Cenozoic Earth History I Cenozoic Plate Tectonics Tertiary, Quaternary, Paleogene, Neogene Tejas Transgression North America's

Total Page:16

File Type:pdf, Size:1020Kb

Cenozoic Earth History I Cenozoic Plate Tectonics Tertiary, Quaternary, Paleogene, Neogene Tejas Transgression North America's Cenozoic Earth History I Cenozoic plate tectonics Tertiary, Quaternary, Paleogene, Neogene Tejas Transgression North America’s east coast geology Laramide Orogeny Post-Laramide mountain building and volcanism The Rocky Mountains Yellowstone Hotspot Alpine-Himalayan Orogenic Belt Circum-Pacific Orogenic Belt The Cenozoic Era The Cenozoic is the shortest era of the Phanerozoic Eon. It starts with the second largest mass extinction in Earth’s history and includes the “Recent” – today. There is now agreement in the Earth science community about how the Cenozoic should be sub-divided: Paleogene, Neogene and Quaternary. The Cenozoic Era The Tejas transgression began and ended during the Paleogene. Starting at about the middle of the period, cooling at both poles led to a long period of global cooling and sea level fall. The fall in sea level led to the development of many of the Atlantic Coastal Plain’s interesting geologic features like a stair-step series of scarps (paleo- shorelines) and terraces (wave-scoured sea floor). By the Neogene, the Earth’s polar climate had cooled to the point that both sea ice and continental glaciers began to grow, locking Earth’s climate into “Icehouse Earth” – the Earth’s climate was (and still is) cold enough that minor changes in the shape of the planet’s orbit causes extensive ice ages. The flat-lying Atlantic Coastal Plain (ACP) contains a thick sequence of sediments weathered from the Appalachians and deposited during the Zuni (Cretaceous) and Tejas (early Tertiary) transgressions. The ACP strata at the surface are progressively younger, with Cretaceous and Eocene strata cropping out farthest inland. The ACP sedimentary wedge thickens toward the ocean, reaching a thickness of several kilometers in offshore canyons. The scarps mark places where coastal erosion occurred in the past. In other words, they mark the positions of shorelines in the past. The terraces were formed by slightly offshore erosion and deposition in the shallow ocean. Relatively flat lying sedimentary rocks deposited during the major transgressions and orogenies of the Paleozoic. The hilly topography is controlled by river drainage. Coal in the Appalachian Plateau strata are targets for strip mining and mountaintop removal mining because it is relatively flat lying seams. The deformed and faulted sedimentary rocks of this province were deposited at the same time as the flat lying rocks of the Appalachian Plateau. These strata were deformed and faulted by the great Alleghanian Orogeny, which shoved giant blocks westward for dozens of miles. These blocks are bounded by very large thrust faults. This province contains primarily Proterozoic and Paleozoic aged plutonic, metamorphic and sedimentary rocks, including parts of the Grenville orogen. The amount of uplift necessary to expose these deep crustal rocks is on the kilometer scale. All three Paleozoic orogenies contributed to this massive uplift. Usually heavily weathered rock similar to the Blue Ridge as well as rocks that formed during the rifting of Pangaea (rift basin sediments and igneous dikes). Piedmont Province rocks underlie the sedimentary deposits of the Atlantic Coastal Plain. Lightly lithified and unconsolidated sediment deposited during marine transgressions in the Cretaceous Period and Cenozoic Era. The province extends into the Atlantic Ocean to the edge of the continental shelf. This sedimentary material is more easily eroded than crystalline rock, so the eastern boundary is a “fall zone”, where the gradients of rivers steepen suddenly as they dig into the softer material of the coastal plain. The eastern margin of North Fall Zone America has been folded into a series of arches and embayments by tectonism associated with formation of the