<<

Index [Italic page numbers indicate major references]

Abajo , 382, 388 Amargosa River, 285, 309, 311, 322, Arkansas River, 443, 456, 461, 515, Abort , 283 337, 341, 342 516, 521, 540, 541, 550, 556, Abies, 21, 25 Amarillo, , 482 559, 560, 561 Abra, 587 Amarillo-Wichita uplift, 504, 507, Arkansas River valley, 512, 531, 540 Absaroka Range, 409 508 Arlington , 358 Acer, 21, 23, 24 Amasas Back, 387 Aromas field, 181 Acoma-Zuni scction, 374, 379, 391 Ambrose tenace, 522, 523 Aromas Red Sand, 180 stream evolution patterns, 391 Ambrosia, 21, 24 , 395 , 368 American Falls Beds, 275, 276 Arroyo Seco unit, 176 Afton , 334, 341 American Falls , 275, 276 Artemisia, 21, 24 Afton interglacial age, 29 American River, 36, 165, 173 Ascension Parish, Louisana, 567 aggradation, 167, 176, 182, 226, 237, amino acid ash, 81, 118, 134, 244, 430 323, 336, 355, 357, 390, 413, , 65, 68 basaltic, 85 443, 451, 552, 613 ratios, 65 beds, 127,129 glaciofluvial, 423 aminostratigraphy, 66 clays, 451 Piedmont, 345 Amity area, 162 clouds, 95 aggregate, 181 Anadara, 587 flows, 75, 121 discharge, 277 Anastasia Formation, 602, 642, 647 layer, 10, 117 Agua Fria Peak area, 489 Anastasia Island, 602 rhyolitic, 170 Agua Fria River, 357 Anchor , 188, 198, 199 volcanic, 54, 85, 98, 117, 129, Airport bench, 421, 423 Anderson coal, 448 243, 276, 295, 396, 409, 412, Alabama coastal plain, 594 Anderson , 617, 618 509, 520 Alamosa Basin, 366 , 75, 80, 489 Ash Flat, 364 Alamosa Formation, 366 Angeli Member, 463 Ashland, Montana, 448 Alaskan Peninsula, 94 Animas River, 365, 392, 397 Ashley Creek, 432 , 394 Animas Valley, 85, 362, 365 Aspen, 89 Albuquerque-Belen basin, 367 anorthoclasc, 99 asphalt deposits, 187 Albuquerque volcanic field, 87 anorthosite, 451, 463, 465 , 550 Alfisols, 219, 565, 566, 567, 568, Anschutz Federal drill hole, 259, 261 Atchafalaya River 550, 564 570, 617 Antelope Valley, 325 Atchafalaya delta complex, 564 Algodones , 335, 336 anticlines, 384 Atchison Formation, 464 allanite, 99 Antlers Formation, 526 Athens, Arkansas, 540 Allegheny Plateau, 618 Anton basin, 485 Athens Plateau, 531 alloformation, 291 Anza-Borrego, 124, 309 Atlantic Coast, 21 intcrlacustral, 291 Mesa, 489 Atlantic Coastal Plain, 57 lacustrine, 291 flow, 488 nonglacial 629 marine, 632 Apalachicola River channel, 493, stair-stepped terraces, 634 alluvial sheets, 168 593 terraces, 630 alluviation, 55 apatite, 54, 99 Atlantic shelf, 595 alluvium, 68, 125, 135, 164, 168, Appalachian Highlands, 611 Atwater Member, 464 201, 219, 230, 267, 275, 295, Appalachian Plateau, 616 Auburn, Washington, 54 298, 329, 335, 357, 359, 361, Appalachians, 616 Avawatz Mountains, 337 363, 365, 382, 388, 391, 393, southern, 621 Avery Island, 576 398,428, 430, 432, 448, 451, Aquarius Plateau, 382, 388, 389, Avon Park , 595 457, 468, 509, 510,512, 522, 390 Axial arch, 427 524, 527, 530, 537, 568, 570, Arbucklc Mountains, 503, 511 Axial basin, 427 622 Arbuckle uplift, 504, 507, 508 Aycrs Landing Member, 600 Almo , 396 Arch series, 485 Alnus, 21, 23, 24, 25 Arctic Canada, 68 Babby Butte, 449 Alpine Alloformation, 305 Arctodus Bachelor Butte peak, 81 Alpine-Bonneville intcrlacustral, pristinus, 604 backflooding, 161 307 simus, 604 Badger Coulee, 243 Alpine Formation, 302, 306 Argiaquic Xeric Argialboll, 164 , 309, 446, 449 Alpine lake cycles, 306 argon equilibration, 50 Badwater, Death Valley, 323 Alpine penultimate lacustral, 305 , 337 Bahama Banks, 598 Alpine system, 31 Aridisols, 219 Bahamas, 57 Alpine terrace, 31 Arikarce Group, 451 Bailey ash bed, 123,135 Am.aran.thus, 21 Arikarce Sandstone, 452 Bailey County, Texas, 515 Amargosa Alloformation, 310, 311 , 25, 77, 86, 358, 363 Balanophyllia elegans, 192 Amargosa Canyon, 332 Arizona belt, southwestern, 82 Balcom Canyon, 123, 186 Amargosa , 56, 341 Arkansas zone 549 Balcones fault zone, 584

651

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 652 Index

Baldwin Hills, 188 settling, 156 Big Sand Wash, 436 Ballard Formation, 463, 469 sinkhole, 617 Big Smoky Valley, 300 Bamforth Lake, 424 structural, 441 Big Southern Butte, 84, 270 Bandera lava field, 379 transtensional, 323 Bighorn Basin, 407, 409, 437 Bandury , 257, 258, 259, 262, Bastrop Hills, 550, 561, 566 central, 415 269, 274 Bathhouse section, 187, 188 , 410 Barbary-Fausse-Sharkey succession, Baton Rouge area, 558 northern, 415 573 Baton Rouge fault zone, 574 soil development, 416 barchans, 336 Battle Creek fault, 175 terrace sequences, 410 barrier islands, 594 , 630 Bautista Beds, 124 Bighorn Mountains, 409 barrier ridge belt, 592 Macon, 575 Bighorn River, 409, 412, 414, 437 basalt, 85, 87, 89, 215, 253, 256, Bayou Teche, 550 terraces, 414 257, 259, 264, 266, 272, 277, Bayou Lafourche, 550, 564 Bignell , 467 394, 486, 488 Bayport, 593 Biloxi Bay valley, 593 cobbles, 242 beach ridges, 194, 202, 363, 558 Biloxi Formation, 558, 592 eruptions, 215, 272 Beacon Hill, Florida, 594 , 99 flows, 329, 333, 361, 376, 377, Bear Butte Creek, 450 bioturbation, 481 380, 391, 395 Bear Butte terrace, 450 Bird Rock terrace, 196 glassy, 275 Bear Creek , 122 Biscayne aquifer, 647 , 251 Bear Gulch ash bed, 123 Bishop Ash, 10, 111, 112,124, 136, tholeiitic flood, 215 Bear Lake, 283 170, 186, 329, 341, 386, 422 Basalt Canyon, 398, 399, 401 Bear River, 283, 302, 306 Bishop , 286, 303, 310, 366 basaltic shield, 87 Beartooth Mountains, 409 Bishop Tuff, 186, 329, 346 , 89 Beaumount Formation, 556, 558 Bison, 23, 516, 519, 604 Bashaway Creek, 576 Beaumont surface, 586 antiquus, 497 , 84, 260, Beauvais terrace, 412 latifrons, 276 283, 353 Beaver Basin deposits, 387 Biwi, Japan, 60 , 335, 336 Beaver Basin Formation, 387 Black Fork , 540 , 321, 323, 325, 327, Beaver Creek drainage, 384 Black Hills, 441, 445,449 331,335,336, 339, 345 Beaver Creek Formation, 465 stratigraphy, 450 climate, 323 Beaver Creek unit, 466 Black Hills uplift, 450 eolian deposits, 331 Bcaverdam sand, 635 Black Mesa, 364, 374, 392 lacustrine deposits, 339 bedrock, 156, 168, 301, 355, 373, Black Mesa Gravel, 266 Lake , 335 386, 389, 399, 421, 422, 426, Black Point, 131 landscape evolution, 323 441, 447, 452, 464, 504, 525, cycle, 377 lower Valley, 353, 533, 534, 590, 612, 625 surface, 395 355 Bee Branch Member, 600 Black Rock Desert, 86, 285, 288, 300 Mexican Highland section, 353, 358 Bell Canyon, 313 Blackfoot locus, 85 , 57, 83, 321, 322, Belle Fontaine Beach, Mississippi, Blackrock strandline, 199 325, 338, 345, 355 594 Blackwater Draw, 483 piedmont deposits, 327 Belle Fourche , 447 Blackwater Draw Formation, 478, 479, rift zone, 353, 366 Belle Fourche River, 444, 446, 447, 497 Sacramcnto section, 353, 368 449, 450 eolian layers, 479 Sal ton Trough, 286, 334, 345 Belle Glade, 601 , 511 Sonoran Desert, 353, 356 Belleville Formation, 463 Blake Plateau, 60 southern, 353 benches, 417, 419, 423, 456 Blake Reversed Subchron, 60 southwest , 309, 321, dating, 418 Blancan mammalian , 463 323, 337, 335, 339 wind-stripped, 423 Blancan remains, 468 tectonics, 321,345 Bend, , 126, 129 Blanco Formation, 458, 465, 469, Transition Zone-Datil Mogollon Bend , 126, 129 478, 482 section, 353, 365 Bentlcy Formation, 554 bleaching, 64 basins Benllcy terrace, 554 block streams, 616 alkaline lake, 484 Benton, Arkansas, 541 Blue Mountains, 75, 215 alluviated, 355 Benton-Broken Bow uplift, 531, 532 Blue Ridge Province, 620 closed, 346 Bermont Formation, 601 Blue River basin, 466 closed hydrologic, 283, 314, 339, Bermuda High, 374, 376 Blue Rocks, 616 342 Bethel surface, 162 Bodie Hills region, 76 deflation, 447, 470 Detula, 16, 21, 23, 24 Boise River, 84, 258 evaporite, 296 Bidahochi volcanic unit, 377 Boise River canyon, 255 fore-arc, 142, 165 Big Black River, 556 Boise River Valley, 267 intermediate, 367 Big Creek, 432 Boise Warm Springs Water District, intcrmontane, 165, 283, 285, 288, Big Dry Creek, 461 267 300, 321, 353, 355, 356, 357, Big Flat, 202 bones, , 58 358 Big Foot Butte, 266 Boney Spring, 539 lacustrine 478, 484 Big Hollow, 421, 424 Boney Spring Formation, 536 model, 182 Big Mountains, 445 Bonner Springs, 519 playa-lake 485 Big center, 83 Bonneville Alloformation, 302, 307 saline lake, 478, 485 Big Ridge terrace, 590 Bonneville Basin, 37, 64, 67 sedimentary, 251, 258 Big Ridge scarp, 590, 592 Bonneville-Draper interlacustral, 308

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Index 653

Bonneville Flood, 253, 256, 308 Burlingame Canyon, 243, 245 Carquinez Strait, 165, 170, 175 Bonneville Formation, 302 Burmeistcr core, 123, 303, 307 Carrizo Creek, 380 Borah Peak , 271 , 382, 388 , 178 Boring Lava, 159 Bushland section, 479 Carrizo Wash, 396 Borophagus diversidens, 504 Butlers Bluff Member, 636 Carrizozo volcanic center, 87 Borrego Badlands, 334, 335 Buzzards Roost paleosol, 466 Carrollton alluvial unit, 527 Borrego Formation, 124, 335 Carson Desert, 85, 288, 296, 297, 299 Boston Mountain Escarpmcnt, 531 C. J. Strike Reservoir, 267 Carson Desert basin, 296 Boston Mountain Plateau, 531, 538 , 384 Carson Desert Valley, 285 Bouse embaymcnt, 334, 355 Cadiz Valley, 331 Carson-Lower Carson Valley, 297 Bouse Formation, 334, 355, 378 Cady Mountains, 331, 332 Carson Range, 83 Boyd terrace, 410 Cajon Pass, 188 Carson River, 288, 290, 299 Brady soil, 467 Calapooyia surface, 162 Carson Sink, 283, 288, 299, 300 Brateng surface, 162 calcarcnite, 598, 600 Carson Sink bed, 130 Brawley Formation, 335 Calcasieu River, 560, 568 Cartwright alluvium, 449 Brazos locus, 87 calcilutite, 308, 598 Carya, 21, 23, 24 , 483, 587 Calciorthids, 357 Casa Grande Basin, 353, 357 breccias, 80 calcrcte, 495 , 76, 77, 79, 94, 98, Breshears Formation, 536 caldcras 102, 105, 118, 123, 126, 130, Bridgeport, California, 131 centers, 76 142, 159, 225 Bridgeport Valley, 285 collapse, 81 central, 123, 126 Bridgetimber Gravel, 392 summit, 84 southern, 121, 122, 125, 127, 170, Bridgetimbcr Mountain, 392 volcanic, 98 172 Bridgeton Formation, 635 Caldwell, 257 western, 75 Brink terrace, 412 caliches, 469 Casitas Formation, 185 Bristol Lake, 286 caprock, 478, 481 Casper Point strandline, 200 , 333 Calico, California, 57 Casper Point terrace, 200 British Columbia, Canada, 64 Calico Mountains, 330 Castanea, 24 Broadwater Formation, 458, 463, 468 Calicnte Range, 178 Castle Rock Creek, 242 Broadway Alluvium, 460 California, 176,185,190, 321 Castorides, 604 Broadway terracc, 460 coastal, 190, 192 casts, ice-wedge, 615 peak, 81 eastern, 82 Cat Mills volcanic field, 87 Brokeoff , 81 northern, 82, 143 Cat Mountain, 331 Brothers fault zone, 77, 84 southern, 176 Catahoula Parish, 575 Broward County, Florida, 600 Callianassa, 635, 641 Cataract Canyon, 383, 388 Brownfield basin, 486 Caloosahatchcc Formation, 600, 647 Catinella sp. 431 Brownfield Lake member, 485 Caloosahatchee River, 601, 603 deposits, 510, 619 Browns Creek, 509 Camas Prairie area, 84 Cayama Valley, 178 Browns Creek Alluvium, 524 Camelops, 604 Cayucos, California, 57 , 427, 432 Cameron, 395 Cedar Butte, 276 Bruneau Formation, 255, 256, 263 Camp Four terrace, 412, 415 Cedar Keys, 593 , 264 Camp Rice Formation, 367 Cedar Lake basin, 486 Bruneau River, 258, 264 Canada del Oro area, 360 Cellis, 23, 24 ancestral, 255 Canadian Maritime provinces, 21 Cement strandline, 199 Bruneau-Jarbidgc eruptive center, 259, Canadian River, 478, 491, 515, 522 Cement terrace, 180 260, 269 Canadian River Valley, 478 Cenozoic, late, 380, 436,452, 486 Brunhes , 188, 358 Canton, Illinois, 23 Centerville Beach, 123, 149 Brunhes Normal Chron, 60, 225, 269 Canyon Creek, 267 Central Interior Lowlands, 503 Brunhes-Matuyama Chron boundary, Canyonlands section 373, 383, 389 Cephalanlhus, 21 34, 124,135, 136, 186 canyons, submarine, 186, 187 geothermal field, 335 Brunhes-Matuyama reversal, 170, 286 Cape Blanco, Oregon, 67, 153 Cerro Verdo, 87 Brush Creek, 432 Cape Fear arc, 639 Chaco Canyon, levels, 393 Brushy Basin Member, 382 Cape Kennedy area, 603 Chaco River, 393, 397 Buck Creek tcrracc, 517 Cape May Formation, 635 Chaco River drainage, 394, 396 Buckingham Limestone, 598 Cape Mendocino, 190, 201 Chadron arch, 443, 463 Bucklc's , 618 Capitol Reef, 388 chalk, 526 Bucna Vista Basin, 165, 171 Caplenfield, 585 Chalk bluffs, 451 Buena Vista bed, 170 Caprock Escarpmcnt, 479, 492, 495, Chalk Hills Formation, 257, 258 Buffalo Heart Drift, 32 496 Chama River, 374 Buffalo River, 538 Capulin Mountain, 89 Chamaecyparis thyoides, 24 Buffalo Valley, 288 carbonates, 220, 226, 276, 295, 328, Champoeg surface, 162 Bull Lake, 393 329, 331, 436, 484, 486, 587, Chandeleur Islands, 564, 594 loess unit, 224 588, 590, 595, 598, 612, 647 Channel Islands, 67 pediments, 384 secondary, 55 Channeled Scabland, 216, 224, 228, tcrrace, 413, 414 , 83 229, 238, 240, 244 Bull Lake Glaciation, 224, 384, 430 Carlotta Formation, 149 central, 242 Bullfrog Basin, 384 Carlsbad, New , 57 channels Bullion Mountains, 332 Carmel River, 182 anastomosing, 238 Burke Gravel pit, 449 Carpinteria, 185, 187 estuarine, 492

