra - Vermelha De Galáxias Iras
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA EMISSÃO INFRA - VERMELHA DE GALÁXIAS IRAS Charles José Bonatto Tese realizada sob a orientação da Dra. Miriani G. Pastoriza e apresentada ao Instituto de Física da UFRGS, em preenchi- mento parcial dos requisitos para a obtenção do título de Doutor em Física. Porto Alegre 1992 *Trabalho financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Aos meus pais, irmãos e cunhados. Agradecimentos À Miriani Pastoriza por sua orientação e confiança; À Sebastian Lípari por ter fornecido as observações de CASLEO; A todo o pessoal do Departamento de Astronomia, pelos bons momentos que têm sido proporcionados; Ao pessoal da Biblioteca, em especial à Zuleika e à Ana; A todas as pessoas que direta ou indiretamente contribuíram para este trabalho; Ao CNPq, pelo financiamento deste trabalho; À FAPERGS, pelo apoio financeiro em um dos turnos em Tololo. Resumo Galáxias ativas emitem fortemente no infra-vermelho. Grãos de poeira, aquecidos por fótons Ultra-Violeta e ópticos absorvem estes fótons e os re-emitem no infra-vermelho. Atualmente, esta é a interpretação mais provável para esta emissão no infra-vermelho. Neste trabalho, desenvolvemos um modelo para a emissão e distribuição espacial dos graõs de poeira, incluindo a contribuição de uma lei-de-potência. Usamos galáxias com observações no óptico e no infra-vermelho, separando-as em Seyfert tipo 1 e 2, para analisar as relações entre luminosidades de linhas de emissão no óptico e a luminosidade no infra-vermelho (LIR). Contando o número de galáxias com L r.. dentro de um determinado intervalo, mostramos que as distribuições de LIR de Seyferts tipo 1 e 2 são quase idênticas.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Atlante Grafico Delle Galassie
    ASTRONOMIA Il mondo delle galassie, da Kant a skylive.it. LA RIVISTA DELL’UNIONE ASTROFILI ITALIANI Questo è un numero speciale. Viene qui presentato, in edizione ampliata, quan- [email protected] to fu pubblicato per opera degli Autori nove anni fa, ma in modo frammentario n. 1 gennaio - febbraio 2007 e comunque oggigiorno di assai difficile reperimento. Praticamente tutte le galassie fino alla 13ª magnitudine trovano posto in questo atlante di più di Proprietà ed editore Unione Astrofili Italiani 1400 oggetti. La lettura dell’Atlante delle Galassie deve essere fatto nella sua Direttore responsabile prospettiva storica. Nella lunga introduzione del Prof. Vincenzo Croce il testo Franco Foresta Martin Comitato di redazione e le fotografie rimandano a 200 anni di studio e di osservazione del mondo Consiglio Direttivo UAI delle galassie. In queste pagine si ripercorre il lungo e paziente cammino ini- Coordinatore Editoriale ziato con i modelli di Herschel fino ad arrivare a quelli di Shapley della Via Giorgio Bianciardi Lattea, con l’apertura al mondo multiforme delle altre galassie, iconografate Impaginazione e stampa dai disegni di Lassell fino ad arrivare alle fotografie ottenute dai colossi della Impaginazione Grafica SMAA srl - Stampa Tipolitografia Editoria DBS s.n.c., 32030 metà del ‘900, Mount Wilson e Palomar. Vecchie fotografie in bianco e nero Rasai di Seren del Grappa (BL) che permettono al lettore di ripercorrere l’alba della conoscenza di questo Servizio arretrati primo abbozzo di un Universo sempre più sconfinato e composito. Al mondo Una copia Euro 5.00 professionale si associò quanto prima il mondo amatoriale. Chi non è troppo Almanacco Euro 8.00 giovane ricorderà le immagini ottenute dal cielo sopra Bologna da Sassi, Vac- Versare l’importo come spiegato qui sotto specificando la causale.