Caribbean plate and persistent northward movement of Cuba. The bays fill with thick packages of sediment when sea level is high. Eastern North America is presently a passive continental margin Ultimately oceanic crust will break along the continental margin and subduction of Atlantic basin crust will begin, just as it did with the Iapetus Ocean during the Paleozoic. The Cenozoic Era The Laramide Orogeny ended during the Paleogene. However even with the end of active subduction along the continental margin, the Rocky Mountains went through several periods of rapid uplift, especially during the Neogene. The modern shape of the Rocky Mountains is the result of erosion of this uplifted material, primarily during the Neogene. The Neogene was also a time of great change in other parts of the Cordilleran, with the development of the San Andreas fault system, the Basin and Range province, and the extrusion of lava to form the Columbia Plateau’s Large Igneous Province (LIP). Part of the North American Plate dragged over the Yellowstone hot spot causing a series of volcanoes to pop up along its track. The Farallon Plate continued to subduct under North America until today only the Juan de Fuca and Cocos plates remain. Along the way, many, many terranes that were originally embedded in the Farallon Plate became part of North America. The subduction of the Farallon-Pacific spreading center caused many geologic changes, including the establishment of the San Andreas fault system Increased heat beneath the Cordilleran plus stress from interactions between the North American and Pacific Plates caused crustal extension such as that found in the Basin and Range Province during the Neogene. The crust and mantle in this region have stretched up to 100% of it’s original width. In the brittle upper crust, this stress caused multiple normal faults and a characteristic valleys separated by ridges (basin and range) topography. http://geomaps.wr.usgs.gov/parks/province/basinrange.html http:// 1121NAWestBasin&Range.jpeg www.gly.uga.edu / railsback / http:// www.ahikingblog.com /2010/03/hiking-in-the-grand-canyon/ The same temperature increase caused the Laramide Orogeny, which included the initial uplift of the massive Colorado Plateau followed by more intense uplift during the Neogene. Marine rocks (deposited below sea level) are now found well over a mile above sea level. The best exposure of these rocks are found in the Grand Canyon, a great series of canyons carved by the Colorado River. Igneous intrusions formed along the edges of the Colorado Plateau during the Cenozoic both during the Laramide Orogeny and again starting in the late Miocene and continuing until quite recently. Cascade Range Columbia plateau flood basalts Yellowstone hot spot Snake River Plain San Juan volcanic field Arizona volcanic field Volcanic activity in the Cordilleran continued through the Cenozoic due to subduction of the Juan de Fuca and Farallon plates, flood basalt formation in the Columbia plateau and hot spot volcanism caused by the movement of the North American Plate over the Yellowstone hot spot. The Columbia Plateau is an enormous Large Igneous Province (LIP) formed during the Miocene and Pliocene Epochs. Most of the basalt was extruded in a geologically short time at the beginning of the igneous activity in the area during the late Miocene (~17 Ma – 14 Ma). The basaltic lava erupted from a series of large vents, some dozens of miles long, and from classic shield volcanoes. The source of the basalt and cause of the extensive eruption is debatable. Almost every known cause of volcanism has been hypothesized for this massive event, including that it was the result of an asteroid impact. One of the most popular current theory is that the eruptions were the results of a short-lived mantle plume, similar to the more permanent plumes that form hotspots. http://vulcan.wr.usgs.gov/Volcanoes/ColumbiaPlateau/summary_columbia_plateau.html Present posi@on of hot spot Ac@ve volcanism at 4.5 Ma Ac@ve volcanism at 16 Ma Ac@ve volcanism at 9 Ma The