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 654 Index

fill, 155 clasts, 151, 153, 449, 450, 451, 453, cobbles, 151, 420, 422, 451, 456, , 335 459, 463, 465, 539 488, 527, 602, 614 tidal, 155 limestone, 202 basalt, 242 Chaos Crags dome, 81 pumice, 125 Coconino Plateau, 374, 377 Char a, 496 sandstone, 615 Cocoon Geosol-pedocomplex, 294, Charette Mesa, 490 volcanic, 380 295, 296 Charles City Formation, 637 , 39, 159, 168, 171, 182, 219, Cody terrace, 413, 414 Charleston fan, 559 240, 265, 275, 286, 288, 294, Coffee Mill Hammock Formation, 67 Charlotte County, Florida, 600, 601 297, 306, 311, 328, 330, 335, Coffee Mill Hammock Member, 602 Chatham sequence, 642 341, 436, 446, 462, 465, 478, Coharie terrane, 625 Cheney- scabland tract, 216, 481, 484, 496, 511, 523, 525, Cold Creek, 231, 238 237 534, 539, 541, 547, 556, 559, Coleman slide, 382 Chenopodiaceae, 21, 24 561, 566, 568, 575, 601, 630, Coleridge Ash, 33 chcrkinite, 99 635 collapse pits, 87 chert, 465, 511, 520, 532, 534, 536 airborne, 484 College Terrace, 180 Chesapeake Bay, 636 lacustrine, 10 Collier coulee, 226 Chesapecten madisonius, 598 minerals, 534 Collier County, Florida, 595, 600 Cheviot dome, 199 smectite, 243 colluvium, 298, 413, 503, 510, 534, Cheviot Hills, 188 yellow, 300 535, 539, 577, 614 Chewaucan Lake, 37 claystone, 335, 342, 424, 456 relict, 625 Cheyenne area, 453 Clear Creek, 460, 527 Colma Formation, 144, 148 Cheyenne River, 443, 444, 446, 449 Clear Lake, California, 25, 126, 130, Colorado, 87 drainage basin, 447 135, 309 Colorado delta, 334, 355 Cheyenne Tableland, 451, 453 climate, 165,283,290, 313, 321, Colorado , 451, 453 basin, 340 323, 339, 342, 345, 374, 407, Colorado Lineament, 86, 89 China Lake, 340 452 , 452, 456 China Lake Valley, 286 Atlantic Coast, 21 alluvial units, 457 China Hat unit, 176 calculated, 16 stratigraphy, 456 China Valley, 340 centrai grasslands, 24 , 382 change, 1, 4, 7, 11, 14, 33,37, 55, Acoma-Zuni section, 374, 379, 391 Chippenham Scarp, 629 190,374, 419, 437, 482, 577, Canyonlands section, 373,383 Mountains, 364 611, 613, 614, 617, 623 climate, 374 , 334, 336 glacial, 26 erosion, 379 Choctaw fault, 533 global, 29, 33 fluvial adjustment, 389 Chowchilla River, 168 interglacial, 27 Grand Canyon section, 374, 379, Christmas Lake valley, 84 marine, 15 397 chronostratigraphic division, 7 midwestcrn , 21 High Plateaus section, 373,383 Chrysolepis, 25 modeling, 15 , 3 82 Chuar Valley, 59 Osage Plains, 504 margin, 85 Chuckatuck Formation, 637 past, 15 Navajo section, 374, 377, 379, 391 Chuckwalla Valley, 331, 333, 345 terrestrial, 15, 34 , 376 Chugwater Creek, 452 variations, 36, 553 nonglacial geology, 373 , 426 western United States, 25 tectonics, 379 Church soil series, 485 climatic parameters analysis, 314 Uinta basin, 373, 383 Churchill Geosol, 294, 297 climatology, physical, 13 vegetation, 374 , 374, 382, 391, clinker, 448 volcanic fields, 3 78 396 clinoforms, inner-shelf, 587 western margin, 379 Cibola-Blythc-Parker area, 356 clinopyroxene, 99 Colorado River, 334, 335, 353, 355, , 83, 329, 330, Cloudcap Road, 130 373, 383, 384, 397, 399, 483 333, 345, 346 Clovis artifacts, 460, 527 ancestral, 377 Cimarron block, 486, 489, 491 Clovis kill site, 470 delta plain, 335 Cimarron Range, 486, 489, 491 coal, 54, 67 flood plain, 328, 336 Cimarron River, 469, 515, 522 coal beds, subbituminous, 448 gravels, 376 , 83 coal fires, 448 modern, 376 Cinder Hill, 83 Coalinga anticline, 171 terraces, 329, 356, 384, 587 Cinder terraces, 413 Coalinga earthquake, 176 Colorado River Valley, lower, 353, cinders, 118 Coast Ranges, 82, 121, 156, 165, 3JJ Circle Cliffs, 382, 390 167, 170, 174 Columbia Basin, 162 Cita Canyon lake bed, 478 California, 120, 142, 176 Columbia Formation, 635 Citellus zone, 466 central, 130 Columbia Intermontane Physiographic Citronelle, 554 Interior Highlands, 531 Province, 215 Citronelle , 492 Lower Mississippi Valley, 549 Columbia Plain, 215 Citronelle Formation, 583, 586, 588 northern, 122, 142, 172 , 215, 217 Citrus County, Florida, 595 Oregon, 142 , 142, 153, 156, 160, Clarks Fork River, 409, 414, 437 Washington, 142 161, 227, 236, 238, 253 ancestral, 410, 415 Coast Ranges-Great Valley margin, basin, 142 lower, 410 171 flooding age, 161 Clarksville, Arkansas, 541 coastline, microtidal, 143 system, 159, 161, 162, 164, 215, clastics, 185, 188, 240, 423, 612 Cobb Mountain Normal Subchron, 60 241, 253

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Index 655

Columbia River Basalt, 215, 216, 228, Cross Mountain, 427 Death Valley-Furnace Creek fault zone, 237, 240, 259 Crowley's Ridge, 550, 560, 565, 568 337 Columbia River Gorge, 236, 237 Crowley's Ridge loess, 569 debris, 75, 172, 286, 391 Columbia River Plateau, 75 Crump Lake, 283 catastrophic flows, 622 Columbia River Valley, 240 fans, 622 Commerce-Mhoon-Dundee succession, continental, 94, 321, 584 fluvial, 331 570 lower, 260, 261 granitic, 197 Compositae, 21, 24, 25 oceanic, 584 wood, 541 cones shortening, 171 Decker Soil/Geosol, 309 cinder, 75, 80, 81, 83, 84, 85, 86, upper, 260, 270, 285 Deep Spring Lake, 340 87, 89, 273, 378, 379, 391, 491 crystalline minerals, 96 Deer Creek, 397 lava, 273 Crytopleura, 639 Deer Creek butte, 125 pyroclastic, 81 Cucamonga fault, 188 Defiance upwarp, 374 spatter, 75, 87, 273 Cudahy Mine, 303 deforestation, 143 Confidence Hills, 337 Cumberland Plateau, 616 deformation, 156, 164, 171, 175, 176, conglomerate, 189, 295, 417, 450, Cummings Bridge, 243 178, 187, 288, 321, 337, 353, 453 Cuny table, 449 356, 366 Connell site, 223 Cupressaceae, 24 compressional, 183 contamination, 47 Current River, 538 déglaciation, 26, 55, 143, 577 continental margin, 143 currents, 143 degradation, 323, 452, 522 Convent-Bruin-Dundee succession, Custer County, 523 , 484, 485 570 Cutter Dam Alloformation, 302 Delaware Bay, 636 Cooke terrace, 522, 523 Cuyama Basin, 178, 184 , 368 Cooper Lake, 424 cycles Delaware River, 639 Coos Bay, Oregon, 152 climatic, 6 paleovalley, 635 Coppell Alluvium, 527, 531 glacial, 26, 29, 32, 34, 437 Delaware Valley, 635 Coquille Formation, 153, 155 100,000-, 34 Delmarva Peninsula, 635 Coquille River, 152, 153, 155 inlerglacial, 26, 29, 32, 437 Delmore Formation, 462 corals, 57, 602 interglacial-glacial, 4, 26, 170, delta, chronology, 563 fossil, 192, 196, 603 551, 583, 613 Delta, Colorado, 384 hermatypic, 603 oxygen-isotope, 26 Delwin soil series, 515 Corcoran Clay Member, 124, 125, transgressive-regressive, 155 Denton Creek, 527 168,171 Cyperaceae, 21, 24 Denton Creek terraces, 527 Cordilleran Ice Sheet, 36, 217, 219, Cyress Creek, 540, 541 , Colorado, 460, 461 226, 236, 238 Cypresshead Formation, 588 Denver-Julesburg Basin, 441 Cordonnes surface, 360 depocenters, deltaic, 587 Corduroy Creek, 379, 380 , 80, 81, 489 , 167, 286, 331, 409, 413, Core Creek Sand, 638 Dade County, Florida, 600 422 cores , 382, 388, 393 deposits deep-ocean, 4,10, 16 Dakotas, 448 airfall, 117 dry lake, 342 Dalton artifact, 538 alluvial, 267, 275, 345, 357, 360, Corning Domes anticline, 171, 174 Danby-Bristol trough, 326 363, 390, 391, 421, 422, 432, Cornus, 24 Danby Lake, 340 451, 456,461, 511, 520, 534, Coronado Island, 194 Dart Hill pendant , 238 588, 625 Corylus, 23 Date Creek Valley, 360 alluvial-fan, 167, 181, 244, 413, Coso volcanic field, 83, 118 Datil-Mogollon section, 365, 379 445, 495 Cosumnes alluvial fan, 170 dating methods, 46 ash-flow, 117 Cotter Dolomite, 534 categories, 46 asphalt, 187 Cottonwood Creek, 174, 413 fission-track, 53, 54, 189 , 522, 556 Cottonwood River, 520 optical, 62 basal, 639 Cottonwood terrace, 412, 413 paleomagnetic, 60 bog, 161 , 329, 333 potassium-argon (K-Ar), 49,107 cave, 510 Coyote Creek, 489, 490 radiocarbon, 46,47,48, 189 clastic, 185, 188 Coyote Creek fault, 334 thermoluminesccnce, 61 clayey, 340 Coyote Gulch, 391 uranium-series, 55, 189 colluvial, 391, 534, 556, 614 Coyote Gulch basin, 391 datum levels (age), 136 debris-flow, 622 Coyote Lake, 340 Dauphin , 594 deltaic, 556 Craig, Colorado, 428 Davenport strandline, 199 dune, 181, 391 Crassostrea, 587 Davenport terrace, 182 eolian, 168, 234, 244, 331,336, virgintca, 637, 639 Davis Dam, 355 338, 396,429, 461, 496, 512, , Oregon, 81, 130, 131 De Soto canyon, 588 534, 629 Crater Rock dome, 81 Dcadman Creek, 264 eruptive, 84 Craters of the Moon National Dcadmans Island, 197 estuarine, 556, 629 Monument, 84, 274 Dear Creek, 523 fan, 57, 333, 334 Crazy Mountains, 445 Death Valley, 83, 283, 285, 337, 338, flood, 390 Crete Formation, 466 340, 341, 342, 345 flood-plain, 541 Crooked Creek fault, 469 fault zone, 337 fluvial, 168, 427, 453, 456, 478, Crooked Creek Formation, 463, 469 salt pan, 340 496, 509, 511, 516, 521, 540, Crooked Island complex, 594 southern, 322 554, 556, 629

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 656 Index

gravel, 157, 383, 410, 536 dolomite, 532 parabolic, 462, 512 graveliferous, 555 Dolores River, 377, 384 pyramidal, 331 -spring, 57 Dolph surface, 162 region, 467 lacustrine, 275, 300, 330, 333, 339, dome cluster, 82 relict, 196, 200 341, 342, 376, 396, 496, 510, dome field, , 81 ridges, 198 515, 611 Domebo, 524, 525 sand, 396, 460, 462, 467, 512, 553, lag, 152, 156, 168, 176, 633 Domebo Canyon, 525 559, 561 lagoonal, 21 Domebo Formation, 525, 526 stabilized, 467 lake, 516 domes, 75, 82 stacked, 333 loess, 156, 216, 228, 234, 461, , 81 stand, 447 560, 565, 568 rhyolitic, 83, 84, 86 star, 331, 336, 338 marine, 188, 556, 629 silicic lava, 81, 83 transverse, 338 marine-terrace, 152 Don beds, 24 Dunnigan Hills anticline, 171 meander-belt, 561, 570 Dorchester Scarp, 634 Durango, Colorado, 393 mountain-piedmont, 622 Dorsey terrace, 413 dust, air-bome, 329 mudilo w, 168 Dos Palos alluvium, 168 Dystrochrepts, 612 opal, 57 Dosinia, 587 peat, 23, 611 Dotsero, 89 E. columbi, 445 pediment, 266, 356, 432, 445, Double Adobe site, 364 Eagle locus, 89 459 Double Formation, 478, 485 Eagle Rocks bench, 420, 423 pediment-terrace, 362 Douglas Ranch, 359 Early Reunion Normal Polarity piedmont, 327, 329, 337, 345 Douglas Ranch Alio formation, 359 Subchron, 255 rhythmite, 229 Douglas Ranch gravel, 358 , 201, 533, 584, 634 riverine, 168 downwarping, 171 Borah Peak, 271 salt-, 154 Dox Sandstone, 398 Coalinga, 176 sedimentary, 84, 256, 268 drainage, 360 New Madrid, 573 shelf, 154 evolution, 376 East Butte, 84, 270 sinkhole, 510 interbasin, 323 East Cache Alluvium, 524, 525 sinter, 83 patterns, 255 East Fork Trinity, 526, 527 slackwater, 156 Draper Alloformation, 309 East Mesa, 336 stream-terrace, 459 Draper Formation, 302, 309 East Milford, Nova Scotia, 21 subaerial, 300 Draper lacustral, 309 East Rosebud Creek, 437 terrace, 153, 187, 389, 391, 393, Draper sublacustral, 309 Eastern Pacific High, 374 410, 428,431,445, 457, 478, drift, longshore, 547 Echegoin Formation, 120 520, 522, 523, 541 Dripping Springs escarpment, 618 echinoids, 144 valley-train, 559, 568, 577 Dry Creek, 305 eco types, 15 volcanic, 84, 173 Dry Fork, 391 Eel River basin, 183 Derniere Island, 594 Deep Sea Drilling Project, 29, 33, 39, Eel River Formation, 121, 149 Desert Mountains, 296 123, 124, 126, 129, 130, 136 Eel River shelf, 151, 152 Desolation Canyon, 373 Duchesne River, 373, 432, 435, 437 Eetza Alloformation, 288, 294, 297 detritus, 26, 33, 167, 168, 170, 181 Duchesne River Formation, 434 Eetza Formation, 127 Devils Playground, 331, 333, 345 Duck Creek, 365 Effective Temperature, 66 Dcvol soil scries, 515 Duck River, 619 Effingham sequence, 642 Deweyville Complex, 554, 559 Duffy Formation, 463 Ehringsdorf travertine, 31, 32 , 568, 577 Dumont Dune, 331 Elbert County, Georgia, 624 Deweyville Terrace, 563, 587 Duncan Basin, 361 ejecta Diablo Range, 167, 184 Duncan Valley, 359, 360, 362, 365 pyroclastic, 80 Diablo Plateau, 368 lakes, 362 volcanic, 95 diamicton, 33 dunes, 178, 200, 276, 277, 461, 468, El Cerro del Los Lunas volcanic field, Diamond Craters, 84 512 87 Diamond Rim fault, 380 active sand, 331, 336, 515 El Segundo dune field, 198 Diamond Mill Member, 159 age, 333 electron-microprobe analysis, 102 Diamond Valley, 288 barchanoid, 336 electron-spin resonance, 62 diapirs, salt, 384, 578, 584, 585, 587 clay, 368 Elk Hills anticline, 171 diatomite, 265, 463 clay-silt, 424 Elk River, 429, 430, 432 , 170 climbing, 331 Elk River reach, 429 Dibekulcwe tephra layer, 296 coastal, 180, 182 Elkhead Mountains, 427 Dimple Dell Geosols, 303, 305 complex, 179 Elkhom River, 467 Dimple Dell intcrlacustral, 305 crcscentic, 234 Elkhorn , 182 Dimple Dell Soil, 302 deposits, 181, 333 Elm Fork Trinity, 526, 527 Dismal River, 468 development, 345 Elsinore-Laguna Salada fault system, dissection, 443 falling, 331 334 dissolution, 478, 484 fields, 181, 338, 484, 593 Elster, type, 32 Dixie County, Florida, 595 formation, 333 Emblem terrace, 413, 415 Dixie valley, 285, 300 gypsiferous sand, 367 emergence, 154 Doby Springs, 515, 516 inactive sand, 331 Emporia, Kansas, 520 Dockum Group, 507 linear, 396 Emporia terrace, 520 Dolichohippus, 449 longitudinal, 331, 336 Emperor Reversed Subchron, 60 dolincs, 515 migration, 331 Enola, Arkansas, 533

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Index 657

Entisols, 566 gravel, 296, 338, 363, 384 Florida Keys, 603 Eola surface, 157, 159, 162 submarine, 185 Florida Parishes, 550, 554, 556, 558, epidote, 217 Farmdale, 558 590 episodes Farmdale Loess, 64 Florida Plateau, 595 glacial, 452 Farmingdale terrace, 450 Florida River, ancestral, 392 interglacial, 4, 452 Farmington, , 393 flows, 82, 574 equilibration, argon, 50 Farmington Canyon Complex, 55 andesitic, 81, 379 , 187, 449, 521 Fashing field, 584 ash, 75, 121 Ericaceae, 21 faults basalt, 81, 85, 329, 333, 361, 368, erosion, 56, 228, 236, 255, 286, 301, block, 285, 427 376, 378, 380, 391, 395, 490 309, 311, 331, 339, 341, 346, detachmcnt, 285, 321, 356 dacitic, 80, 81 357, 359, 376, 379, 390, 409, growth, 574 , 587 fissure, 273 419, 422, 449, 451, 477, 486, high-angle, 353, 368, 486 lava, 75, 78, 81, 83, 85, 87, 259, 492, 506, 568, 575, 594, 622, normal, 174, 321, 337, 353, 373, 263, 268, 272, 274, 286, 329, 623, 634 380, 452, 490, 573 379, 394 flood, 216 reverse, 486 obsidian, 81 fluvial, 307 scarps, 323 pyroclastic, 81, 82, 84, 172 wave, 201, 307, 590 strike-slip, 337 , 379 erratics, 445 fauna tube-fed, 273 eruptions, 79, 80, 86, 93, 112, 118, freshwater, 335 volcanic, 367, 382, 478, 486, 491 123, 125, 135, 172, 228, 252, vertebrate, 604 fluctuations 262, 266, 269, 274, 396 fayalite, 100 eustatic, 155 basalt, 215, 272 Feather area, 175 glacial-interglacial, 437 phreatic, 273 , 99, 120, 126, 217, 565 glacioeustatic, 143, 149, 155, 175, Plinian, 95 Fernando Formation, 122, 185, 187, 180, 190, 577 Escalante River, 373, 376 188 sea level, 190 alluvial chronology, 390 Ferreto terrace, 31 Fog Creek, 449 Escambia River, 593 Ferris dune field, 447 folds, surficial, 424 Esmeralda Formation, 286 Fielding Geosol, 302 Folsom artifacts, 497 Espanola basin, 367 Finley Terrace, 559 Folsom site, 460 Esquatzel Coulee, 237 First strandline, 199 , 26, 68 Estacada Formation, 157 Fish Creek Mountains, 85 benthic, 187, 188 Estancia Valley, 368 Fish Creek Valley, 430 planktic, 187, 594 Eucrassatella meridionalis, 598 Fish Lake Plateau, 389 Forsyth, Montana, 445 Eunice Terrace, 558 fish fauna, 255 Ft. Denaud member, 600 Eureka Springs Escarpment, 531 fish remains, 170 Fort Hancock Formation, 367 Eureka Valley, 337, 338 Fisher Valley, 59, 384 Fort Lowell Formation, 360 Eustis silica mine, 466 Fisherola, 256 area, 180 evaporation, 36 nuttalli, 256 Fort Ord erg complex, 179, 181 evaporites 387, 492 fission-track dating, 53, 54,109 Lake, 37 detritus-free, 57 Five Islands salt domes, 576 Fort Rock Valley, 84 evolution Flagstaff Formation, 382 Fort Smith terrace, 412 geomorphic, 486 Flanner Beach Formation, 637 Fort Thompsom Formation, 602 landscape, 54,165, 323 Flat Laurel Gap, North Carolina, 620 , 446, 448 soil, 55 , 432 Forty Mile Bend sand, 600 exposures, sea-cliff, 143, 154 Flatiron Mesa, 361, 364 fossils, 342, 516 extension, 285 flats, intradune, 336 vertebrate, 604 regional, 321 Flaxville gravels, 445 fractionation, liquid-crystal, 272 Flint Hills, 503, 520, 521 fragments facies sequences, 143 flood plains, 178, 182, 328, 355, 384, crystal, 96 Fagus, 21, 23, 24 398, 422, 460, 517, 520, 522, lithic, 97 failures 527, 530, 538, 547, 554, 561, obsidian, 97 bank, 575 574, 575, 613, 620 Fraser Glaciation, 226 earthquake-triggered, 574 flooding, 161,238 Fraxlnus, 21, 23, 24 slope, 575, 576 cataclysmic, 216, 226,228,235, americana type, 23 Fair Oaks Formation, 173 238 nigra, 23, 24 Fairbanks, , 64 -outburst, 156, 160, 161, 162 quadrangulata, 24 Fall River gravel, 450 Missoula, 236 Fremont-Dirty Devil river, 373 Fallon, 299, 300 floods Fremont River, 388 Falor Formation, 123 catastrophic, 156, 161, 162, 164 Fremont Valley, 325 fanglomerates, 178, 342, 355 deposits, 166, 228, 229, 390 Fresno Slough, 171 fans discharges, 224 Friant Pumice Member, 125, 168, alluvial, 37, 167, 172, 176, 178, erosion, 216 170 181, 187, 225, 263, 295, 300, events, 390 Front Range, Colorado, 451, 453, 324, 327, 335, 338, 342, 388, glacial, 243 456, 461 399, 413, 423, 538 gravels, 226, 229, 238 east slope, 460 colluvial, 621 reversed-polarity, 229 glaciated section, 459 debris, 622 Florida, 21, 57, 67, 583, 588, 590, , 460 deposits, 333, 334 594, 595, 646 Frontal Ouachitas, 531