    [Show full text]
  • TABLE 1: the Sample
    TABLE 1: The Sample Index Name ®(J2000) ±(J2000) BT T Leda RC3 vh DL AB Notes 1 (h m s) ( ) (mag) Type Type Type (km s¡ ) (Mpc) (mag) ± 0 00 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 1 ESO 009-G010 17 39 31.76 85 18 37.3 12.70 3.9 Sbc SA(s)bc: 2421 33.9 0.613 ¡ 2 ESO 027-G001 21 52 26.37 81 31 51.1 12.78 5.0 SBc SB(s)c 2559 18.3 0.860 ¡ 3 ESO 027-G008 22 23 04.19 79 59 49.1 12.96 5.0 SBc SB(s)c? 2491 31.0 0.447 extra ¡ 4 ESO 056-G115 05 23 34.52 69 45 22.1 1.92 9.0 SBm SB(s)m 320 0.050 0.324 LMC, NED ¡ 5 ESO 060-G019 08 57 26.71 69 03 36.5 12.80 6.9 SBcd SB(s)d 1443 18.5 0.433 ¡ 6 ESO 091-G003 09 13 31.59 63 37 35.1 13.00 2.3 Sab SA(rs)ab 1906 20.8 0.974 extra ¡ 7 ESO 097-G013 14 13 09.95 65 20 21.2 12.03 3.4 Sb SA(s)b: 439 4.2 6.276 Circinus, NED ¡ 8 ESO 121-G006 06 07 29.69 61 48 26.9 10.74 5.1 Sc Sc pec: spin 1211 19.1 0.221 ¡ 9 ESO 121-G026 06 21 38.68 59 44 23.8 12.70 3.8 SBbc SB(rs)bc 2264 40.7 0.196 ¡ 10 ESO 136-G012 16 02 35.49 61 46 28.4 12.90 5.0 SBc SB(s)c: 4370 37.2 1.220 ¡ 11 ESO 137-G018 16 20 58.39 60 29 27.7 12.40 5.0 Sc SA(s)c: 626 6.8 1.049 NED ¡ 12 ESO 137-G034 16 35 14.11 58 04 48.1 12.39 0.4 S0/a SAB(s)0/a? 2747 32.9 1.444 NED ¡ 13 ESO 137-G038 16 40 52.50 60 23 39.5 12.89 4.1 SABb SAB(r)bc: 3624 29.6r 1.066 ¡ 0 14 ESO 138-G005 16 53 53.52 58 46 44.5 12.84 3.1 E/S0 SB0 ? pec 2648 37.0r 0.568 ¡ ¡ 15 ESO 138-G010 16 59 02.89 60 12 56.6 11.62 7.7 Sd SA(s)dm 1145 14.7 0.949 ¡ + 16 ESO 138-G029 17 29 18.45 62 27 54.7 12.89 1.0 S0/a (R)SAB(s)0 pec 4637 64.0r 0.357 PGC 60379 ¡ ¡ 17 ESO 183-G030 18 56 55.90 54 32
    [Show full text]
  • DSO List V2 Current
    7000 DSO List (sorted by name) 7000 DSO List (sorted by name) - from SAC 7.7 database NAME OTHER TYPE CON MAG S.B. SIZE RA DEC U2K Class ns bs Dist SAC NOTES M 1 NGC 1952 SN Rem TAU 8.4 11 8' 05 34.5 +22 01 135 6.3k Crab Nebula; filaments;pulsar 16m;3C144 M 2 NGC 7089 Glob CL AQR 6.5 11 11.7' 21 33.5 -00 49 255 II 36k Lord Rosse-Dark area near core;* mags 13... M 3 NGC 5272 Glob CL CVN 6.3 11 18.6' 13 42.2 +28 23 110 VI 31k Lord Rosse-sev dark marks within 5' of center M 4 NGC 6121 Glob CL SCO 5.4 12 26.3' 16 23.6 -26 32 336 IX 7k Look for central bar structure M 5 NGC 5904 Glob CL SER 5.7 11 19.9' 15 18.6 +02 05 244 V 23k st mags 11...;superb cluster M 6 NGC 6405 Opn CL SCO 4.2 10 20' 17 40.3 -32 15 377 III 2 p 80 6.2 2k Butterfly cluster;51 members to 10.5 mag incl var* BM Sco M 7 NGC 6475 Opn CL SCO 3.3 12 80' 17 53.9 -34 48 377 II 2 r 80 5.6 1k 80 members to 10th mag; Ptolemy's cluster M 8 NGC 6523 CL+Neb SGR 5 13 45' 18 03.7 -24 23 339 E 6.5k Lagoon Nebula;NGC 6530 invl;dark lane crosses M 9 NGC 6333 Glob CL OPH 7.9 11 5.5' 17 19.2 -18 31 337 VIII 26k Dark neb B64 prominent to west M 10 NGC 6254 Glob CL OPH 6.6 12 12.2' 16 57.1 -04 06 247 VII 13k Lord Rosse reported dark lane in cluster M 11 NGC 6705 Opn CL SCT 5.8 9 14' 18 51.1 -06 16 295 I 2 r 500 8 6k 500 stars to 14th mag;Wild duck cluster M 12 NGC 6218 Glob CL OPH 6.1 12 14.5' 16 47.2 -01 57 246 IX 18k Somewhat loose structure M 13 NGC 6205 Glob CL HER 5.8 12 23.2' 16 41.7 +36 28 114 V 22k Hercules cluster;Messier said nebula, no stars M 14 NGC 6402 Glob CL OPH 7.6 12 6.7' 17 37.6 -03 15 248 VIII 27k Many vF stars 14..