track of the North American Plate’s southeastern movement over a hot spot during the Neogene is marked by a trail of volcanoes. The hot spot doesn’t move, the continent moves over it. Volcanic activity in Yellowstone national park like geysers and hot springs indicates that the hot spot is still active. Yellowstone’s Dormant (Extinct?) Volcanoes Island Park Caldera Yellowstone Caldera Erupted Huckleberry Erupted at Lava Creek tuff Ridge tuff 2 Ma 600,000 years ago Henry’s Fork Caldera Erupted Mesa Falls tuff 1.3 Ma Previous eruptions at the Yellowstone hotspot produced enormous amounts of air-borne volcanic ash and debris, leading to Yellowstone’s designation as a “Supervolcano”. An eruption of that size today be an unimaginable disaster for the western hemisphere. The Juan de Fuca plate is a remnant of the great Farallon plate. This small oceanic plate is bounded by a spreading center to the west and a subduction zone to the east, where it dives beneath the North American Plate. The Cascade Range volcanoes are the result of partial melting of the Juan de Fuca as it subducts. The range has been active into historical times – with the Mt. St. Helen’s eruption of 1980 being the most recent major eruption. Recent Earth’s Major Orogenic Belts The Circum-Pacific and Alpine-Himalayan orogenic belts are Earth’s present- day major mountain building belts. The Alpine-Himalayan Orogenic Belt Volcanism, seismicity, and deformation in the Alpine-Himalayan orogenic belt extends eastward from Spain through the Mediterranean region into Southeast Asia. This tectonism is due to collision of the Arabian, African and Indo-Australian plates with the Eurasian plate. Eocene (50–40 Ma) Miocene (25-15 Ma) The Himalayan Orogeny The movement of the Indian-Australian plate northward caused this orogeny, with oceanic crust subducting beneath Eurasia followed by the collision of the Indian continental block with the Eurasian plate. Although the orogeny is over, the area still experiences massive earthquakes as the leftover stress is accommodated by large earth movement. The Alpine Orogeny This complicated orogenic event is occurring in response to northward movement of the African and Arabian plates toward southern Europe.
Recommended publications
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • The Cenozoic Era - Nýlífsöld 65 MY-Present Jarðsaga 2 Ólafur Ingólfsson Origin of the Term: the Tertiary Tertiary System
    The Cenozoic Era - Nýlífsöld 65 MY-Present Jarðsaga 2 Ólafur Ingólfsson Origin of the Term: The Tertiary Tertiary System. [1760] Named by Giovanni Arduino Period as the uppermost part of his 65-1.8 MY three-fold subdivision of mountains in northern Italy. The Tertiary became a formal period and system when Lyell published his work describing further subdivisions of the Tertiary. The Tertiary Period is divided into five epochs (tímar): Paleocene (65-56 MY), Eocene (56-34 MY), Oligocene (34-24 MY), Miocene (24-5,3 MY), and Pliocene (5,3-1,8 MY). Confusing set of stratigraphic terms... More than 95% of the Cenozoic era belongs to the Tertiary period. During the 18th century the names Primary, Secondary, and Tertiary were given by Giovanni Arduino to successive rock strata, the Primary being the oldest, the Tertiary the more recent. In 1829 a fourth division, the Quaternary, was added by P. G. Desnoyers. These terms were later abandoned, the Primary becoming the Paleozoic Era, and the Secondary the Mesozoic. But Tertiary and Quaternary were retained for the two main stages of the Cenozoic. Attempts to replace the "Tertiary" with a more reasonable division of “Palaeogene” (early Tertiary) and “Neogene” (later Tertiary and Quaternary) have not been very successful. Stanley uses this division. The World at the K/T Boundary Paleocene plate tectonics During the Paleocene, the inland seas of the Cretaceous Period dry up, exposing large land areas in North America and Eurasia. Australia begins to separate from Antarctica, and Greenland splits from North America. A remnant Tethys Sea persists in the equatorial region.