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 658 Index

Frontal Wichita fault system, 508 tephra 242, 244 Grand Wash fault, 378, 380 Frontier Formation, 426 volcanic ash, 131, 244 Grandfield soil series, 515 Frye Mesa, 363 Glacier Peak Volcano, 80 Mountains, 417 Fullerton Formation, 464 glaciers, 156, 173, 341, 422, 428, Granite Reef Dam, 357 fumaroles, 81, 83, 85 515, 517 granite, 267, 463, 488 mountain, 313 Graniteville Geosol, 308 Gabbs Valley, 285 valley, 313 Graniteville Soil, 302 Gabilan Range, 121, 178, 179, 181 volume, 16 granodiorite, 160, 240, 241 Gable Mountain bar, 238 glacioeustasy, 152 Grants, New Mexico, 379 Gadsden County, Florida, 588 Glades County, Florida, 601 grass phytoliths 466 Gallinas Mountains, 368 glass grasslands Galveston Formation, 583 shards, 33, 93, 96, 98, 102, 109, central, 24 Gangplank area, 451, 453 117, 131, 363 mesic, 26 Gardner Canyon Alloformation, 359 volcanic, 95, 103,104, 105, 118, gravels, 143, 153, 156, 159, 168, , 322, 337 122, 218 177, 180, 190, 225, 230, 237, Garlock system, 285 Glass Mountain, 83 240, 243, 253, 266, 294, 359, Gasconade Dolomite, 534 ash beds, 124 362, 384, 393, 410, 412, 415, Gauss-Matuyama Chronozone, tephra layers, 290, 294, 310 417, 422, 427, 434, 456, 458, boundary, 11 Glassboro phase, 635 460, 462, 469, 483, 495, 522, Gauss normal polarity chron, 386 Gleditsia, 24 534, 538, 540, 559, 561, 575, Gem Valley area, 85 Glen Canyon, 383, 389 584, 592, 613, 624 Geochelone, 464 Glenns Ferry Formation, 253, 255, alluvial, 356, 357, 361 crassiscutata, 23 257, 259, 264, 266, 269, 274 alluvial fan, 337 geochronology, amino acid, 65, 68 Glenwood Canyon, 377 arkosic, 511 , 321, 325,331, 337, Globigerina pachyderma, 15 bars, 335 350 Glorieta mesa, 368 benches, 173 Georgia, 21, 641 Gloricta Sandstone, 490 channel. 446 geosols, 291, 567, 568 Glycymeris subovata, 598 chert, 520 geothermal resources, 267 gneiss, 160 clast-supported, 428 Gephyrocapsa, 592 goethite, 565 deposits, 157, 383, 410 Gerty Sand, 522 , 586 fan, 266, 296, 338, 363, 384 geyser, 85 Gold Beach, 153 flood, 226, 229, 238 Geysers-Clear Lake volcanic center, Gomez soil series, 486 glaciofluvial, 413 82 Goose Creek field, 585 lag, 174, 434, 488 Gigantocamelus, 450 Goose Lake basin, 285 medial, 288 Gila Bend area, 356 Gorda Plate, 174 pediment, 360, 388 Gila Bend volcanic field, 358 Gordonia, 21 pits, 303 Gila Conglomerate, 362 Goshen Hole, 450, 451 reddish brown, 453 Gila Formation, 360 fluvial history, 452 rim, 380 Gila River, 353, 356, 357, 363, 365 lowlands, 452 river, 377, 399 upper, 362 uplift, 452 stream 452, 490 Gila River terrace, ancient, 362 Gothenburg, Sweden, 60 terrace, 157, 267, 384 Giles County, Virginia, 615 Gothenburg Member, 466 Great Basin, 6, 38, 56, 66, 67, 85, seismic area, 614 grabens, 259, 285, 387 124, 135, 312, 313, 345 Gillespie volcanic field, 358 Grafton Formation, 465 climatic history, 283 Gilman Canyon Formation, 467 Grafton plain, 637 eastern margin, 286 glacial advance, 167, 306, 444 Grafton unit, 466 eolian deposits, 338 glacial floods, 243 Graham Ferry Formation, 588 geology, 337 glacial forcbulge, 634 Gramineae, 21, 24, 25 geomorphology, 337 glacial , 236 Gran Desierto, 336 hydrology, 283 , 238, 244 Grand Canyon, 56, 57, 59, 86, 374, Northern, 283 glacial , 446 377, 379, 397 piedmont deposits, 337 glacial 143, 156, 161, explorations, 376 Southern, 283 216, 236 geology, 397 Southwest, 321, 322 glacial Lake Spokane, 238 incision rates, 401 stratigraphy, 283 glacial outwash 168, 217, 558, 559 lower, 401 Great Plains, 7, 111, 441 glacial outwash fans, 170 modem, 377 Colorado Piedmont section, 456 glacial recession, 552 region, 377 extraglacial history, 441 glacial retreat, 558 terraces, 398 Northern, 441,469 glacial till, 413, 615 upper, 401 paleoclimates, 469 glaciations, 4, 5, 7, 16, 21, 29, 31, Grand Coulee, 224, 227, 240 Southern, 477 55, 135, 143, 157, 165, 167, Grand Island Formation, 465 Great Rift, 269, 272, 273, 274 176, 267, 300, 312, 393, 407, Grand Island gravel, 465 Great Salt Lake, 10, 37, 123, 283, 302 409, 419, 432, 437, 444, 448, Grand Junction, 384 Great Salt Lake Desert, 302 462, 466, 469, 552, 616, 617 project, 384 Great Sand Dunes, 366 continental, 14, 443, 560 Grand Prairie, 550, 558 Great Southwest Prairies, 550 high-latitude, 4 Grand Valley, 384 Great Terrace, 244 Glacier Peak, 235 Grand Wash, 380 Great Valley, 121, 124, 142, 143, ash beds, 131 Grand Wash Cliffs, 374, 379, 380 164, 174, 175, 183, 184, 512

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Index 659

basin, 165 Hart County, Georgia, 624 Horseshoe Beach, 583 western margin, 176 Hartshorne sandstone, 540 Horseshoe surface, 164 Greeley, Colorado, 460 Hartville uplift, 452 horst, 259, 285, 366, 388 Green County, , 535 Hassayampa River, 357 Hot Creek Breaks, 451 Green Mountain, 417 Hatchie Tcrracc, 556, 558 hot springs, 81, 82, 83, 85, 87, 539, Green Mountain-Sweetwater River Hattiesburg Formation, 588 541 area, 417,418 Hawk Creek sediments, 241 Hot Springs area, 450 Green River, 373, 432, 619, 620 Hayden-Craig reach, 429, 431 Hot Springs, Arkansas, 540, 541 , 376 Hay ward fault, 170 Hot Springs peneplain, 540 Greenback Member, 160, 161, 164 Hazleton scarp, 637 hotspots, 251, 269, 272 Greenhouse effect, 5 heat flow, 270, 272, 334 , 94 Greenwater Fan Alloformation, 310, Hells Canyon, 253, 256 Howe Peak, 268 312 Helvetia Formation, 159 Hualapai Limestone Member, 380 Gregory County, South Dakota, 449 llemiauchenla, 604 Hualapai Valley, 358, 360, 364 Gresham Formation, 157 Henderson terrace, 556 Northern, 363 Greybull River, 409, 412, 413, 415 Hendry County, Florida, 600, 601 Huckleberry Ridge ash bed, 97, 104, Greybull terrace, 413 Henry Mountains, 376, 389 111, 112, 119, 123, 186, 303, Greyhound Rock, 199 Henrys Fork, 253 341, 410, 464, 478, 509 Greyhound strandline, 199 , 383, 384 Huckleberry Ridge tephra layer, 310, Groesbeck Creek, 523 Herrick Formation, 449 358 recharge, 396 Hialcah Group, 602 , 54, 97 Grove Plain, 637 Hickory Creek, 527 Huckleberry terrace, deposits, 180, Grover Gravel, 536, 554 Hickory Creek terrace, 527 181 , 368 Hidden Cave, 290, 300 Hueneme aquifer, 187 Guaje Ash, 482 High Cascades, 78 Hueneme submarine canyon, 186 Guffey Butte, 266 High Lava Plains, 84, 89 Huichica Formation, 120 Gulf Coastal Plain, 483,583,595 High Plains, 24, 479 Humboldt basin, 121, 123, 125, 126, morphostratigraphic units, 585 climates, 452 136 northeastern, 588 Kansas, 462 Humboldt Range, 288 northwestern, 585 Nebraska, 462 Humboldt River, 283, 288, 299 stratigraphy, 587, 588 , 462 Humboldt River Valley, 294, 295, 296 tectonism, 584 piracy, 452 Humboldt Sink, 300 vertebrate faunas, 604 soils, 479 Humboldt terrace, 555 Gulf County Canal, 592 southern, 479 Humboldt Valley Geosol, 295 , 336 stratigraphy, 462, 479 Humboldt zone, 85, 252 ancestral, 355 stream diversions, 452 Huntington anticline, 196 , 112, 125, 443 tectonics, 451 Huntington flat, 637 Gulfport Formation, 558, 592 , 450,451,452 Huntington Beach mesa, 196 Gulfport strandplain, 592 High Plains Surface, 443 Hunts Hole, 88 Gunlock-Veyo fault, 380 High Plateaus section, 373, 383, 389 Hurricane Fault, 373, 379 Gunnison River, 384 Highland Rim, 618 hydrology, 283 ancestral, 377 highlands budget/balance, 314 Guthrie Lake basin, 485 coastal, 142 hydrosphere, 14 gypsum, 178, 485, 486, 511 volcanic, 84 hydrothermal activity, 334 Gypsum Valley, 384 highstands, 181, 194 hydrothermal regions, 85 interglacial, 190 hydrothermal springs, 450 Hachita Valley, 365 sea level, 196, 198, 199 Hagerman, 257, 274 Highway-1 strandline, 199 Ibex Dune, 331 Hagcrman Valley, 268 Hilltop Ruins, 398, 399 ice, 227, 341, 443, 617 halloysite, 534 Himes terrace, 415 accumulation rate, 5, 16, 19 Halls Crossing, 384 Histosols, 573 continental, 467 Hancock Park, 188 Holdrege Formation, 463 glacial, 450, 464, 465 Haplargids, 330, 357 Holliday terrace, 519 margins, 29, 442, 462, 469 Haplohumults, 157 Holloway Prairie, 558 periglacial, 452 Hapludalfs, 617 Holloway Prairie terrace, 587 rafting, 11, 160 Hapludults, 612 hollows, deflation, 424 volume, 4, 29 Hardeman terrace, 522, 523 llolmesina, 604 wastage, 16, 19 Hardin terrace, 460 Holoccnc, 130,181,200,299,327, ice sheets, 11, 34, 35, 462, 466, 617 hardpans, 181 389, 390, 449, 461, 561, 570, continental, 16, 29, 33, 34 hardwoods, 26 593, 603 fluctuations, 39 Harlan County, Nebraska, 464 Holstein, 32 global, 35 harmony bench, 422 Honey Lake basin, 285 Ice Springs Field, 86 Harney Lake, 283 Hookton Formation, 125, 126 icebergs, floating, 238 Harney Peak Granite, 449 Hopi Buttes erosion cycle, 377 , 251 Harper County, Oklahoma, 515 Hopwood Farm site, 23 Idaho , 259 , 340 hornblende, 99, 217 Idaho Group, 257, 266 Harpole Mesa Formation, 384, 386, Horry clay, 21 Idaho Lake, 253 387 Horse Heaven anticline, 216 Idavada Volcanics, 259 Harris Wash, 391 Horse Heaven Hills, 237 Ilex, 21, 24

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 660 Index

Illinoian Glaciation, 32, 466 Jefferson Island, 576 La Nacion fault zone, 194 , 485, 534, 538 , 10, 77, 86, 94, 98, La Panza Range, 178 illite-, 486 106, 118, 464 La Plata River, 392 ilmenite, 99 volcanic field, 87,367 La Sal Mountains, 382, 384, 386, 389 Imperial Formation, 334 volcanic province, 105 Laclede County, Missouri, 535, 536 Inceptisols, 219, 506, 566, 612, 616, Jemez zone, 85, 86 Lacomb gravel unit, 157, 159, 162 620 jetstream, migration, 313 lacustrals, 291,305,307 incision rates, 412, 436 , 368 lacustrine deposits, 275, 300, 330, India, 17 John Starr Flat, 437 333, 339 Indian Arrow terrace, 410 Jones Spring, 23, 539 pre-Lovelock, 294 Indian Creek, 267 Jordan Valley, 306, 309 lacustrine unit, 290, 291, 294 Indian Lakes Alloformation, 298 Jornada del Muerto, 87 Ladson formation, 21, 641 Indian Lakes Formation, 298 basin, 367 Lafayette gravel, 554 Indian Wells Valley, 285 jokulhlaups, 241 Lafayette meander belt, 556, 558, 567 , 334 Juglans, 23, 24 Lafourche delta complex, 564 Ingham paleosol, 466 Juniper buttes, 277 lag deposits, 152, 156, 168, 176 Ingleside barrier, 567 Juniper Mountain, 259, 427 Lago San Agustin, 365 Ingleside surface, 586 Juniperus, 23, 24 Laguna basalt, 395 Ingram surface, 164 Laguna formation, 167, 173, 176 Initial Point volcano, 263, 266 Kaibab Plateau, 374 Laguna Moscos, 365 Inks Creek fold system, 175 Kaibab uplift, 377, 378 Laguna Plata basin, 485 inlier, erosional, 456 Kaiparowits basin, 374 lahars, 81 Inner Terrace Flight terrace, 413 Kaiparowits Plateau, 382, 390 Lahontan Basin, 37, 67, 127, 130, interfluves, upland, 575 Kanab Plateau, 397 131, 135, 290, 296 inter- Pike soil, 32 Kane fans, Wyoming, 416 Lake Animas, 365 interglacials, 26 Kane terrace, 413 Lake Avargosa, 341 interglaciations, 7, 444, 469 Kane Wash volcanic center, 76 Lake Bear, 290 Interior Highlands, 503, 531, 532 Kansan Glaciation, 32, 33, 465 Lake Bidahochi, 377 Interior Low Plateaus, 611, 616 Kansas, 462, 516 interlacustrals, 291, 305,307 Lake Bonneville, 37, 283, 287, 300, southwestern, 469 Intermediate Complex, 555, 577 312, 339 Kansas River, 444, 511, 516, 517 defined, 300 soils, 565 Kansas River flood plain, 519 early, 303 Intermediate Terraces, 576 , 486, 534, 538, 565 flood, 237 Intcrmountain Seismic Belt, 271 , 368 glacial, 236 Intertropical Convergence Zone, 14 Kasslcr area, Colorado, 461 history, 300 intervals Kawich Dry Lake, 286 interbasin thresholds, 302 altithermal, 333 Keim Formation, 463 isostatic deformation, 302 glacial, 4 , 331, 333, 345 lake cycles, 300, 301, 303, 306 interglacial, 4 , 334 river diversions, 302 Intracoastal Waterway, 640 Kcndricks Peak, 379 stratigraphy, 301 involutions, 424 Kent Island Formation, 636 Lake Bonneville Allogroup, 300, 303 Inyo Craters, 83, 126, 130 Kcm center, 83 Lake Bonneville Basin, 67 , 337, 341 Kern County earthquake, 176 Lake Bonneville sequence, 10 Irene Terrace, 555 Kcm Lake Basin, 165 Lake Bretz, 244 Irish Bend Member, 160, 164 Kersey terrace, 460 , 335 iron oxides, 329, 330 Kcttlcman Hills, 120, 122 Lake Charles, Louisana, 574 Ironshire Formation, 635, 636 anticline, 171 Lake Cloverdale, 365 Ishi Tuff Member, 122 earthquake, 176 Lake , 25, 363 Island Park area, 84, 272 Key Largo Limestone, 57, 603, 647 Lake Columbia Isle Demicres, 564 Kilboumc Hole, 88 Itea, 21 glacial, 238, 244 Kimbell Ranch Alluvium, 524 terrace, 241 Iva, 21 King Hill, 267, 275 Lake County uplift, 573 Kings River, 167, 170 Lake Encino, 368 Jackass Butte, 255 Kiona Quarry locality, 229 , 368 Jackfork Sandstone, 540 Kirby Spring, 539 Lake Flirt, ancient, 603 Jackson Bluff Formation, 588 Klamath Mountains, 172 Lake Flirt Formation, 603 Jackson dome, 549 Knife River surface, 449 Lake Fork drainage, 432 Jackson Group, 575 Knowlock coal, 448 Lake Fork River, 432, 434 Jackson Formation, 575 Koch Formation, 536 Lake Goodsight, 367 Jackson Hole, Wyoming, 24, 253 Koehn Lake, 340 Lake Great Falls, glacial, 446 Jackson-Mobil graben, 594 Kolob Plateau, 86 Lake Hachita, 365 Jackson Pond, 618 Knox County, Texas, 523 Lake Havasu, 355 James River, 637 Kremmling lineament, 89 Lake King, 368 Jaramillo Normal Subchron, 9, 60, Kuna buttc, 267 , 37, 61, 283, 287, 288, 150, 186, 225, 290, 309 Kuner terrace 460 312, 316, 339 jasper, 536 climatic record, 290 Javon Canyon, 201 La Belle, Florida, 601 defined, 288 Javon Canyon fault, 201 La Habra Fromation, 188 history, 289, 291 Jefferson City Dolomite, 534 La Jolla Mesa, 196 interbasin thresholds, 288