    [Show full text]
  • Multi-Wavelength Observations of Supernova 2011Ei
    Dartmouth College Dartmouth Digital Commons Open Dartmouth: Faculty Open Access Articles 3-26-2013 Multi-Wavelength Observations of Supernova 2011ei: Time-Dependent Classification of Type Iib and Ib Supernovae and Implications for their Progenitors Dan Milisavljevic Harvard-Smithsonian Center for Astrophysics Raffaella Margutti Harvard-Smithsonian Center for Astrophysics Alicia M. Soderberg Harvard-Smithsonian Center for Astrophysics Giuliano Pignata Andrés Bello National University Laura Chomiuk Harvard-Smithsonian Center for Astrophysics See next page for additional authors Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Milisavljevic, Dan; Margutti, Raffaella; Soderberg, Alicia M.; Pignata, Giuliano; Chomiuk, Laura; and Fesen, Robert A., "Multi- Wavelength Observations of Supernova 2011ei: Time-Dependent Classification of Type Iib and Ib Supernovae and Implications for their Progenitors" (2013). Open Dartmouth: Faculty Open Access Articles. 2183. https://digitalcommons.dartmouth.edu/facoa/2183 This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Authors Dan Milisavljevic, Raffaella Margutti, Alicia M. Soderberg, Giuliano Pignata, Laura Chomiuk, and Robert A. Fesen This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/2183 The Astrophysical Journal, 767:71 (19pp), 2013 April 10 doi:10.1088/0004-637X/767/1/71 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. MULTI-WAVELENGTH OBSERVATIONS OF SUPERNOVA 2011ei: TIME-DEPENDENT CLASSIFICATION OF TYPE IIb AND Ib SUPERNOVAE AND IMPLICATIONS FOR THEIR PROGENITORS Dan Milisavljevic1, Raffaella Margutti1, Alicia M.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • Observation and Interpretation of Type Iib Supernova Explosions by Antonia Morales Garoffolo
    Institut d'Estudis Espacials de Catalunya (IEEC) Institut de Ciencies` de l'Espai (CSIC) Universitat Politecnica` de Catalunya (UPC) Observation and interpretation of type IIb supernova explosions by Antonia Morales Garoffolo A thesis submitted for the degree of Doctor in Physics Advisors: Dr. Nancy Elias-Rosa Prof.Dr. Jordi Isern Tutor: Prof.Dr. Eduardo Bravo Barcelona, 2016 To my parents Pepe and Maria, for helping me to make this happen. Contents List of Figures ix List of Tables xiii List of Acronyms xv 1 Introduction1 1.1 CC-SNe observables...........................6 1.1.1 CC-SNe light curves.......................6 1.1.2 SN spectra............................8 1.2 Type IIb SNe...............................9 1.2.1 Individual studies........................ 10 1.2.2 Other major studies on type IIb SNe.............. 15 1.3 Objectives and structure of the thesis................. 16 2 Data Acquisition and Processing 19 2.1 Data acquisition............................. 19 2.2 Telescopes and instrumentation..................... 20 2.3 Data reduction.............................. 25 2.3.1 Data pre-reduction........................ 25 2.3.2 Photometry............................ 26 2.3.3 Spectroscopy........................... 32 3 SN 2011fu 37 3.1 SN 2011fu: distance, reddening, and explosion date.......... 37 3.2 Photometry................................ 38 3.2.1 Light curves............................ 38 3.3 Spectroscopy............................... 45 3.3.1 Spectral evolution of SN 2011fu................. 45 3.3.2 Line profiles............................ 50 3.4 Discussion................................. 53 3.4.1 Hydrodynamical modelling of the pseudo-bolometric LC... 53 i CONTENTS 3.4.2 Comparison with late-time spectral models.......... 55 3.5 Summary................................. 59 4 SN 2013df 63 4.1 SN 2013df: distance, reddening, and explosion date........
    [Show full text]
  • Arxiv:2011.11737V2 [Astro-Ph.HE] 15 Jan 2021
    Draft version January 18, 2021 Typeset using LATEX twocolumn style in AASTeX63 The Radio Luminosity-Risetime Function of Core-Collapse Supernovae M. F. Bietenholz,1, 2 N. Bartel,2 M. Argo,3 R. Dua,4 S. Ryder,5, 6 and A. Soderberg7 1Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdorp, 1740, South Africa 2Department of Physics and Astronomy, York University, Toronto, M3J 1P3, Ontario, Canada 3Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK 4Birla Institute of Technology and Science, Pilani Campus, Pilani, India 5Dept. of Physics & Astronomy, Macquarie University, NSW 2109, Australia 6Astronomy, Astrophysics and Astrophotonics Research Centre, Macquarie University, Sydney, NSW 2109, Australia 7formerly at Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA (Accepted for publication in the Atrophysical Journal, January 18, 2021) ABSTRACT We assemble a large set of 2{10 GHz radio flux density measurements and upper limits of 294 different supernovae (SNe), from the literature and our own and archival data. Only 31% of SNe were detected. We characterize the SN radio lightcurves near the peak using a two-parameter model, with tpk being the time to rise to a peak and Lpk the spectral luminosity at that peak. Over all SNe in 1:7±0:9 25:5±1:6 −1 −1 our sample at D < 100 Mpc, we find that tpk = 10 d, and that Lpk = 10 erg s Hz , 25:5 −1 −1 and therefore that generally, 50% of SNe will have Lpk < 10 erg s Hz . These Lpk values are ∼30 times lower than those for only detected SNe.
    [Show full text]