    [Show full text]
  • The Track of the Yellowstone Hot Spot: Volcanism, Faulting, and Uplift
    Geological Society of America Memoir 179 1992 Chapter 1 The track of the Yellowstone hot spot: Volcanism, faulting, and uplift Kenneth L. Pierce and Lisa A. Morgan US. Geological Survey, MS 913, Box 25046, Federal Center, Denver, Colorado 80225 ABSTRACT The track of the Yellowstone hot spot is represented by a systematic northeast-trending linear belt of silicic, caldera-forming volcanism that arrived at Yel- lowstone 2 Ma, was near American Falls, Idaho about 10 Ma, and started about 16 Ma near the Nevada-Oregon-Idaho border. From 16 to 10 Ma, particularly 16 to 14 Ma, volcanism was widely dispersed around the inferred hot-spot track in a region that now forms a moderately high volcanic plateau. From 10 to 2 Ma, silicic volcanism migrated N54OE toward Yellowstone at about 3 cm/year, leaving in its wake the topographic and structural depression of the eastern Snake River Plain (SRP). This <lo-Ma hot-spot track has the same rate and direction as that predicted by motion of the North American plate over a thermal plume fixed in the mantle. The eastern SRP is a linear, mountain- bounded, 90-km-wide trench almost entirely(?) floored by calderas that are thinly cov- ered by basalt flows. The current hot-spot position at Yellowstone is spatially related to active faulting and uplift. Basin-and-range faults in the Yellowstone-SRP region are classified into six types based on both recency of offset and height of the associated bedrock escarpment. The distribution of these fault types permits definition of three adjoining belts of faults and a pattern of waxing, culminating, and waning fault activity.
    [Show full text]
  • Crustacea: Thalassinidea, Brachyura) from Puerto Rico, United States Territory
    Bulletin of the Mizunami Fossil Museum, no. 34 (2008), p. 1–15, 6 figs., 1 table. © 2008, Mizunami Fossil Museum New Cretaceous and Cenozoic Decapoda (Crustacea: Thalassinidea, Brachyura) from Puerto Rico, United States Territory Carrie E. Schweitzer1, Jorge Velez-Juarbe2, Michael Martinez3, Angela Collmar Hull1, 4, Rodney M. Feldmann4, and Hernan Santos2 1)Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio, 44720, USA <[email protected]> 2)Department of Geology, University of Puerto Rico, Mayagüez Campus, P. O. Box 9017, Mayagüez, Puerto Rico, 00681 United States Territory <[email protected]> 3)College of Marine Science, University of South Florida, 140 7th Ave. South, St. Petersburg, Florida 33701, USA <[email protected]> 4)Department of Geology, Kent State University, Kent, Ohio 44242, USA <[email protected]> Abstract A large number of recently collected specimens from Puerto Rico has yielded two new species including Palaeoxanthopsis tylotus and Eurytium granulosum, the oldest known occurrence of the latter genus. Cretaceous decapods are reported from Puerto Rico for the first time, and the Cretaceous fauna is similar to that of southern Mexico. Herein is included the first report of Pleistocene decapods from Puerto Rico, which were previously known from other Caribbean localities. The Pleistocene Cardisoma guanhumi is a freshwater crab of the family Gecarcinidae. The freshwater crab families have a poor fossil record; thus, the occurrence is noteworthy and may document dispersal of the crab by humans. Key words: Decapoda, Thalassinidea, Brachyura, Puerto Rico, Cretaceous, Paleogene, Neogene. Introduction than Eocene are not separated by these fault zones and even overlie parts of the fault zones in some areas (Jolly et al., 1998).