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Index 661

lake cycles, 290, 295, 297, 298 Lanschamp Reversed Subchron, 60 Liquidambar, 21, 23 Northern basins, 294 lapilli, 379 Lissie Formation, 555 possible overflow, 296 Laramide orogeny, 409, All Lissie surface, 586 river diversions, 288 Laramie Airport, 421 Little Chenier-Little Pecan Island stratigraphy, 289, 291 Laramie Basin, 407, 418, 437 trend, 564 tectonism, 288 chronology, 419 Little Colorado River, 374, 377, 381, Lake Lahontan Allogroup, 288, 290, eolian record, 423 397 295 fluvial mechanisms, 422 lower, 395 Lake Lahontan basin, 125 fluvial surfaces, 419 Little Cottonwood Canyon, 313 Lake Lahontan , Early, 291 southern, 419 Little Cottonwood Creek, 306 Lake Lawtonka Alluvium, 524 , 426, 451, 452, Little Cottonwood Formation, 302 , 236, 237 453, 463 Little Jacks Creek, 259 Lake Lewis phase, 237, 238 Laramie River, 422 Little Jacks Tuff, 259 Lake Lucero, 367 Larix, 23 Little Laramie River, 423 , 341, 342 Las Feveras Formation, 490, 491 Little , 443 Lake Mattie, 424 Las Mesas del Conjelon, 489 Little , 334 Lake Missoula, glacial, 143, 156, 161, , 81 Little Snake River, 429 216, 236 Latah Creek, 243, 244 Little Snowy Mountains, 445 328, 330 Latah Creek outcrop, 240 Little Spokane River basin, 238 Lake Mono, 312 Latah Creek Valley, 240 Little Tennessee River, 613, 623 Lake Okeechobee, 601 Late Elster moraines, 31, 32 Little Tennessee River valley, 613 Lake Owens, 339 latite, 379 Little Thunder Creek, 54 Lake Peigneur, 576 , 6, 29, 36, 37, 444 Little Valley, 302, 305, 306, 307 Lake Pinos Wells, 368 Lava Creek ash beds, 29, 33, 59, 104, lake cycle, 306 Lake Play as, 365 111, 112,124,135, 186, 341, older units, 303 Lake Powell area, 384 410, 412, 414, 429, 430, 437, Little Valley Alloformation, 302, 306 Lake Russell, 61, 339 445, 458, 465, 466, 478, 509, Livermore Gravels, 120 Lake Spokane, glacial, 238 517, 520, 522 Livermore Valley, 120 , 25, 83, 290 Lava Creek teplira layer, 295, 296, Llao Rock vent, 131 Lake Tapps tephra, 54 303, 310, 362, 367, 386, 392, , 479 , 123, 124, 135, 136, 393 loess, 26, 64, 219, 224, 276, 300, 283,309,311,312, 341 , 54, 125 444, 461, 510, 512, 534, 565, history, 310 Lava Falls, 397, 401 575, 577 stratigraphy, 310 Lava Mountains, area, 83 age, 224 Lake Tecopa Allogroup, 310 lava, 75, 85 basal, 466 Lake Tecopa basin, 285 basaltic, 82, 215, 272 central Europe, 27, 29 Lake Terreton, 275, 276, 277 dams, 263, 265, 266, 275, 276, China, 29 Lake Trinity, 367 302, 395 deposition, 226 lakes flows, 75, 78, 81, 83, 85, 87, 215, deposits, 156, 216, 228, 234, 560 ancient, 342 251, 253, 259, 263, 266, 268, Iowa, 64 basins, 484 272, 274, 286, 329, 378, 379, Nebraska, 29 cycles, 290, 295, 297, 298, 300, 394, 396, 397, 427 records, 4, 5, 10, 27 301, 303, 306, 362 hybrid, 272 sequences, 29, 33, 34 dry, 340 , 79, 80 sheets, 553 dry bed, 363 pillow, 263, 266 soil development, 568 Duncan Valley, 362 tholeiitic, 82 stratigraphic subdivision, 225 glacial. See individual glacial lakes Laverne Formation, 462 Loleta ash bed, 126 , 339 Lavic Lake valley, 331 Loniita Marl, 188, 193, 197 late Sehoo recession, 299 Lawlor Tuff, 120 Long Pine Formation, 463 middle Sehoo recession, 298 Lee County, Florida, 600 Long Valley area, 77, 341 perennial, 342, 346, 396 Lefflcr gravel unit, 157, 159, 162 Long Valley , 83, 94, 98, 102, playa, 341 Lehner Ranch site, 364 106, 124, 125, 126, 170, 341 pluvial, 6, 37, 38, 39, 55, 135, 283, Lemonade Springs terrace, 412 Long Valley-Mono Glass Mountain 286, 312, 339, 363, 364, 367, LEMP complex, 360, 362, 364 volcanic province, 105, 124, 136 368 Leslie Road locality, 229 Long Valley-Mono/Inyo Craters area, proglacial, 238, 443 leucite, 99 83, 118 Quaternary, 339,341 Lcucite Hills volcanic field, 89 Los Alamos River, 177 recession, 291 Leupp, 395 Los Angeles basin, 120, 122, 142, See also specific lakes Levy County, Florida, 595 185,188, 192, 196,197,198 , 446 Liberty County, Florida, 588 Los Baiios, 168 Lander County, 85 Lighthouse coastal terrace, 181 Los Formation, 488 , 156, 323, 380, 417, 456, limestone, 177, 178, 202, 382, 503, Lost Hills anticline, 171 550, 558 526, 532, 534, 588, 600, 632 Louisiana, south, 574 landscapes, 356, 373, 451 Lind Coulee, 244 Loup River, 468 development, 448, 620 Lingos Formation, 479, 492 Louviers Alluvium, 459 evolution, 54,165, 323, 621, 625 Liniodendron, 23 Loveland Loess, 64, 465, 466, 512, lava-capped, 456 Linn formation, 159, 160 517, 521, 535 landslides, 382, 391, 397, 422, 575 Linn gravel unit, 157, 159 Lovelock Alloformation- debris, 391 Linn Member, 159 pedocomplex, 294, 295

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 662 Index

Lovelock Formation, 295 Mangas Creek, 365 Mercenaria, 67 Lower Coastal Plain, 629, 635, 638 Manix area, 341 Merriam flow, 396 Lower Fort Smith terrace, 412 Manix basin, 331, 334 Mesa Chivato, 87, 379 Lower Hardin terrace, 412 Manix Lake, 309, 340, 342, 344 Mesa Falls ash bed, 111, 112 Lower Lishi, unit, 29 Manresa dune, 181 Mesa Falls Tuff, 54, 464 Lower Mississippi Valley, 547 , 368 Mesa Mountains, 392 chenier plain, 563 Maoall locality, 229 Mesa Prieta 397 chronology, 550 Marais des Cygncs River, 512,520 Mesa terrace, 198, 410 climate, 549 Marble Bluff bed, 135 mesas, 456 deltaic plain, 563, 573 Marengo locality, 229 Mesaverde Formation, 420 Deweyville Complex, 554, 559, Marianna, 565, 568 Mesilla-Las Cruces basin, 367 568, 577 Marianna loess, 569 mesocycles, 7 flood plain, 561, 573 Maringouin delta complex, 564 Metropolis Terrace, 556 geomorphology, 550 Markagunt Plateau, 374, 379 Mexican Highland section, 353, 358 glacial/interglacial cycles, 551 Marksville Prairie, 550 Mexico, 87 Intermediate Complex, 555, 565, marl, 39, 526, 588, 604 Mexico Beach, 594 577 white, 300, 307 Miami Limestone, 603, 647 loess deposits, 560, 568 Marshall landfill, 243 micas, 217, 486, 565 neotectonics, 573 Martin County, Florida, 601, 602 microcycles, 7 pedology, 564 Martinez surface, 359 microfauna, saline, 335 physiography, 550 Maryland, 636 microrelief, 426 Prairie Complex, 556, 566, 577 Maryland Piedmont, 624 Microtus pennsylvanicus, 604 salt diapirism, 576 Mason Valley, 285, 288, 290, 297 middens, packrat, 391 stratigraphy, 550 Massachusetts, 57 Middle Butte, 270 tectonics, 573 Matuyama-Brunhes Chronozone, Middle Coastal Plain, 629, 635 terraces, 549 boundary, 9 Middle Loup River, 463, 468 upland complex, 549, 554, 565, 577 Matuyama-Brunhes geomagnetic chron Middle River Valley, 613 valley trains, 559, 568, 577 boundary, 309, 366 Middle Sister Peak, 81 Lower Rio Chama, 397 Matuyama-Brunhes polarity reversal, Midland Basin, 484, 485 Lower Talbot Formation, 641 290, 303, 358, 362 Midvale Geosol, 309 Lower Two Leggins terrace, 412 Matuyama reversed chron, 231 Midvale Soil, 302 Lower Verdo River, 357 Maxon Crater, 478, 491 Midway Group, 575 Lubbock County, Texas, 481 Mazama ash bed, 112, 131, 136 migration, volcanic, 83 Lubbock Lakesite, 484 Mazama tephra, 300 Milankovitch mechanism, 16, 33, 34 Lunar Crater volcanic field, 85 McCarty's flow, 87 Milford Silt member, 617 Lymnaea McCartys basalt, 395 Mill Creek, 386, 387 bonnevillensis, 296 McDermilt volcanic center, 269 Milner Dam, 253 modicella, 431 McKinney Basalt, 263, 267, 274, 275 Mima Mounds, 426 Lyrmhavcn Member, 638, 639 McPhcrson Valley, 521 Mineral Mountains, 86 Meade County, 449 Minnekahta Limestone, 450 , 84, 85, 368, 379 Meade Formation, 469 Mabton, 243 Meander anticline, 387 late, 355,445, 633 Maclura pomifera, 24 meander belts, 550, 552, 561, 570, upper, 462 Macon Ridge, 559, 568 587 Mississippi, 64 macro cycles, 7 , 409, 420 Mississippi coastal plain, 594 Mad Creek, 432 Medicine Lake volcanic locus, 82 Mississippi Embayment, 549 Madson Basalt, 267, 274 Medicine Lake volcano, 82,127 , 538, 550, 559, 561 Magazine Mountain, 540 Medicine Root gravel, 449 delta chronology, 563 chamber, 124 Medicine Root River, 449 drainage, 575 , 94, 102 Medill Sand, 188, 198 flood plain, 573 basaltic, 272 Meers area, 524 meander belts, 570 silicic, 95 , 508 Mississippi sound, 593, 594 , 99 megabarchans, 336 Mississippi trench, 563 magnetostratigraphy, 189 megacycles, 7 Missoula flooding, 236 Majors Creek, 199 megafossils, 187 Missouri, 23 Malaga Cove area, 120, 122 Megatylopus, 450 Missouri Plateau, 445, 448 Malaga Formation, 120 Mehrtcn Formation, 173 Missouri River, 443, 467, 538 Malan unit, 29 Mellette County, 449 ancestral, 443, 464 Maiden gravel pit, 242 melting, partial, 272 preglacial, 443 Malheur Lakes, 283 mellwater, 448, 460, 462, 466 Missouri River valley, 446 Malibu coast, 188 Mendocino triple junction, 142 Missouri Slope, 448 Malpass Member, 160, 161, 164 Menoken terrace, 517 models , 521 Merced basin, 145 basin (coastal), 182 kill site, 449 Merced Embayment, 184 circulation, 16 Mammoth Cave National Park, 619 Merced Formation, 124, 125, 143, climatic, 16 Mammoth Mountain, 126 154, 183 energy-flux-balance, 316 Mammuthus, 23, 224, 265, 604 depositional facies, 144 glacial-interglacial, 444 , 377, 388, 432 transgressive-regressive cycles, 144 high-level terrace, 625 Mangas basin, 365 Mcrced River, 170 kinetic, 67

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Index 663

landscape evolution, 621 , 134, 218, 225, 235, Needles fault zone, 383, 387 marine strandlines, 190 243 Negro Bill Canyon, 384 Pasco Basin flooding, 236 ash, 244 Nelson County, Virginia, 622 stratigraphic, 32 , 81 fans, 623 Modesto Formation, 59, 167, 168, Mount McLoughlin, 81 Nelson Lake, 340 173, 175, 176 Mount Nebo, 540 Neochoerus, 604 Moenkopi Plateau, 396 Mount Ranier, 80, 100 Neofiber, 604 Mogollon Plateau, 374 Mount St. Helens, 79, 81, 95, 100, Neogene, 376, 427 Mogollon Rim, 374, 379, 380 218, 238, 241, 244 late, 588 Mogollon Rim escarpment, 379, 380 ash, 130, 135, 238, 244, 298 upper, 117 Mohave River, 283, 342 tephra, 216, 218, 225 230, 235, Neogloboquadrina pachyderma, 187 Mohawk Valley, 173 238, 242 Neosho River, 512, 516, 520 Mojave Desert, 57, 83, 283, 285, 321, Mount Shasta, 81 neotectonics, 507, 532, 573, 633 322, 325, 338, 345, 355 Mount Taylor volcanic fields, 87, 378, Neotoma, 316, 374 eastern, 309, 331 379 nepheline, 99 eolian deposits, 331 volcano, 81 Nestor strandline, 196 geomorphology, 325, 327, 331 Mount Washington volcano, 81 Nestor Terrace, California, 57, 196 pediments, 326 Mount Wheeler, 283 Neuse Formation, 637 piedmont deposits, 327 Mountain Creek, 527 Neuse River , 639 stratigraphy, 327,331 Mountain fronts, tectonic activity, neutron activation analysis, 104 surficial geology, 325 323 Test site region, 57, 59 Mojave River, 323, 332, 334, 341, Mountain Home, 258 New Madrid 344 Mountain Lake, 615 earthquakes, 573, 574 ancestral, 342, 344 Mountain Meadow surface, 450 fault zone, 549 modem, 341 Mountain Meadow terrace, 450 seismic zone, 573 Mokelumne alluvial fan, 170 mountain ranges, discontinuous, 353, New Mexico Mokelumne River, 165, 175 see also specific mountain ranges north-central, 486 Mollisols, 506 mud, 143, 153, 154 southwestern plains, 364 molluscan assemblages, 187, 188, estuarine, 182 New River, 614 191, 192 sapropelic, 483 Newberry volcanic loci, 82 mollusks, 57, 144, 255, 276, 602 Mud Lake, 276 , 84 fossils, 65, 193, 194, 196, 197 mud flats, 283 Newman terrace, 510, 519 Mono Basin, California, 126, 131 Muddy Creek Formation, 286, 378, Newport Bay, 188 Mono Craters, 83, 126, 130, 136 380 Newport-Inglewood fault, 188 Mono-Glass Mountain ash, 186 mudflows, 82, 156, 159, 167, 168, Newport-Inglewood structural zone, Mono Lake Excursion, 61, 130, 290 417 196, 199 Mono Lakes, 61, 128, 283, 339, 340 mudslides, marine, 575, 576 Niobrara River, 452, 468 Monongahela basin, 617 mudstones, 177, 178, 185, 188, 189, Niobrara Valley, 463 Monroe County, Florida, 600 451 Nobscott soil series, 515 Monroe uplift, 549, 573, 574, 584 Mugu aquifer, 187 Nomlaki Tuff, 173, 176 Montana, 56, 445 Mugu submarine canyon, 186 Nomlaki Tuff Member, 112,121 Monterey Bay region, 179, 180, 181, Mulberry Island, 564 nonlacustral, 309 183 Mulinia, 587, 637 Norfolk Formation, 637 Monterey Bay shelf, 182 lateralis, 601 Normal Polarity/Matuyama Reversed Monterey Peninsula, 180, 182 Murdock Station Formation, 598 Polarity Chron boundary, 112 Monterey Shale, 185 Murray Springs, site, 364 North Canadian River, 522 Montes Creek, 434 Muskox vertebra, 413 North Carolina, 636 Montezuma Canyon, 382 Musselshell drainage basin, 445 North Fork, Red River, 522 Montezuma Creek, 388 Musselshell River, 445 North Knickerbocker Peak, 392 Montgomery Terrace, 555 Myakka Member, 598 North Laramie River, 426 Montini volcano, 265 Myrica, 21, 24 North Loup River, 463, 468 montmonllonite, 485, 534 Myriophyllum, 24 North Merced Gravel, 167, 168, 174 Monument Upwarp, 387 Mytilus condoni, 153 North Merced unit, 176 Mora River, 491 North Plains tributary valley, 395 Morales Formation, 178 Nacimiento aquifer, 396 North Platte River, 450, 452 Mora-Moreno valley system, 489, 490 Nankoweap Creek, 399, 400 North Sister volcano, 81 Moreno Valley, 489, 490 Nankoweap rockfall, 399 Northern Hemisphere, 14, 33 , 382 Nankoweep delta, 59 Nuculana, 587 Moss Black sandstone, 382 Nannippus phlegon, 604 Nussbaum Alluvium, 457 Mound Lake basin, 485, 486 Nashua Formation, 601 Nye County, 85 Mounds Gravel, 554 Nassarius, 637 Nyssa, 21 stratovolcano, 80 Nassawadox Formation, 636 Mount Baker volcano, 79 Natchez-Vicksburg area, 560, 575 Oahe Formation, 449 Mount Baldy-White Mountains Navajo section, 374, 377, 379, 391 Oak City-Delta area, 302 complex, 86 stream evolution patterns, 391 Oak City-Leamington area, 305, 306 Mount Bennett Hills, 259, 262, 263 Nebraska, 462, 467 Oak Creek, 338 Mount Enterprise fault, 584 Nebraska Sand Hills, 462, 467, 515 Oak Street locality, 229 stratovolcano, 81 Nebraskan glaciation, 33 Oakview, 188 stratovolcano, 81 Nebraskan terrace, 522, 523 obsidian fragments, 126