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • PDF Linkchapter
    Index [Italic page numbers indicate major references] Abajo Mountains, 382, 388 Amargosa River, 285, 309, 311, 322, Arkansas River, 443, 456, 461, 515, Abort Lake, 283 337, 341, 342 516, 521, 540, 541, 550, 556, Abies, 21, 25 Amarillo, Texas, 482 559, 560, 561 Abra, 587 Amarillo-Wichita uplift, 504, 507, Arkansas River valley, 512, 531, 540 Absaroka Range, 409 508 Arlington volcanic field, 358 Acer, 21, 23, 24 Amasas Back, 387 Aromas dune field, 181 Acoma-Zuni scction, 374, 379, 391 Ambrose tenace, 522, 523 Aromas Red Sand, 180 stream evolution patterns, 391 Ambrosia, 21, 24 Arroyo Colorado, 395 Aden Crater, 368 American Falls Lava Beds, 275, 276 Arroyo Seco unit, 176 Afton Canyon, 334, 341 American Falls Reservoir, 275, 276 Artemisia, 21, 24 Afton interglacial age, 29 American River, 36, 165, 173 Ascension Parish, Louisana, 567 aggradation, 167, 176, 182, 226, 237, amino acid ash, 81, 118, 134, 244, 430 323, 336, 355, 357, 390, 413, geochronology, 65, 68 basaltic, 85 443, 451, 552, 613 ratios, 65 beds, 127,129 glaciofluvial, 423 aminostratigraphy, 66 clays, 451 Piedmont, 345 Amity area, 162 clouds, 95 aggregate, 181 Anadara, 587 flows, 75, 121 discharge, 277 Anastasia Formation, 602, 642, 647 layer, 10, 117 Agua Fria Peak area, 489 Anastasia Island, 602 rhyolitic, 170 Agua Fria River, 357 Anchor Silt, 188, 198, 199 volcanic, 54, 85, 98, 117, 129, Airport bench, 421, 423 Anderson coal, 448 243, 276, 295, 396, 409, 412, Alabama coastal plain, 594 Anderson Pond, 617, 618 509, 520 Alamosa Basin, 366 andesite, 75, 80, 489 Ash Flat, 364 Alamosa
    [Show full text]
  • Body Size, Extinction Events, and the Early Cenozoic Record of Veneroid Bivalves: a New Role for Recoveries?
    Paleobiology, 31(4), 2005, pp. 578±590 Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Rowan Lockwood Abstract.ÐMass extinctions can play a role in shaping macroevolutionary trends through time, but the contribution of recoveries to this process has yet to be examined in detail. This study focuses on the effects of three extinction events, the end-Cretaceous (K/T), mid-Eocene (mid-E), and end- Eocene (E/O), on long-term patterns of body size in veneroid bivalves. Systematic data were col- lected for 719 species and 140 subgenera of veneroids from the Late Cretaceous through Oligocene of North America and Europe. Centroid size measures were calculated for 101 subgenera and glob- al stratigraphic ranges were used to assess extinction selectivity and preferential recovery. Vene- roids underwent a substantial extinction at the K/T boundary, although diversity recovered to pre- extinction levels by the early Eocene. The mid-E and E/O events were considerably smaller and their recovery intervals much shorter. None of these events were characterized by signi®cant ex- tinction selectivity according to body size at the subgenus level; however, all three recoveries were strongly size biased. The K/T recovery was biased toward smaller veneroids, whereas both the mid-E and E/O recoveries were biased toward larger ones. The decrease in veneroid size across the K/T recovery actually reinforced a Late Cretaceous trend toward smaller sizes, whereas the increase in size resulting from the Eocene recoveries was relatively short-lived. Early Cenozoic changes in predation, temperature, and/or productivity may explain these shifts.
    [Show full text]
  • Geological Society of America
    BRIGHAM YOUNG UNIVERSITY GEOLOGICAL SOCIETY OF AMERICA FIELD TRIP GUIDE BOOK 1997 ANNUAL MEETING SALT LAKE CITY, UTAH PAR' EDITED BY PAUL KARL LINK AND BART J. KOWALLIS VOIUME 42 I997 PROTEROZOIC TO RECENT STRATIGRAPHY, TECTONICS, AND VOLCANOLOGY, UTAH, NEVADA, SOUTHERN IDAHO AND CENTRAL MEXICO Edited by Paul Karl Link and Bart J. Kowallis BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 42, Part I, 1997 CONTENTS Neoproterozoic Sedimentation and Tectonics in West-Central Utah ..................Nicholas Christie-Blick 1 Proterozoic Tidal, Glacial, and Fluvial Sedimentation in Big Cottonwood Canyon, Utah ........Todd A. Ehlers, Marjorie A. Chan, and Paul Karl Link 31 Sequence Stratigraphy and Paleoecology of the Middle Cambrian Spence Shale in Northern Utah and Southern Idaho ............... W. David Liddell, Scott H. Wright, and Carlton E. Brett 59 Late Ordovician Mass Extinction: Sedimentologic, Cyclostratigraphic, and Biostratigraphic Records from Platform and Basin Successions, Central Nevada ............Stan C. Finney, John D. Cooper, and William B. N. Beny 79 Carbonate Sequences and Fossil Communities from the Upper Ordovician-Lower Silurian of the Eastern Great Basin .............................. Mark T. Harris and Peter M. Sheehan 105 Late Devonian Alamo Impact Event, Global Kellwasser Events, and Major Eustatic Events, Eastern Great Basin, Nevada and Utah .......................... Charles A. Sandberg, Jared R. Morrow and John E. Warme 129 Overview of Mississippian Depositional and Paleotectonic History of the Antler Foreland, Eastern Nevada and Western Utah ......................................... N. J. Silberling, K. M. Nichols, J. H. Trexler, Jr., E W. Jewel1 and R. A. Crosbie 161 Triassic-Jurassic Tectonism and Magmatism in the Mesozoic Continental Arc of Nevada: Classic Relations and New Developments ..........................S. J.