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 664 Index

Ocala Group, 595 glacial, 168, 217 Palos Verdes Hills, 185, 188, 191, Ocala uplift, 595 Owens Lake, 37, 283, 340 196, 198 Ocate Creek, ancestral, 490, 491 Owens River, 38, 283, 322, 342 Palos Verdes Peninsula, 191, 197 Ocate Mesa, 486 ancestral, 341 Palos Verdes Sand, 188,197 Ocate Valley, 490 channel, 341 Palouse, 216 Ocate volcanic field, 88, 89, 478, 486, Owens Valley, 285, 337, 338 Palouse Formation, 224, 235 491 Owens Valley-White Mountain fault Palouse Hills, 216 Occahannock Member, 636 system, 337 Palouse loess, 216, 237 Ocean View terrace, 182 Owl Creek mountains, 409 Palouse soil, 224 Ochopee Limestone, 598 Owyhee desert, 255 Paludestrina, 296 Ocotillo Conglomerate, 335 Owyhee Mountains, 256, 258, 259, Pamlico Formation, 636, 641, 642 , 443, 451, 456, 266 Pamlico River, 639 477, 478, 481 Owyhee Plateau, 252, 256, 259, 262, Pamlico terrace, 556, 592 Ogallala Group, 462, 467, 468 267, 269, 271, 272 Pamlico unit, 590 , 559, 617 Oxbow, 253 Panamint Lake, 340 Ohio River basin, 620 Oxnard Plain, 187 Panamint Range, 337 Ojai Valley, 187 oxygen-isotope ratio, 4, 5 Panamint Valley, 38, 285, 286, 338, Okaloacoochee Member, 602 Ozark dome, 503, 532, 539 340 Okanogan glacial lobe, 240, 241 Ozark Plateau Province, 531, 538 Panamint Valley fault, 337 Okanogan glacier, 240 stratigraphy, 534 Pancho Rico Formation, 178 Okeechobee County, Florida, 601 Panoche Creek, 171 Okefenokee Formation, 641 Pacific borderland, 111, 117 Panoche Hills anticline, 171 Okefcnokee terrace, 641 Pacific coast Panopea reflexa, 598 Oklahoma, 24, 462, 522 climate, 142 Paoha Island, 128 northwestern, 469 sediment supply, 142 Paradox Formation, 386, 387 Old Crow tephra, 64 waves, 143 Paradox Member, 383 Old Maid Coulee locality, 229 see also CA, OR, WA Paradox Valley, 384 Old River Bed, 302, 306 Pacific Margin, 117, 135, 141 paralava, 448 Olduvai Normal Subchron, 10, 60, geology, 141 Paramore Crater , 85 150, 186, 225, 309 sediments, 117 Park Plateau, 489 Olcma ash bed, 130, 135 tectonic history, 141 , 409, 430 Omar Formation, 636 , 117 Pasadenan orogeny, 185, 187 Onion Creek, 384 Pacific Northwest, 19, 143 Pascagoula Formation, 588 Onion Creek diapir, 386 Pacific Ocean, marine deposits, 112, Pascagoula River, 593 opal deposits, 51 123, 126 Pasco Basin, 215, 219, 228 opaque minerals, 217 Pacific terrace, 198 cataclysmic floods, 235 Ophiomorpha, 588, 641 Pack Creek, 386 model, 236 Orange County, Florida, 601 Paducah Group, 496 units, 234 Orangeburg Scarp, 629, 642 Pahlow strath, 422 Paso Robles basin, 178 Orcutt Canyon, 187 Paiute, 288, 296 Paso Robles Formation, 121,177, Orcutt Sand, 177 Paiute Formation, 125 178, 181 Oregon, 251 Pajaro Gap, 180 Pass Road, Mississippi, 592 southwestern, 152 Pajaro River, 181, 182, 184 Patterson alluvium, 168 Oregon terrace deposits, 154, 155 Palcargids, 330, 357, 358, 360 Pavant Butte volcanic center, 308 Orleans Parish, 594 Palen Valley, 331 Peach Springs-Hualapai Plateau, 377 , 334 paleochannels, 637, 639 Peach Springs Tuff, 100, 378 orthopyroxene, 99 paleoclimates, 13, 221, 290, 313, Pearl River, 560 Osage Plains, 503 407,469, 618 Pearlette ash, 54, 112, 123, 124, 444, age, 509 paleodividcs, 477 464, 465, 469, 521 climate, 504 Paleoindian artifact, 538 Pearlette family, 111, 509, 520, 523 deposits, 510 paleogeography, 181 peat, 54, 276, 539, 590, 592, 635, fluvial stratigraphy, 516 paleohydrogeology, 313 636 neotectonism, 507 paleohydrology, 313 pebbles 151, 153, 160, 422, 451, soils, 504 paleomagnetic dating, 60 456, 488, 527 vegetation, 504 palcopedology, 219 ancestral, 478 Osceola County, Florida, 601 paleoshorclines, 200 Pecos River valley, 478, 479 oscillations, 34 Paleorthids, 357, 358, 360 Pedernal Hills, 368 ostracods, 340 paleosols, 26, 135, 168, 181, 216, pediments, 156, 162, 167, 258, 286, Ostrya/Carpinus, 21, 23, 24 219, 228, 242, 290, 295, 303, 301, 323, 326, 334, 357, 380, Othello Channels, 237 359, 364, 366, 444, 448, 453, 384, 388, 434, 443, 447, 449, Ouachita fold belt, 549 458, 464, 466, 479, 481, 484, 452, 456 Ouachita Mountains, 503, 531, 540, 564, 565, 622 deposits, 266, 356, 432, 445, 459 549 paleosurfacc, 117 dissection, 388 stratigraphy, 539 paleovalley, 521, 635 domes, 325 Ouachita Mountains subprovince, 532 Palm Beach County, Florida, 601, gravel, 360 Ouachita River, 556, 559, 560 602 pediplanation, 174 Ouachita River drainage, 575 Palm Spring Formation, 335 pedogenesis, 479, 481, 484 Ouray, , 373 Palos Verdes fault, 187 pedology, 564 outwash, 432, 434 Palos Verdes headland, 197 Penholoway Formation, 641

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Index 665

Pedregosa Mountains, 364 , 100, 272 Powder River Basin, 54, 441, 446, 447 pegmatite, 488 plains, 563 fluvial stratigraphy, 446 Peloncillo Mountains, 364 Plains Border section, 462 Powell terrace, 413, 415 Pend Oreille Valley, 238 Plainview artifacts, 497 Prairie Complex, 556, 577 peneplains, 624 planation, lateral, 409, 413 soils, 566, 576 Penholoway Formation, 641 Plañera aqualka, 23 Prairie Dog Town Fork, Red River, 522 Penholoway terrace, 588 Plaquemines delta complex, 564 Prairie Formation, 590, 592 Peninsular arch, 595 Platanus, 23 Prairie Peninsula, 24 Peninsular Ranges trend, 189 Plateau Creek, 384 Prairie Terrace, 556, 558, 563 Pensacola terrace, 556 Platte River, 443, 467, 468 Pratt soil series, 515 Pensauken Formation, 635 bicalcaratus, 604 Pre-Bull Lake, 384 Peoria Loess, 64, 461, 465, 467, 512, Pleasanton field, 584 Pre-Bull Lake loess unit, 224 517, 521, 535, 560, 566, 568, , 11, 26,126,130,165, pre-Citronelle units, 588 569, 577 190, 329, 388, 401, 588 Pre-Lissie surfaces, 586 surface soil scries, 570 early, 157,355,362,464, 600 Pre-Missoula Gravels, 231 Peridido Key Formation, 588 late, 156, 363,449,466, 602 Pre- units, 588 Peridot Mesa, 364 lower, 119 precipitation, 36, 38, 41, 55, 142, periglacial wedges, 424 medial, 600 219, 286, 300, 316, 323, 374, belt, 470 middle, 157, 360, 464 396, 407, 441 permeability, 448 Pleistocene-, boundary, 8 Priest Rapids bar, 238 Perry County, Arkansas, 541 Plinian eruptions, 95 Princess Anne Formation, 636, 641 Peters Gulch ash bed, 259 , 119, 156,356,409, 598 Professor Valley, 384 petrography, 97 early, 633 Promontory Geosols, 303, 307 Petit Bois Island, Mississippi, 593 late, 463 Promontory Point, 266 Pettijohn formation, 463 Pliocene-Pleistocene boundary, 10, Promontory Range, 302, 305 Phoenix Basin, 353, 357 183 Promontory Soil, 302 physiography, 409, 550 plugs, 379 Providence Mountains, 329, 330 Picea, 19, 21, 23, 24, 25 Plum Creek, 459 Provo Formation, 302 rubens, 23 pluvial hydrologic index, 314 Provo stillstand, 308, 308 Piekens-Gilbertown fault zone, 549 pluvial periods, 37 Provo terrace, 309 Pico Formation, 123 Point Año Nuevo, 67 Pryor Gap, 410 Pico Member, 185, 188 Point Cabrillo, 199 Pryor Mountains, 409, 412, 437 Piedmont, 625 Point Loma peninsula, 196 Pseudotsuga, 24, 25 Piedmont Province, 623 Poison Creek Formation, 257, 258 Pterocarya, 637 piedmont, 337, 355, 461 Pokes Point Alloformation, 302, 305 Lowlands, 142 aggradation, 345 Polecat Bench terrace, 410, 413, 415 Pullen Formation, 149 alluvial, 283 pollen, 19, 25, 33 pumice, 81, 95, 117, 125, 130, 134, deposits, 327, 329, 337, 345 Polynices duplícalas, 639 170 valleys, 457 Pommc de Torre River, 520, 535 Pumice Castle tephra unit, 130 , 446 Pomme de Terre River Valley, 535, 536 Pumpkin Buttes, 446 Pinacate volcanic field, 337, 358 terraces, 536 Punta Gorda terrace, 187 pine, 26 ponding, 617 Pupilla muscorum, 431 Pine Ridge Escarpmcnt, 451 Pontchartrain embayment, 594 Purisima Formation, 122, 123 Pine Ridge terrace, 412 Poplar Heights locality, 229 Putah Tuff Member, 112,121 Pinedale fill terraces, 384 Populus, 16, 24 Putnam County, Florida, 601 Pinedale glaciation, 226, 343, 399, Poquoson Member, 638, 639 pygmy forest, 200 461 porphyry, 267 Pyramid basin, 285, 288 Pinedale glaciers, 422 Port Charlotte Group, 600 Pyramid Lake, 283, 288 Pinedale loess unit, 224 Port Hudson, Louisiana, 575 Pyramid Lake-lower Truckee River Pinedale pediments, 384 Port St. Joe, Florida, 592 basin, 299 Pinedale terrace, 410, 413 Portales soil series, 485 Pyramid valley, 300 Pinellas-Sarasota chain, 594 Porter Hill Alluvium, 524 pyroclastics, 379, 451 Piney Creek, 461 Portland, Oregon, 82 , 217 Piney Creek Alluvium, 460 Portland Basin, 156, 159, 161, 162 Pinnacate volcanic field, 83 Portland Hills Silt, 159, 164 Quad surface, 162 Pinto Mountains, 331 Portland Sand, 161 Quarry strandline, 199 Pinus, 21, 23, 24, 25, 637 Portneuf River, 308 , 100, 217, 534, 536, 601 albicaulis, 25 post-Beaumont surface, 587 quartzite, 267, 463, 527 echinata, 24 post-Diamond Hill paleosol, 159, 161 Quaternary taeda, 24 potassium-argon (K-Ar) dating, 49 chronostratigraphic boundaries, 7, 8 Pippens Cemetery Formation, 538 argon equilibration, 50 early, 19 Pisgah-Amboy volcanic field, 83 laser fusion, 109 middle, 19 Pisidium ultramontanum, 255 practice, 51 Queen Creek 357 Pitas Point, 201 theory, 51 Quemado volcanic center, 86 Pittsburg Basin, 21, 23 Potomac River, 619, 636 Quemado volcanic field, 379 Pittsburg River, ancient, 617 Potrillo maar, 88 Quercus, 21, 23, 24, 25 Placer Creek Formation, 387 , 87 muhlenbergii, 24 Placer Creek gravel, 387 Poverty Point State Park, 575 stellata, 24 Placer Creek terrace, 387 Powder River, 452 Quincy Basin, 219

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 666 Index

Radar Hill, 235 Ridgeland Formation, 309 Rocky Mountains, 24, 89, 217, 285, radiation variations, solar, 16 Ridgely ridge, 573 376, 399, 441, 462 , 46,47,48, 189, rifting, 334, 584 rodent remains, 465 563 extensional, 271 Rodgers Shelter Formation, 536 Raft Formation, 275 Rillito surface, 359, 360 Rodman Mountains, 329 Raft River Valley, 275 Ringold Coulee, 230, 238 Rogers Lake, 340 Railroad Point locus, 85 Ringold Formation, 215, 219, 228, Rolling Plains, 478 rain shadows, 285, 313, 441 230, 234 geology, 477, 492 Ramnaceae, 25 Rio Chama, 397 Rosamond Lake, 340 Rancholabrean vertebrate fauna, 188 Rio Dell ash bed, 123, 150 , 194 Rangia, 587, 593 Rio Dell Formation, 121, 123, 149, Roubidoux Formation, 534 cuneata, 637 154, 155 Round Mountains, 430 Rangifer tarandus, 449 shelf deposits, 151 Roverts terrace, lower, 410, 414 rapid terrace, 450 shelf sequences, 151, 152 Rowland Formation, 159, 161 Raton Basin, 486 Rio Grande, 366, 394 Roxana loess, 569 Raton section, 456 ancestral, 367 Running Water Draw, 483 Raton volcanic field, 88, 89, 478 basins, 366, 367 runoff, 36, 39, 41, 346, 448, 483 Rattlesnake Hill, 85 Rio Grande rift zone, 87, 353, 394 sediment, 143 Rattlesnake Mountain, 236 Southern basins, 367 stream, 286 Rayado Creek, ancestral, 490 Rio Grande Valley, 65, 87 Rush Springs Sandstone, 525 Recent loess unit, 224 Rio Puerco, 374, 394, 397 Russian Springs Escarpment, 449 records Rio San Jose, 394, 396, 397 Rye Patch Alloformation, 294, 295 continental paleoclimatic, 35 Rio San Jose gravel, 394 Rye Patch Dam, 125, 295, 297 deep-ocean, 134 Rio Yaqui, 365 Rye Patch Formation, 295 loess, 4, 5, 10, 27 Rita Bianca Formation, 478 Rye Patch lake, 296 oxygen-isotope, J, 134 River Bend Members, 161 Rye Patch time, 296 red beds, 424, 426 Riverbank alluvium, 58 Red Bluff, California, 174 Riverbank Formation, 59, 167, 168, S-Bar-S Formation, 287 Red Bluff Formation, 125, 174 173, 175, 176 Saale moraines, 31, 32 Red Bluff unit, 176 Roan Mountain fans, 623 Sabine River, 554, 560 Red Canyon, 382 Roberts terrace, upper, 410, 415 Sabine uplift, 549 Red Cloud Gravel, 463 Robinia pseudoacacia, 24 Sacramento, California, 58 Red Desert, 418 Rochelle Hills, 54, 448 Sacramento-, 368 Red Dog loess, 449 Rock Creek, Montana, 407, 410, 415, , 143, 149, 165, 175 Red Flats terrace, 413 416, 423, 426, 437 Sacramento-San Joaquin Delta, 165, Red Lake, 363 Rock Creek terraces, 414 170, 175 Red Lake playa, 358 Rockland ash bed, 112, 125, 129,135, Sacramento-San Joaquin River basin, Red River, 483, 512, 522, 550, 560, 148, 149, 276 142 561, 566 Rockland tephra layer, 297 Sacramento section, 353, 368 ancestral, 587 rocks , 121, 122, 125, Red River Valley, 523, 556, 558 basaltic, 83, 84, 490 165,171,173 Red Rock Pass, 256, 301, 307, 308 basement, 595 Safford, 362 Red Rock Valley, 365 carbonate, 511, 526 Safford-San Simon basin, 353 Redcloud pumice, 131 crystalline, 216, 270, 271, 453, Safford-San Simon Valley, lakes, 362 Redding high flood plain, 174 624 Safford Valley, 359, 360, 361 reefs, shelf-edge, 593 dacitic, 83 St. Bernard delta complex, 563, 564 Reelfoot scarp, 573 granitic, 325 Saint David Formation, 358, 360, 364 Reno basin, 285 igneous, 75, 456, 488, 489, 490, St. Francis Basin, 550, 552, 559 Repetto Beds, 122 503, 536, 547 St. Francois Mountains, 531, 535, 536 Repetto Member, 185 mafic, 75, 76 St. George area, 86 Republican River, 470, 512 magnetized, 270 St. Johns County, Florida, 601 residuum, 503, 510, 534, 612, 613 metaigneous, 449 St. Joseph Bay, 594 Revere locality, 229 metamorphic, 456, 488, 489, 527, St. Louis County, 536 Rexroad Formation, 462, 469 547 St. Pierre interstade, 64 Reynolds Creek, 258 metamorphosed, 448 St. Vincent, 594 Rhus, 24 metasedimentary, 449, 490 Salem Hills, 156 , 86, 379 rhyolitic, 83, 85 Salem Plateau, 531, 535, 536, 538 rhyolite, 86, 251, 268, 269, 272 sedimentary, 149, 260, 355, 378, , California, 181 domes, 270 389, 477, 489, 547, 612 Salinas basin, 178 flows, 379 silicic, 75, 76, 269 Salinas River, 179, 181, 182, 184 pumiceous, 83 varnish, 327, 330 Salinas Valley, 181 rhythmite, 229, 230, 236, 237, 240, volcanic, 49, 55, 58, 60, 75, 85, lower, 179 243 251, 256, 260, 268, 269, 378, Saline River, 541 Rice Valley, 331 All, 486 Saline Valley, 337, 338 Rich Lake basin, 485, 486 volcaniclastic, 382 salines, 485 Rich Lake Dolomite, 486 Rocky Flats Alluvium, 457, 458 microfauna, 335 Rich Lake Member, 485 Rocky Mountain basins, history, 407 playas, 338, 368 Rich Mountain, 540 Rocky Mountain glacial sequence, 224 salinities, 594 Richeau Hills 452 Rocky Mountain hinge zone, 85 Salix, 21, 23, 24

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Index 667

Salmon Falls Creek, 259 San Joaquin Valley, 59, 122, 125, Sangamon soil, 465, 466, 469, 479, ancestral, 255, 266 135, 165, 170, 173, 178 535 Salmon Springs, Washington, 54 allostratigraphic units, 170 Sangamon-Wisconsin, boundary, 9 Salmon Springs Drift, 54 deposition, 167 Sangamonian sediments, 21 Salt Basin, 368 northeastern, 167 Sangre de Cristo fault zone, 366 Salt Fork Red River, 522 northwestern, 168 Sangre de Cristo Mountains, 366, 486 Salt Fork River, 522 stratigraphy, 167 sanidine, 100, 124 Salt Lake City, Utah, 55, 302 syncline, 167, 171 Santa Barbara, California, 67, 185 Salt Lake Group, 286 San Juan basin, 374, 396 Santa Barbara Channel, 186 Salt River, 357, 365, 381 , 392 Santa Barbara Formation, 124, 185, Salt Valley, 384 San Juan River, 374, 392, 394 187, 188 salt, 384, 478 San Lorenzo River, 182 Santa Catalina Mountains, 359 anticline, 384, 386 San Luis Hills, 366 Santa Clara River, 185, 187 beds, 484, 496 San Luis Obispo County, California, Santa Clara trough, 187 desiccated lake, 39 57 Santa Clara Valley, 185, 186, 187 diapir, 384, 584, 587 San Luis Ranch, 168 Santa Cruz, California, 199 diapirism, 576, 585 , 365, 366 Santa Cruz basin, 179, 184 dissolution, 387, 479, 484, 584 San Nicolas Island, 57, 68, 191 Santa Cruz Mountains, 122, 179, 184 dome, 303, 576 San Onofre bluff, 194 Santa Cruz River, 358 flow, 387 San Pablo Bay, 170 Santa Cruz terrace complex, 180, 181 multimineralic, 39 San Pedro, California, 59, 192, 193, , 366 soluble, 276 197 Santa Fe Supergroup, 366 tectonics, 383, 384 , 594 San Pedro Formation, 125, 185, 188, Santa Lucia Range, 178, 179, 180, Saltair core, 303 197, 198 181 Salton basin, 335, 336 San Pedro Sand, 188, 197 Santa Maria Basin, 177, 183, 184 , 83, 334, 335, 336 San Pedro Valley, upper, 358, 360, Santa Maria region, marine terraces, , 286, 309, 321, 323, 364 177 334, 335, 345 San Simon Valley, 360, 361, 362 Santa Maria River, 177 geology, 334 Sanatarium terrace, 413 Santa Monica basin, 186 tectonics, 334 sand, 136, 143, 153, 159, 161, 168, Santa Rosa barrier island, 594 Sambucus, 24 177, 180, 190, 197, 266, 288, Santa Rosa Sound, 594 system, 82, 130, 294, 297, 303, 311, 335, 359, Santa Rosa Mountains, 334 149, 165, 170, 177, 178, 180, 368, 410, 422, 428, 458, 462, Santa Susana fault, 187 184, 285, 323, 334 469, 483, 485, 495, 512, 517, Santo Tomas-Black Mountain center, , 367 525, 538, 556, 559, 561, 565, 88 San Augustin basin, 365 575, 588, 592, 598, 603, 630, Sapindus, 24 San Augustin Plains, 19, 25, 396 635 saprofite, 623 San Augustin play a, 366 availability, 331 Sappa Formation, 112, 464 San Benito River, 184 barrier, 556 Sarasota Formation, 598 San Bernardino Mountains, 285, 323, boils, 575 Sarcobatus, 24 341 cover, 479 Saticoy oil field, 186 San Bernardino volcanic field, 85, dune, 460, 462, 512, 553, 559, Satilla Formation, 642 364 561 Saugus Formation, 185, 186, 187 San Carlos field, 364 eolian, 276, 300, 444, 461, 510 Saugus Mugu aquifer, post-, 186 San Carlos River, 361 quartz, 601, 602 Saunders County, 24 San Carlos volcanic center, 85 ramps, 331, 333 Savanna Formation, 540 San Cayetano fault, 187 sheet, 515 Savannah River, 624 San Clemente Island, 57 stringers, 486 Savannah River flood plain, 625 San Denito River, ancestral, 180 transport, 334 Saxet field, 585 , California, 57, 66 Sand Creek, 422, 424 Saxidomus, 67 strandline, 193 Sand Hills, Northern, 470 Scabland, 216, 219, 225 San Diego Bay, 194 Sand Hills Formation, 449 scabland coulees, 218 San Felipe Hills, 334, 335 Sand Springs Basalt, 274, 275 Scarborough bed, 24 San Francisco, California, 143 Sandasty Sand, 57 scarps, 180, 200, 363, 368, 417, 418, San Francisco Bay, 175 Sandhills dune field, 484 451, 509, 590, 636, 640 San Francisco Mountains, 86, 379, Sandhills Formation, 468 fault, 323, 382 396 Sandhills Region, 463, 467 Maryland, 636 San Francisco peninsula, 143 , 368 North Carolina, 636 San Francisco River, 365 sandstone, 185, 257, 373, 380, 382, retreat, 380 San Francisco volcanic field, 86, 374, 393, 417, 420, 426, 446, 448, Virginia, 636 377, 378, 381, 395, 397 451, 489, 490, 503, 526, 532, Schizoporella floridana, 603 San Gabriel Mountains, 188, 345 534, 540 Scotia Bluffs Sandstone, 123, 149 San Jacinto fault system, 334 turbidite, 185, 188, 189 sea cliff San Jacinto Mountains, 334 Sangamon, 181, 444, 527, 539, 558, exposures, 143, 154 San Jacinto Peak, 334 567 relict, 190 San Joaquin fault system, 167 Sangamon coastal terrace, 181 Sea Cliff terrace, 201 San Joaquin Formation, 122 Sangamon highstands, 181, 182 relative fall, 634 San Joaquin River, 143, 149, 165, Sangamon interglacial age, 23, 25, 26, sea level fluctuations, 190, 633 168, 170 29, 32, 33, 615 eustatic, 155

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 668 Index

glacioeustatic fluctuations, 143, Sentinel volcanic field, 358 siltstone, 144, 188, 335, 448, 456, 149, 155, 175, 180, 190, 577, Sequoia, 25 534, 540 630 Servillcta Basalt, 367 Valley, 331 highstands, 198, 199 Seven Devils Mountains, 255 Silvan terrace, 180 relative fall, 634 Sevier Desert, 303 Silver Bluff Formation, 636, 641, 642 rise, 182 Sevier Lake, 302 Silver Lake, 323, 333, 340 Searles Lake, California, 11, 38, 39, Sevier rift zone, 86 Silver Lake playa, 333, 345 57, 286, 309, 312, 340,342, 344 Sevier River, 283, 302, 303, 307 Simcoe Mountains area, 82 basin, 135, 285, 340 Seward Formation, 464 Sinbab Valley, 384 core, 342 shales, 373, 382, 384, 426, 445, 446, sinkholes, 507, 515, 534, 535, 538, Searles Valley, 39, 340, 341, 342 449, 456, 489, 490, 503, 507, 611, 618 Second strandline, 199 526, 532, 534, 540, 612 deposits, 510 Sedgefield Member, 638 Shannon County, South Dakota, 449 stratigraphy, 503 sedimentation, 39, 143, 156, 165, shards, 125, 127 Sitgreaves Mountain, 379 172, 173, 175, 182, 183, 240, Sharkey-Alligator succession, 573 slackwater areas, 236, 238, 243, 444 346, 394, 441, 466 Shastina cone, 81 deposits, 156 sediments, 21, 117, 171, 173, 175, Shccphole Mountains, 331, 333 slate, 160 177, 181, 190, 290, 335, 340, Shell Creek, 413, 601 Slocum Alluvium, 459 362, 383, 397, 446, 549, 552, shells, 151, 153, 202 slumping, 448, 575 595 beds, 603 slumps, 382, 574 accumulation, 469, 618 calcareous, 568 smectite, 242, 486 alluvial, 377, 391, 465, 479, 526, debris, 151 clay, 243 539, 570 fossil, 187, 516 Smith Valley, 285, 297 cataclysmic flood, 229 fragments, 201, 336 Smoke Creek Desert, 285, 288, 300 cave, 538, 619 lags, 144 Smoky Hill River, 512, 521 clastic, 321 Shenandoah Valley, 613 snails, aquatic, 465 colluvial, 391, 479, 539, 540 Shenandoah River, South Fork, 613 Snake River, 230, 237, 258, 268, 308, compaction, 171 Shepherdia, 24 468 deep-sea, 26, 34, 124, 125, 136 Sherman Granite, 451, 453, 463, 465 ancestral, 255, 263, 274 , 286 deltaic, 570 Sherwin Grade, 135 course, 253 deposition, 339 Shcrwin till, 135 displacements, 274 eolian, 181, 182, 377, 391, 456, Shevlin Park tuff, 129 Snake River Butte, 265 466, 467, 478, 479, 535 Shirley Formation, 637 Snake River Canyon, 259, 273, 277 flood-plain, 536, 540 Shivwits block, 381 Snake River Group, 266, 269 fluvial, 196, 376, 444, 477, 509, Shivwits Plateau, 374, 380, 397 , 77, 84, 251 536, 540 Shoshone Falls, 253 aquifer, 275, 277 freshwater, 603 Shoshone Mountains, 341 crust, 270 glaciofluvial, 460 Shoshone River, 409, 413, 415, 437 eastern, 251, 256, 268, 270, 276 lacustrine, 39, 300, 303, 309, 341, ancestral, 410, 415 eolian sand, 276 342, 377, 444, 464, 465, 478, Shoshone Springs Alloformation, 310 geology, 251 483, 485, 617 Showlow-Springerville volcanic field, loess, 276 marine, 19, 25, 188, 477, 590, 595 378, 380 origin, 271 marsh, 483, 484 Sicily Island, 565 structural history, 251 nearshore, 595 surface soil series, 570 type, 272 nonmarine, 180 Sicily Island Loess, 565, 566, 568, western, 251, 256, 260 paludal, 479 569 Snake River Valley, 238 patterns, 618 Sierra block, 167 Snively Basin, 235 rates, 618 Sierra de la Uvas, 367 Snowy Range area, 421 runoff, 143 Sierra de Salinas, 181 Socorro basin, 367 shed, 283 Sierra Diablo, 368 Socorro County, 87 siliciclastic, 532 , 89 Soda Lake, 83, 85, 323, 340, 344 spring, 539 Sierra Madre, 178 Soda Lake Valley, 286 subaerial, 297 Sierra Nevada, 36, 38, 56, 76, 83, 135, Soda Mountains, 329 subsurface, 306 165, 167, 168, 283, 285, 312, Soda Mountains piedmont, 327, 345 synorogenic, 441 313, 323, 337, 338, 341, 345 Soda Springs area, 85 syntectonic, 353 central, 176 Soda Springs-Rhodes Marsh Valley, terrace, 200, 536, 540 northern, 173, 176 296 transgressive, 182 Sigmoden, 604 Soda Springs valley, 285 transport, 339 Sikeston Ridge, 550, 559 sodium, 486 traps, 155 silica, 57, 75, 220, 565 soils, 216, 479, 512, 616 uniform, 39 siliciclastics, 646 alluvial plains, 570 upland-derived, 335 silt, 27, 33, 39, 54, 128, 136, 151, buried, 334 Sehoo Alloformation, 294, 298,299 159, 168, 180, 198, 240, 265, chenier plains, 573 Sehoo Formation, 131, 134, 135, 299 286, 294, 297, 300, 303, 306, creep, 574 Sehoo Lake, 289 311, 329, 335, 341, 345, 359, deltaic plains, 573 seismic activity, 334 421, 428, 446, 462, 464, 466, development, 164, 179, 226, 244, selenite crystals, 485 468, 478, 495, 512, 525, 535, 328, 330, 333, 356, 416, 444, Senecal surface, 162 538, 541, 547, 556, 559, 561, 460, 479, 484, 519, 524, 565, Sentinel-Arlington volcanic field, 84 565, 630, 636 625

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Index 669

ecosystem, 200 Stockton arch, 165 Superstition Hills, 334, 335 evolution, 55 Stoneville Surface, 446 Surprise Valley, 59 formation, 460 storms, catastrophic, 622 Surry Scarp, 629, 639, 641, 642 Interior Highlands, 531 Stovepipe Wells, 338 Susquehanna River, 639 Intermediate Complex, 565 Straight Cliffs, 391 Sutter Buttes, 82 morphology, 484 Straight Cliffs Formation, 382 Suwanee flow, 395 Osage Plains, 504 strandlines, 190,199, 200, 236, 240, swales, 161 podzolic, 27 283, 286, 288, 289, 299, 302, swarm, , 81 relict, 243 306, 308, 341, 362, 363, 365 Sweden, 60 surface, 219 emergent marine, 190 Sweetwater Arch, 417 Upland Complex, 565 Los Angeles Basin, 196 Sweetwater graben, 417 solar radiation, variations, 16 San Diego, 193 Sweetwater River, 417, 437 Soledad Mountain, 196 terraces, 196, 202 basin, 407 solfataras, 87 Upper Casper Orchard, 200 terraces, 418 solutes, rainwater, 329 strandplains, 592, 594 Sybille Creek, 426 Sonoita area, 360 strata, oil-bearing, 178 Synaptomys Sonoita Basin, 360 stratigraphy, 26,156, 164, 167, 201, cooperi, 604 Sonoita Creek, 360, 361 216, 224, 228, 238, 243, 283, vetus, 255 Sonoita Creek Valley, 361 289,291,294,301,310,331, Sonoita surface, 358, 360 334, 339, 378, 383, All, 443, Tabb Formation, 638 Sonoma Volcanics, 118, 120 450, 456,462, 464, 479, 484, Table Butte, 449 Sonora, Mexico, 336 492, 534, 539,550, 563, 588, Table Cliff Plateau, 382 Sonoran Desert, 83, 285, 345, 353, 630 Table Mountain, 420 355, 358, 356,358 alluvial, 345 Tadpole Lake, 266 southwest, 336 eolian, 345 Tahoe Lake, 283 volcanic fields, 358 fluvial, 446, 516 Tahoka clay, 485 South Bombino, 229 lacustrine, 346, 485 Tahoka Formation, 478 , 21, 640 offshore, 587 Tahoka lake basin, 485 South Florida Basin, 595 oxygen-isotope, 26, 27 Talbot terrace, 588 South Fork tributary, 84 regional, 635 talus, 331,616 South fault zone, sinkhole, 503 Tamiami Group, 583, 598 418 subsurface, 168 Tanner Canyon, 398, 401 South Mountain, 123 volcanic, 486 Tanner Creek, 59 anticline, 124 stratocone, 80, 81 Taos Plateau, 367 South Platte River, 452, 456, 460 stratotypes, 302 Tappan flow, 395 South Sister Peak, 81 stratovolcanoes, 78, 378 Tassajara Formation, 130 Southern Great Plains, geology, 477 , 409, 437 Tatman Bench, 410, 413 Southern Hemisphere, 14, 35 history, 413, 415 Taxaceae, 25 Southern High Plains, 463 stream piracy, 446 Taxodiaceae, 23, 25 lake basins, 484 streams, 447 Taxodium, 21, 637, 639 soil, 479 ephemeral, 327 Taylor Canyon-Cash bed, 341 stratigraphy, 479, 484 glacially dammed, 617 Teays Formation, 617 Soviet Union, 62 patterns, 552 , 620 Spanish Trail Alloformation, 310, 312 terraces, 574, 613, 624 ancient, 617 Spanish Valley, 386 stress, 174, 321 Teays valley, 617 , 620 Slump Arroyo member, 463 Teche delta complex, 564 sphene, 99 Stomptown Member, 636 Tecopa basin, 322 Spokane, Washington, 240 Sturgis terrace, 450 tectonics, 33, 141, 155, 176,285, Spokane Falls, 238 subaerial unit, 291 379, 418, 451, 552, 573, 584, Spokane flood, 160 , 165, 177 594 Spokane River, 238 subsidcncc, 149, 154, 155, 167, 170, loading, 171 Spokane River Valley, 240 171, 177, 178, 188, 215, 387, quiescence, 357 Spring Hills, 330 394, 448, 469, 478, 485, 492, salt, 383, 384 Spring Lake beds, 635 496, 553, 563, 584, 594 tectonism, 14, 142, 172, 189, 288, Spring Mountains, 341 Suffolk scarp, 637, 638, 642 321, 323, 334, 345, 353, 366, Springerville volcanic field, 86 Sugar Bowl Gravel, 267 394, 437, 573, 594 Springfield Plateau, 535, 536, 538 Suisun Bay, 165, 175 Tehachapi Mountains, 331, 345 springs, hot, 81, 82, 83, 85, 87 sulfates, 329, 486 Tehama Formation, 112, 121, 172, Springwater Formation, 157 sulfur, 486 173 spruce, 26 Sulfur Spring Valley, 85, 358, 360, Telephone Line Ridge bench, 417, Standing Butte, 449 364 418 Stanislaus alluvial fan, 170 Summer Lake, Oregon, 61, 126, 127, Telephone Line Ridge gravel, 417 Stanislaus Range drainage, 83 130, 131, 283 Temblor Range, 178, 183 Stanton Cave, 57, 399 ash bed, 127 temperature, 38, 41, 55, 66, 142, 267, Steamboat Hills, 83 basin, 285 270, 271, 316, 396, 407, 621 Steamboat Springs, 428, 429, 430 Summerville Scarp, 634 elevated, 50 stereochemistry, racemization, 189 sump areas, 290 global changes, 313 Stillwater Range, 288 Sunset Crater, 86, 379 latitudinal gradients, 67 Stock Farm terrace, 422 Sunset dunes, 181 Ten Mile Creek, 527