    [Show full text]
  • Idaho State Park Water Safety and Water Related Activities
    Lesson 5 Idaho State Park Water Safety and Water Related Activities Theme: “Water, water, everywhere….” Content Objectives: Students will: Read the legend on the Idaho State Parks and Recreation Guide Identify which parks have water related activities Learn different types of Personal Flotation Devices (PFDs) and why they are important Learn the proper fit of a PFD Write a creative story about an imaginary water related experience at a state park Suggested Level: Fourth (4th) Grade Standards Correlation: Language Arts o Standard 1: Reading Process 1.2, 1.8 o Standard 2: Comprehension/Interpretation 2.2 Language Usage o Standard 3: Writing Process 3.1, 3.2, 3.5 o Standard 5: Writing Components 5.2, 5.3, 5.4 Health o Standard 1: Healthy Lifestyles 1.1 o Standard 2: Risk Taking Behavior 2.1 o Standard 4: Consumer Health 4.1 Humanities: Visual Arts o Standard 3: Performance 3.1, 3.2, 3.3 Mathematics o Standard 1: Number & Operation 1.1, 1.2 o Standard 3: Concepts and Language of Algebra and Function 3.1, 3.3 o Standard 4: Concepts and Principles of Geometry 4.1, 4.3 Physical Education o Standard 1: Skill Movement 1.1 o Standard 5: Personal & Social Responsibility 5.1 Science o Standard 1: Nature of Science 1.8 Social Studies o Standard 2: Geography 2.1, 2.2 Suggested Time Allowance: 2 1-hour session(s) Materials: Idaho State Parks and Recreation Guides (Free from IDPR) Writing paper and pencils/pens Equipment to Take and Water Safety Rules Information Sheet State Parks Water Facts Sheet Assorted sizes and types of PFDs Materials for PFD Relay Race Copies of Concentration Game - 3 x 5 index cards Buck the Water Dog Math and Maze Handouts Pocket folders (portfolios) Preparation: Order Idaho State Parks and Recreation Guides (Free from IDPR).
    [Show full text]
  • Future Volcanism at Yellowstone Caldera: Insights from Geochemistry of Young Volcanic Units and Monitoring of Volcanic Unrest
    2012 Annual Meeting & Exposition Issue! SEPTEMBER 2012 | VOL. 22, NO. 9 A PUBLICATION OF THE GEOLOGICAL SOCIETY OF AMERICA® Future volcanism at Yellowstone caldera: Insights from geochemistry of young volcanic units and monitoring of volcanic unrest Inside: Preliminary Announcement and Call for Papers: 2013 GSA Northeastern Section Meeting, p. 38 Preliminary Announcement and Call for Papers: 2013 GSA Southeastern Section Meeting, p. 41 VOLUME 22, NUMBER 9 | 2012 SEPTEMBER SCIENCE ARTICLE GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news and information for more than 25,000 GSA member read- ers and subscribing libraries, with 11 monthly issues (April/ May is a combined issue). GSA TODAY is published by The Geological Society of America® Inc. (GSA) with offices at 3300 Penrose Place, Boulder, Colorado, USA, and a mail- ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. 4 Future volcanism at Yellowstone GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, caldera: Insights from geochemistry regardless of race, citizenship, gender, sexual orientation, of young volcanic units and religion, or political viewpoint. Opinions presented in this monitoring of volcanic unrest publication do not reflect official positions of the Society. Guillaume Girard and John Stix © 2012 The Geological Society of America Inc. All rights reserved. Copyright not claimed on content prepared Cover: View looking west into the Midway geyser wholly by U.S. government employees within the scope of basin of Yellowstone caldera (foreground) and the West their employment. Individual scientists are hereby granted permission, without fees or request to GSA, to use a single Yellowstone rhyolite lava flow (background).