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 670 Index

Ten Thousand Islands, 600, 604 late, 285, 334 Tualatin, 156 Tenmile Gravel, 253, 255, 258, 259, Texas, 522,526 Tualatin Mountains, 159 263, 266 Texas Rolling Plains, 478, 492 Tualatin Valley, 156, 159, 161 Tennessee River, 613 Thebes Gap, 559 Tuana Gravel, 253, 258, 259, 263 Tensas Basin, 550 thermoluminescence dating, 61 Tucannon River, 243 tephra, 93, 94, 112, 117, 118, 123, thinolite, 299 Tucson basin, 353, 360 124, 125, 225, 227, 295, 367 Third strandline, 199 tufa, 340, 539, 541 age, 107,110, 118, 119, 136 Thomburg Scarp, 629 lithoid, 297 air-fall, 124 Thornton beach, 276 thinolite, 299 areal distribution, 110,118 Three-fingered Jack volcano, 81 tuffs, 93, 117, 120, 263, 286, 341, chemical techniques, 100, 126 Tierra Amarilla, 397 355, 379 correlations, 119 Tilia, 21, 23, 24 andesitic, 127 data evaluation methods, 106 till, 306, 460 ash-flow, 56, 76, 83, 127, 262, defined, 93 glacial, 413 268, 269 deposits, 93 tilting, 171, 173, 477, 584 rhyolitic, 257 glass shards, 98 regional, 296 rings, 82, 87 layers, 10, 93, 95, 98,100,106, Timber Canyon, 187 Tulare Basin, 165 107,109,110,112, 117, 119, Timber Mountain volcanic center, 76, Tulare Formation, 122, 124, 125, 122,126,130,134,136, 148, 85 168 176, 225, 290, 298, 303, 309, Timms Point silt, 188, 193, 197 Basin, 171 362, 363, 444, 464 Tiptonville dome, 573 Tularosa-Hueco basin, 367 mineralogy, 99 Titanis walleri, 604 Tularosa Valley, 367 nomenclature, 97 Tivoli series, 515 Tule Canyon, 482 pétrographie examination, 97 Todd Valley Sand, 467 Tule Formation, 478, 482 silicic, 93, 118, 126, 130 Tolchaco flow, 396 Tulelake, California, 119, 123, 125, sources, 110,118 Toledo caldera, 106 126, 127, 130, 131, 309 stratigraphie sequences, 106, 118 Tongue River, 448 ash beds, 127,129,130, 135 types, 98 Tonto Basin, 361 core, 123, 125, 127, 129, 130, 135, tephrochronology, 54, 93,117,136, Topatopa Mountains, 185, 187 311 189 Toronto, Ontario, 24 Tumalo tuff, 126, 129 defined, 93 Ton-ey Pines, 194 Tunica Hills, 593, 594 tephrochronomctry, 94 Torriorlhents, 329 Tuolumne alluvial fan, 170 tephrostratigraphy, 94 Tortolita Mountains, 359 Tuolumne River, 168 terraces, 412, 419, 423,437, 452, Touchet Beds, 160, 161, 219, 224, turbidite beds, 187 590, 613 329 Turkey Mountains, 486 alluvial, 418 Tow Creek anticline, 428, 431 Turlock Lake Formation, 59, 124, 125, alluvial fan, 179 Toyeh Geosol, 299, 300 167, 168, 173,176 coastal, 180 Trail Ridge sequence, 595, 632 Turupah Alloformation, 299, 300 coastal marine, 152 Transition Zone, 365, 380 Tuscan Formation, 121, 173, 176 dating, 409 Transition Zone-Datil-Mogollon Twentyfive Mile Wash, 391 deposits, 187, 428,432, 445, 457 section, 353, 365 Twin Peaks volcanic field, 86 development, 613, 614 Transverse Ranges, 189, 331 Tyson's Corner, Virginia, 624 erosion, 164 western, 177 Florida, 646 travertines, 56 Ubehebe Craters, 83 fluvial, 179, 181, 188, 337, 391, Trego Hot Springs ash bed, 131 Udolls, 506 593 Trenton Gravel, 635 Uinta Basin, 373,383, 407 formation, 614, 641 Trigo Springs tephra, 298 alluvial surfaces, 433 formation mechanisms, 413 Trinidad, Texas, 527 incision rates, 436 Georgia, 641 Trinity River, ancestral, 587 northwestern, 432,433,436 gravel, 156, 157, 384 Trinity , 564 Uinta drainage, 432 high, 173, 174 Trolinger Spring, 539 , 376, 409, 427 lava-capped, 267 Trolinger Spring Formation, 536, 538, Uinta River, 432, 434, 435 levels, 173 539 Uinta River Formation, 434 marine, 177,180, 188, 189, 190, Tropic Shale, 382 Ulmus, 21, 23, 24 588, 598, 629, 635, 646 tropopause, 14 Ultisols, 565, 566, 612, 616, 617 river, 357, 401 Troutdale Formation, 159 Unaweep Canyon, 377 sediments, 200 Truckee-Donner Pass area, 83 Uncompahgre arch, 377 sequences, 410 Truckee Formation, 286 Uncompahgre Plateau, 377 strandline, 196, 202 Truckee Meadows, 285 Uncompahgre River, 384 strath, 357, 360, 361, 413, 432 Truckee River, 283, 288, 297, 299 Uncompahgre Uplift, 384 stream, 167, 173, 456, 574, 613, canyon, 298 , 633 624 valley, 295, 296, 297 Unikaret Plateau, 374, 397 submerged, 182 Truth or Consequences zone, 85 Unikaret/Toroweap Valley, 378 wind-stripped, 423 Tsoyawata tephra, 300 Unikaret volcanic field, 86, 374, 378 terrane Tsoyowata ash bed, 131 Volcano, 81 carbonate, 611 Tsuga, 21, 23 Unity Trinity River drainage basin, extended, 285 canadensis, 24 526 formation mechanisms, 436 helerophyla, 25 Unkar Rapids, 398, 399 , 376,575 mertensiana, 25 Upland Complex, 549, 554,577

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Index 671

soils, 565 Vernita Grade locality, 229, 235 , 376, 382, 446, Upland Formation, 464, 465 447, 448 uplands, 511 fossils, 342 Wasatch Mountains, 55, 283, 312 interfluves, 575 remains, 186 Wash Cliffs, 397 uplift, 155, 165, 171, 173, 179, 188, Vertisol, 159 Washington, 67, 75, 82 190, 193, 196, 198, 201, 285, Viburnum, 21 fault zone, 380 323, 337, 376, 378, 394, 409, Vicksburg Group, 575 south-central, 228 427, 443, 451, 452, 477, 486, Vicksburg Loess, 569 Washington, D.C., 21 533, 574, 584, 594 Virginia, 624, 636 Washita River, 522, 523 coseismic, 202 Virginia Range, 83 Washtucna, Washington, 219, 223, mountain, 34 Virgo Park Dolomite, 485 225, 226 rates, 380 Vitis, 21 Washtucna Coulee 243 Upper Casper Orchard Strandline, 200 volcanic caprock, 488 Wassuk Range, 288 Upper Coastal Plain, 629 volcanic centers, 118, 172, 272 water Upper Gila Valley, 362 volcanic fields, 75, 358, 364, 368, geothermal, 267 Upper Lishi unit, 29 378, 451 marine, 334 Upper Mesa, 337 volcanic plain, 251 water table, 277 Upper Talbot Formation, 641 origin, 271 watersheds, 165 Upper Two Leggins, 412 volcanic platform, 81 glaciated, 174 Upsal Hogback, 85 volcanics, 75, 78, 82, 84, 89, 453, Watsonville Basin, 179 uranium dating, 55, 57, 58 490, 532 Watsonville terrace complex, 181 Urraca surface, 489 volcanism, 75, 77, 110, 122, 172, Watts Bar nuclear plant, 613 Ustolls, 506 255, 259, 269, 272, 334, 352, Waucoba area, 341 Utah, 59, 64, 68, 86 376, 378, 379, 427, 486 waves, 143, 152, 335 Utah Lake, 283 arc, 165 action, 301 Utah Valley, 302 pre-Quatcrnary, 75 erosion, 201, 307, 590 silicic, 76, 82, 89, 262, 270 weathering, 29, 55, 220, 328, 416, Vacherie dome, 576 volcanoes, 78, 95, 263, 265 444, 449, 460, 623 Valencia erosion cycle, 377 basaltic, 263 Weeks Island, 576 Valent series, 515 composite, 75 Weichsel drift, 31 Vallecito-fish Creek basin, 334 low shield, 273 wells, 257, 258, 261 86, 106 mud, 83 West Carroll Parish, Louisiana, 575 Valley and Ridge Province, 5/2 shield, 81, 82, 84, 85, 275, 491 West Fork Trinity, 526 valley train, Wisconsin, 552, 558, Volusia County, Florida, 601 West Pine Ridge terrace, 412 559,568,577 Vrica section, Italy, 10 West Yellowstone, Wyoming, 460 valleys Vulcan's Throne, 379 Western interior region, 84 dry, 4 83 Western Lowlands, 550, 559 fill, 483 Wabash Valley, 466 Western strandline, 199 hanging, 157 Waccamaw Formation, 602, 642 Wheat Mountain volcanic center, 395 paleostream, 477 Waccamaw River, 640 Wheatland-Whalen zone, 452 See also specific valleys Wachapreague Formation, 636 Wheeler County, Texas, 515 Vallonia gracilicosta, 431 Wadsworth ash bed, 127 Wheeler Ridge anticline, 171 Van Sciver lake beds, 635 Wadsworth tephra layer, 297 Whidbey Island, 67 vegetation, 19, 374, 618 Wagon Mound, 486, 488 , 329, 330 Atlantic Coast, 23 Walker fault zone, 283, 285, 288 piedmont, 330 central grasslands, 24 Walker Lake, Nevada, 127, 283, 288, Whiskey Run Terrace, 57 Interior Highlands, 531 300 White Canyon, 382 midwestem United Slates, 21 basin, 285, 288, 290 White Hills area, 341 Osage Plains, 504 , 285 White Marl Bed, 300, 307 western United States, 25 belt, 337 White Mountains, 283, 337, 341 Venice Plain, 198 Walker River, 283, 288, 300 volcanic field, 379, 382 ventifacts, 423 badlands, 290, 291 , 373, 429, 443, 449, 538 vents, 86 Walla Walla area, 224 North Fork, 380 fissure, 84 Walla Walla River Valley, 243 White River Canyon, 379 volcanic, 84, 93, 95, 100, 131 Wallowa Mountains, 255 White River Formation, 446, 450, 452 Ventura, California, 123, 124, 190, Wallula Gap, 237 White River Group, 451 200 Walnut Creek Formation, 465 White River Plateau, 427, 428, 432 Ventura Avenue anticline, 124, 187, Walston Silt, 636 White Sands National Monument, 367 188, 193, 200, 201 Wamego, Kansas, 519 Whiterocks drainage, 432 Ventura/Balcom Canyon, 309 Wanapum Dam, 243 Whitewater Draw site, 364 Ventura basin, 123, 136, 142, 185, Wando Formation, 641 Whittier fault, 188 189 Wapi lava field, 273 Wichita Mountains, 503, 507 Ventura River, 145, 187, 188 Ward Valley, 331 Wicomico Formation, 641, 642 Ventura terrace, 187 Warner Valley, 37 Wicomico terrace, 588 Verde River, 365 warping, 509, 634, 647 Wiggam terrace, 520 Verdigris River, 512, 520 intraplate, 634 Wiggins arch, 549, 584 Verdos Alluvium, 457, 458 Warlhe advance, 31 Wiggins uplift, 574 vermiculite, 534 Warthe drift, 32 Wilcox Playa, 25, 358, 363 Vermillion Cliffs, 382 , 55 Wild Horse Butte, 264

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 672 Index

Wildcat Group, units, 149 Wisconsin glaciation, 32, 467 Yarmouth interglacial age, 23, 26, 29, Wilder strandline, 199 Wisconsin valley train, 552, 558, 32, 33 Willamette Formation, 156, 160, 162 559,577 Yazoo Basin, 550, 561 model, 162 soils, 568 Yazoo Clay Member, 575 Willamette Lake, 161 Wisconsinan, 592, 603 Yellowstone drainage, 432, 445 Willamette River, 156, 164 late, 160, 243 Yellowstone Draw, 483 Willamette Silt, 160 middle, 242 Yellowstone Group, 123, 125 Willamette Valley, 142, 161 cone, 81 Yellowstone National Park, 24, 54, flooding, 161 Wono ash bed, 131, 298 94, 97, 98, 105, 118, 123, 126, geomorphic surfaces, 156,162 Woodbine Formation, 526 268, 269, 464 stratigraphy, 156 Wray dune field, 468 volcanic field, 102 sub-basins, 157 Wucheng unit, 29 Yellowstone Plateau, 9, 77 Willamette Valley Lowlands, 143 Wukoki flow, 395 volcanic field, 84, 85, 89, 271 Willapa Bay, Washington, 153 Wupatki erosion cycle, 395 Yellowstone River, 412, 427, 434, Williams Lake, 244 Wiirm terrace, 31 443 Williana Formation, 554, 586 Wyatt Member, 160 incision rate, 410 Williana terrace, 554 Wyemaha, 288, 294, 297 Yellowstone volcanic region, 136 Willis Formation, 586 Wyemaha-Sehoo boundary, 297 Yermo fan deposit, 57 Williston Basin, 441 Wyemaha Valley, 296 Yorba Linda, 188 Willow Creek bar, 243 Wyodak coal zone, 448 YU Bench terrace, 413, 415 Willow Creek bench, 417 Wyoming, 450 Yuba area, 175 Willow Creek gravels, 417 Wyoming High Plains, 450 Yucca Mountain, 56, 57, 333, 346 Wilson Creek, 136 Wyota Gravel, 445 Yuma, 336, 355 ash bed, 15,130 Yuma Mesa, 337 Wind River Mountains, 313, 409 , 85, 271 wind, 331, 423, 462, 470 x-ray fluorescence analysis, 103 zircon, 99, 109, 120, 217 patterns, 447 Zuni-Bandera volcanic field, 87, 378, seasonal reversals, 331 Yakima Bluffs locality, 229, 230, 231 379 Windley Key, 603 Yakima Folds, 215 Zuni erosion cycle, 377 Windsor Formation, 636 Yakima River, 230 , 394 , 382 Yampa River, 430, 432 Zuni Pueblo, 379 Winkle surface, 164 ancestral, 427 Zuni River, 379, 394, 397 Winnemucca Lake basin, 285, 288 terrace deposits, 432 , 379, 396 Winnemucca valley, 300 Yampa River Basin, 407, 427,428, maar, 87 Winona site, 223 429

Typeset by WESType Publishing Services, Inc., Boulder, Colorado Printed in U.S.A. by Malloy Lithographing, Inc., Ann Arbor, Michigan

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 CORRELATION CHART OF WIDESPREAD PLIOCENE AND QUATERNARY (A), AND MIDDLE QUATERNARY TO HOLOCENE (B), TEPHRA LAYERS WITHIN THE PACIFIC MARGIN OF THE WESTERN CONTERMINOUS UNITED STATES compiled by A.M.Sarna-Wojcicki, U.S. Geological Survey, Menlo Park, California

8 ' 3 4 5 6 7 ' 10 II 12 13 14 15 15 17 19 20 21 22 23 24 25 26 21 28 MAGNETIC COMPOSITE BtOSTRAT/CR.4.PHTC DATUM LEVELS BEND, ORE. SUMMER LAKE, TULELAKE, CA. N.W. N. LAHONTAN WALKER LAKB, MONO BASIN, DSDP SITE36 DSDP SITE 34 DSDP SITE 173 HUMBOLDT ARCATA, CA. N.W, N.E. CLEARLAKE, UVERMORE MERCED BASIN SANTA CRUZ HOLLISTER S. GABlLAN KETrfLEMAN E. SAN JOAQUIN BtSHOP, C A., LAKE TECOPA, CA. VENTURA LOS A.l'l"GEL..ES SA.LTONSEA DSDP SITE470 POLARITY 'I"EPHROCI-tRONOLOGY I ORE IS A (ComJ)OSile sectitm) LAHONTON BA::ilN,ORE ANA, NEV. CA. BASIN, {Composite section) SACRAMENTO SACRAME.\ITO CA. VALLEY CA SAN FRANCISCO, MTS. CA. AREA, CA. RANGE, CA. HILLS. W. VALLEY. CA. ANDVICINITY ANDAMARGOSA BASIN. CA. MALAGA COVE, ANZA-BORREGO Tli\IESCALE C- calcareoLJS nannofossil F- foraminifer LOS- lowest occcrrence sLJrface, VALLEY,CA. VALLEY,CA. BASIN, NEV. NEV. (Composite section) N.W.CA. (Composite iectk>n) CA. (Composite section) SAN JOAQUN (Composite section) VALLEY, NEV. (Composite section) CA. AREA, CA. D- R- radiolarian HOS- highest occurrence surface (Composite section) (Comp<»:ite section) (Composit�section) (Composite section) {Compo;ire section) VALLEY,CA. (Composite section) "Composite �ection) (Composite section) AGE,Mfl ,AGE, Ma

············ - o- · ·· = MAZAMA ASH BED 0 · _ ·· =, ··· · A· ····----···· g ��= _' --- '-- ').�iji Jij� �� � '------� ---I,-I-- - +- � OLEMAAIHR � ��� = L� =�����* �J I -I I -1 1 - F.n OLMA ASH BED - � *��� n ------� . 1-+ • .� . • = • 0.'2- • • 0.2