    [Show full text]
  • Geologic Time 8Th Grade .Pptx
    3/24/15 Geologic Geologic Time Scale Time Scale • Division of Eon Earth’s history The longest of all based on the subdivision based types of life on the abundance forms that lived of certain fossils only during certain periods. Eras Era | Period • 2nd longest subdivision • Marked by worldwide changes in types of fossils. Periods • Units of geologic Ime marked by the types of life exisIng worldwide at the Ime. Trilobites are seen in many epochs different geological periods - Smallest of geologic divisions as different species. - Characterized by different life forms. - Some differences vary from conInent to content. Different species in different Ime period can be used as index fossils. 1 3/24/15 FOUR Eras… Precambrian Era • The earliest and longest geologic era • PRE-CAMBRIAN – 88% of earth’s history lasIng about 4.5 billion years. • LiXle is known of organisms of this era. • Paleozoic (ancient life) *due to rock having been destroyed. – 544 million years ago…lasted 300 million yrs • Mesozoic (middle life) – 245 million years ago…lasted 180 million yrs • Cenozoic (recent life) – 65 million years ago…conInues through present day Ediacarans Cyanobacteria in the Precambrian Era Ancient jellyfish like creature appeared are the earliest life forms known to man. near the end of the Precambrian Ear. The Appalachian Mountain were formed The Paleozoic Era in the Paleozoic era. • Large shallow seas covered much of the conInents. • Many of the fossils found have been marine (ocean) creatures and plants. 2 3/24/15 The Devonian Period Carboniferous Period 419-359 million years ago 359 – 299 million years ago (age of the fishes) Saw the emergence of early Saw the development of early sharks.
    [Show full text]
  • Volume 26C-Nogrid
    Priscum Volume 26 | Issue 1 May 2021 The Newsletter of the Paleontological Society Inside this issue Diversity, Equity, and Inclusion Matter in Diversity, Equity, & Inclusion matter in Paleontology Paleontology PS Development Developments Building an inclusive and equitable Where are we now? PaleoConnect Paleontological Society (see Section 12 of the Member Code of Conduct for definitions) is Since the Paleontological Society (PS) was Journal Corner essential to realizing our core purpose — founded in 1908, its membership has been advancing the field of paleontology (see Article dominated by white men from the United PS-AGI Summer 2020 Interns II of the Articles of Incorporation). However, like States. Racial and ethnic diversity in the PS many other scientific societies, ours has remain extremely low. More than 88% of Tribute to William Clemens, Jr. historically only fostered a sense of belonging respondents to PS membership surveys Educational Materials for a subset of individuals. conducted in 2013 and 2019 self-identified as White (Stigall, 2013; unpublished data, 2019). PS Ethics Committee Report Consider your outreach experiences. Imagine These surveys revealed that, unlike the visiting a series of first grade classrooms — proportion of women, which has increased in Research and Grant Awardees overwhelmingly, the children are fascinated by younger age cohorts (Stigall, 2013), racial and PS Annual meeting at GSA Connects dinosaur bones, scale trees, and trilobites — ethnic diversity varied little among age groups, 2021 regardless of their identities. Now, reflect on suggesting that substantial barriers to the your experiences in paleontological settings as inclusion of most racial and ethnic groups have Upcoming Opportunities an adult; do they include as much diversity as persisted across generations of PS members.
    [Show full text]