(C) r- T � :• Bl LOS EmiUDnd othen, Bl (C) hu.tlei (0.27-0.275Ma., Berggren and t')8S) EXPLANATION - SH ELVIN PARK ANDF.SITETUFF(S) ..� . (Summ er lak e bedlJ(B)) 5 . • B2 (D) HOS Rhlz�cJe�ia c�n-iroslris(0.25..{1.45 M•. Ba rron and albers. 1980; Koi�umi and Taruunura , 1985 - IO LET,\ASH RED some R<)C>OU,NDASHBED IIIII >.J...f-- Vertical columns represent major localities 0.4 ! :i '""-.. (!l ND PUMICE) 04 BJ (R) HosAlwprunum tmg�linurn (0.4 Nb,Kline, 1973) ;!I .,�, >.::,. ,0::-,-J v-1 -R I>CK- .-, .A-,D-,//I;(fi=1llj E at which tcph.ra layers arc found. Columns labeled "comp- · -··· ·-· ---AS-.:IBED ll4(C) :=:=:=:=:=�=4------lr-1------t-li ' ROCKLAND ASH SED 94 Pter�mililJnill l=wwsa/ osite"A. represent composi!CS of several stratigraphic t-i'>� 1 (C) HOS Eml/iania,,m,./a I= (0.44-0.474 Ma, Berggren nnd others, 1985; OaWlcrand others, 1983) 5ectioru: from a limited area. Wilhin the region of stn f-+-----r-+-----t-t-�·-GLASS MOuNTAINGASH BED GU.SSMOUNTAlNCASHaro 1.0 magnetic rcvcrsaJ lime sci!.le al the right side of the .:: I'? 87 {OJ HOS ActinocJr:lll.lOCUllllus (0.\J-1.35 Ma, Barrtmand others , 1980; Koizumi amiTanimura. I\J85) ch:ut. Vertical arrows wil.hin colurruu; represent age or _ BAn..EYASH liED HAlLEYASH BED suatigraphic uncertainties o f tephra layers or olher B7 (D) F+- f-- stratigraphic di.twn l�vels. Vert.ically ruled patterns - within co!UltUI!I rcprcsmt hiatuses, and/or periods of slow 4 _ 1. (.4 or sporadic deposition. B8 (C) HOS Calcltfl.scwmactntyrri f"' i11iscusCalc tropic us} {1.42-1.45Ma, llerggrenand others. 1985; _ ------� f-- RIO DELL ASHBED T Ganner artd other!l,1983) A composite tephrochronology of the widespreai late - �+L/���A�5:H�B�E�O------'' • T.Mlas.riosioanlitplll ( 1 Ma, ond 1980; d.iaehron s in layers and B9 (D) HOS Barron othel"!l, u middle latitudes ace . Neogene teptua found along the Pacific margin. _ c 7 t-B')(D) AS! t BED C·83-M IQ Koizumi on;! Tarti mun�, 1985) a composite marine biostrllligraphyho s wing the principal BED (SSP·2,BU R 9") . oo ene 1.8 - BliJ{R) C ? B\0 (R) EucyrtidhtmmtUU)'n and othcn, 19BO; Kol>:urni and T�ni1nura.1985) · ��------__ ------f __CA_ NY J are givenN where more than une age has been rep;nred in �� ���:�����l� �-r-��·�13��� r- HUCKLEBERRYRIDGE ASH BED - - _ '_f _ r______� nl ------812 (C) HOS Di•·�oasterbrmrmm" (1.85-t.OO Ms,Berggren and urt.ers, 1985:G311nQr and o�>� ,1983; the recent(1980 topresent) literature. l -c--- -- � � � I IUCKLBflERRYRIDGE ASH BED ! -i= I· I UCKLI3Bf:RRY RIDOE ASII � I +- =t:- ll!ZD(I'carkuc Typl'B) Hackman �nd Shack leton, 1983) - • 1\ �0 t" !lEARGULCI·J ASH RED Bl3 (F) LOS Globoromlia mmcaru/inoides (!.90 Ma.Berggren and mbers, 1985) 2.2 - I \ t- Bt4(D) :§ � 2.2 B14 (D) HQ!) Hu/rmlosirr.t conve.xa(2.1-2.3 Ma., B=on ami other�. 19SU; KoizLJmi and Tanimma, 19S�) - .___.;: OF 1'AYLOR C.4.NYON2 - i ; ,f Cor.. · Ridgt'. % llt5(C) !'-ruFF 2.4 • D.• M• (K A') ("' ! Bl 5 (C) llOS Dilcoaster penwrodlatus(2 .35-2.40 Ma.Berggren and others. 1985; Rockmafi and � B15(C) 1983) ------? � Shadt�ton, - lo 1 ,, ISH! TUFFBED tSHt TUFFBII D (I)) Oenticu/a kamtschatica(2.47-2.56 Ma. 1931: IT 1316(D) MEMB£R LI. Blfl HO!) Ba rron, l�MaUll irtflma(l.OMa. others, - B ( " TlJFFOFTAYLOR CANYON (F) Berggrmand t98S) B2l (F) 1121 (F) HOS Sphaeroidinel/opsis sp. (3.0Ma, Berggren and others. 1985) - !J. t:.822 (F) LOS G/d>orata/iattJSaem:i� (3.1 Ma, Berggrl'nand olhert,I IllS} • - BEO •• B23 (C) LOS Emi/Umi(JannullJ ("' P£etidoemiliania /acwwsa)(3.4 Ma, Bcrggmtand Othelll,19115) ______� 1\0MLAKI TUrFBED ______? 3.4 - J>IJI"AHTU FHED - - ______NUMt.AKJ"rut•l'BED 3.4 f f--r�:---�N�O�M�L�A�K�I�T�U��FF ���,_t-,_,_,_,_=t -r=,_,_,_��������+--i·i:I------1 J -----+-J K:- " 1124(F) LOS G/o/x#"aJaliamar8aritae(3.4 Ma,Berggren andolhcnl, I98S) nCJ PUTAH TUFFBE D/ �� �- I - Pll'l"AIITUFF RE D - R26(C) lf ;ii. R25 (C) HOS Sphmalith"� "eobin(3.45-3.47 Ma.Be rggrenand others, 1985: Backmanrmd Shackleton, 1983) - �t- ercu/ tnmt a psuedoum!liiica - B26 (C) HOS R i of r {3.5·3.56Ma, Berggren and others. 198�; ) G•nncrand others, 19£3) 3.8 - 3.8 �p: - B27 (C) l B27 (C) HOS Amawolithus (: Cer(!lo/itku.r)Tricomicu/atus 0.1-4.0 Ma.Berggren and olllers. 1985; B28 (F} 1 Gartnerand other�. J9g3) - + lJUictllC.4.TUFF BED - 1- B28 (F) HOS G/obiguir>a I'ICJUmlu:s(3.9 Ma,Berggren and othciS; 1985) !IUICJJ[CA TUFF LAWLOR BED ? LAWLORllJWBED f--t------t-1 £ UFF • �s• 1- 1!\ 4.2 - 029 (F) 1...... t- LAWLOR TUfT'DED . 5 �.------TJL------+--i � ---LAWLOR TUFF DllD 4.2 B29 (F) LOS Globorotalia crm:sa[armis,s.s., s.l. (4.1-4.3 Ma, Berggrenand others. 19S5) f-+------� ' ------f"9C0 c: ;·; &: Ill�ue � -- t...... - i j

� . lA 2 3 4 5 6 6A 7 7A 24 OXYGEN ISOTOPE RECORD OXYGEN PALEOM<\.GNETIC COMPOSITE TEPHl<.os·J·KA'l'lGRAPHY ERUPTIVE SOURCE B BEND, ORE. CRATER LAKE, Oli£. SUMMER LAKE, ORE. TULELAKE, CA. N. W. LAHONTON N.LAHONTON WALKER LAKE, NEV. BRIDGEPORT, CA., AREA MONO BASIN. CA. LONG VALLEY. CA., AREA LAKE TECOPA, CA. (''Smoolhed slack'') ISOTOPE TIMESCALE AREA I (After Bacon, 1983) (Af!er Davis, 1985) (Composite secLion) BASIN, NEV. BASIN, NEV. (Composite section) (After Lajoie, 1968) (Composite secLion) (After Imbrie and olhers, 1984) ST/\GES (Afrer Davis, 1978, 1985) (Afler Davis, 1985) (Composite section) cr (Standard deviation units) (Compusile section) (Composite section)

Turupah Flat) (Tephra MONO CRATERS I; CM- FALLONFM. Ca 1200 B.P. (Tephra I; MONO CRATERS Ca. 1200D.P. A6; MONO CRATERS,LAKE, CA. u' e t ....._ 0 MEDICINELAKE MEDICINE CA. ka O MEDICINELo\KE TURUPAH FLAT CM-A6) 0 2.2 -22 ka (Climacti eruption)airfaU ru AGE, a c pl'oo)J �r-T____ ..; ;:;;MAZA::;;:::;;·� ATA HiatLJs (Toyeh Soil) AGE, ka I AGE, MAZAMA c pumice at Uao CRATER LAKE, ORE. MAZAMA (Ciimc MA TSOYOW WL8-2A-33 c:: � "" -===== CRA ____._:g �������� PU I ) 'r-T'=:����;;;;;;;;;;�F==t�==c::c::'C:'C:C":'9��¥ �;;;-- o -:====:====:====:=== - MAZAMA TEPifRALAYERS 2 0 �TSOYOWATA� (Basal Rock) T'ERLAKE. ORE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;4=1;;;;;;;:;;;:;;;;;;;;;;;;;;;�;;;,�;;;;;;;;;;;;;;;;;;�;;;;;;� -d-�:;:::;9�� }-YOUNGEST MONO CRATERS MONO E VENT BASAL M CEOF LLAO ROCK I · r 0 1 ======:=1-----f":::..C��==�� OYOWATA / SPRINGS(Redcloud Pumice) CRATER 1'\. SL 8 � __ t r--l'R���o-;;::;; · TSOYOWATA E O l SPRINGS - ==j 1; WONO >U� �..- 1"\.. t===:::;;:;:�- :== TREGO HOT LAKE. ORE. SL-F/1�':' �/���\�':'���1==t::��:;��� � � � �;/�� �< ,TRWONOG ' ";- I I- ·wc-15 }/MONO CRATERS TEPHRA LAYERS IN WILSON CREEK 3 CREEK-15 � •REo CLOUD Ha ffi ;i MONO EVENT WONO' C'RATERLAKE, ORE."/ 'SL-12 CARSON SINK "' � E BEDSANDBLACK POlNTASH Set W} � >. " .g,...� PUJviiCE � MONO( MONO VENf/ u 0 WILSON (CARSON SINK) MONO CRATERS,CA. " E ' � j\MARBLEBLLIFF (Mount SL Helens '0 EVENT 1--J � 4 ' 0 MARBLE BLUFF AH-4) ST. t- (Churchill MOUNT HELENS,WA. � _ 1 OLEMA epo ti � -<'1 I {Clear Lake Hiatus Soil); t t? LEMA UNKNOWN � V/ Slow d s i on -�- «Jc.i-g EXPLANATION 100 "§ � or hialus WYEMAHAFM. HI _ __---;: CQ t-_li'-IJ- 5 � � BLAKE E VENT 100 � /P-UMICEAT ? ? i ? H ; ? RD. (f � - CROSSING ·-·-- 0. ---- EVEN �T 38 . BENTON - B. Vertical columru represmt �me major localities .2 CLOUDCAP T- 2 2 _,.::':o":o" :._' OLDEST MONO CRATERS lEPHRA LAYERS -<00 - I RD. BLAKE 1 - ---- ... + == ______2382) at which tephra layers arc foWid. Columru; labeled ? � H-l�==*.Ft-I==1=== f##l,l=l--- � -== =.:;:;;;:: PUMICE AT CLOUDCAP CRATERLAKE, ORE. "comJ."(Isitt" represent composites of several stratigraphic WL5-42 ) ./"T64 CRATERLAKE, ORE. sections from a limit.cd area witJ.!jn the region of study. � 1"-sL-4' 6 ' 8 / ] � - SL- (fl193) �-+�---' ��--���J ------��SL:·G�G�������''SL=·� V�====11��;��] � : · ��1=/wAoswo======§!� �� � " V UNKNOWN Numbers key ��Tr ED along the top of the chan the localities to roso'='= ] RTH �� '="'i =:=: c =:=:=:=: � � ...... P l-4 6 PAOHA EVENT SL-GG = � ! === � p:l; UNKNOWN locations on the map (Figure 1 of Sllm.aWojcicki and � ����2�023� =: ===== WL4·57 1 �=== 3� E§ ��/� -----+" � F= (Pl-4) SISTERS, ",. ..a .9 "' � i:5 o EVENT?) --SHEVLIN oth�:Ts, this volwuc) 11ud to tile ll:xt. The vertical sc&!e SL-JJ(B)/f � � "-..1' P-3 ] THREE ORE.? SHE ARK f-f-kcSL-KK;;;-c= ------0- r- J --1 PlI-2 Soil, 160+18ka (U-trcnd) PARK ANDESITEPl- TUFF3)(SimLJltaneoLJs (SL-JJ[BJ); at the left of the chart indicates ages of tephra layers 'i-� SJ...ll(W) � � � - SL-KK SL-JJ(\V)(WL5-42: ...... _SL-NN - --- (JAMAI�A ( eruption fromtwo sources?) and associll!ed datum le•· els in thous:mds of before 200 - "---�-.c:=------:;1 (WL 4-57) UNKNOWN the present(ka). �& � --�'<>1-----1 ��-�� � SL-NN; PI-2) THREESISTERS, ORE.? 1 200 7 0� 200 Sotid red hor.U.ontal line> cunm:ct lhc sllllle tephra I I r ��: z layers bctwctn localities. Queried red horizcntal lines I I indiear.e that correlationsbe tween localitiesare tenta- I tive; long--dashed horizontal lines represent indirect I I I temporal canelations of tephra layers and other datum I evels or intervals to the composite, decp-Qo;ean o�;;yge:n­ I I I isotope record of Imbrie and others (1984Xsee discussion I I 8 inl Sama-Wojeieki ami others, this volume). Vertical 1-Hiatm arrows within represent age or srratigraphic I uncer1aintles of tephra layers or otller stratigraphic I I I' datum levels. colVenicallywnns ruled patterns within 300 300 9 I, 300 represent hiatuses and/or periods of slow or sporadic I I dcpo.sition. columns I I 10 I : :ll I I ' � I I 1; ..+ --� .5 SISTERS, ORE.? ] 1/ -- 11 ____ -- - 4 S E PUMICE TUFF' ---- 0 i'l BEND ROCKlAND· II I ------j BEND PUMICE LTHREE 400 g -� - 400 ROCKLAND A S N PEAK, CA. I - u 1 1 • �• l I ·�• I 12 I I I I l I I � t- Slow depositionor hiatus I 0• "' r- 13 Slow depositionor hiarus ;I; 500 Hiatus and slow deposition 500 � 500 I 0: I I "' J I I 14 I I .

15 i / I I i . _ r' 600 _ 600 ' _ _ t=:t'�l// _ _... __ TUFF DIBEKULE\VE · --600 DrBEKULEWECREEK (Pearlette Type 0) & 10. DIBEKULEWE -- ? � -t-::.;o __ _ ·� ___ LAVA KB_ UNKNOWN 1-F--t"'-- A AC EKB �:�!::t�������;-LAVAC B ------B (Dc:tcrt YELLOWSTONE o:� "' REEK l ------�-� -fi/____ _C_RE_. _E DESERT SPRJNGS � I"'-�L��\�'�� ��RE ��< ����������� � ] I� 16 LAVA NAT. PARK.WYO. ------J �� "-.;; RYE PATCH DAM PATCH Springs) SISTERS, �� RYE DA.i\1 1liREE ORE.? RYE PATCH DAM "' 17 I ' ------SHERWIN GRADE . 700 700 18 700

___ i IB IS H DP 'B IS H DP IB IS HO -r---r------Q0T�oJD�S�D�lS�re�i 4�J���·==�==t/==�j������� P 19 BRlim��ATAYAMA P :=:! 3±��/====�����===t===t=/�====�======������===t===:�;;�.------CHRON. BOUNDARY BRUNHES/ BRUHNESI BRl!!fNES/ ------20 B !SHOP LONG VALLEY, CA. MATAYAMA r;; MATAYAW\ MATAYAMA --0:�BJ 12g:' I soo -< 800 800 The GeologicalSociety of America , Inc. " 3300Penrose Place. P. 0. BoK.9140 . e 1990 The GeologicalSociety of Am er:ic�.Inc. ' BCl.ll

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 0 SUMMARY TABLE OF QUATERN ARY DATING METHODS � 0 Preparedby s. M. Colman and K. L. Pierce � ::t: Approved by the Director, (J) f--­ U.S. Survey LJ.J LJ.J [Modified from Colman and Pierce (1977, reference 66). See Rosholt and others (thie volUIIE) for Geological July 28, 1986 KEY REFERENCES 0::: ::2: short discusaicn an:1 classificatioo of I!2thcx:is arrl explanaticn of references. Asteriak9 indicate rethcds covered in that chapter]. I.J... I.J... 0 0 1 a_LJ.J LJ.J APPLICABILITY AGE RANGE (YRS) >­ a_ t- >­ AND BASIS OF METHOD f--- METHOD OPTIMUM REMARKS RESOL UTION2 102 103 104 105 106

I. Bowen, D.G., 1978, : New York, Pergamon Press, 221 p. Applicability depends on quality and detail of 1. Historical records Requires preservation of pertinent records. 2. Cullingford, R.A., Davidson, D.A., and Lewin, J., eds., 1980, Timescales in Geomorphology: (2,4,12) records. Limited to several hundred years in New York, John Viley and Sons, 360 p. . 3. Mahaney, V.C., ed., 1984, Quaternary Dating Methods: New York, Elsevier, 428 p. _Jc:t 4. Pierce, K.L., 1986, Dating methods, in Vallace, R.E., ed., Active tectonics, National LJ.J 2. Requires either direct counting of annual Restricted to areas where trees of the required Research Council, Geophysics Study Committee, Vashington, D.C., National Academy Press, 0::: rings in live trees or overlapping chron­ age and (or} environmental sensitivity grow p. 195-214. LJ.J ologies correlated between individual or have been preserved. 0 5. Rutter, N.V., ed., 1985, Dating methods of Pleistocene deposits and their problems: trees by changes in annual ring growth. Geoscience Canada Reprint Series 2, 87 p. (J) (1,3,13) 6. Ivanovich, M., and Harmon, R.S., eds., 1982, Uranium Series Disequilibrium--Application to 3. Varve chronology Requires either direct counting of varves Subject to errors in matching separate se­ environmental problems: Oxford, Clarendon Press, 571 p. back from the present sediment surface or quences, to misidentification of annual 7. Self, S., and Sparks, R.J.S., eds., 1981, Tephra studies: North Atlantic Treaty Organization correlation of overlapping successions of layers, and to undetected hiatuses. Advanced Studies Institute Series c, Dordrecht, Netherlands, Reidel Publishing Co., 481 p. continuously varved sediments. (1,14,15} 8. Aitken, M.J., 1985, Thermoluminescence Dating: New York, Academic Press, 351 p. 9. Hare, P.E., Haering, T.C., and King, K.Jr., eds., 1980, Biogeochemistry of amino acids: New p. 4. Radiocarbon* Based on incorporation and decay of radio­ Subject to errors due to contamination by York, John Viley and Sons, 558 gen 14c (produced by cosmic radiation} younger carbon, particularly in older 10. Taylor, R.E., ed., 1976, Advances in obsidian glass studies: Park Ridge, N.J., Noyes Press, I I I t� to N. Depends on availability and pre­ deposits, and by older carbon, particularly 360 p. I I I I II. servation of carbon. (1-5,16-19} in hard water. Carbonate material, such as Colman, S.M., and Dethier, D.P., eds., 1986, Rates of chemical weathering of rocks and mollusk shells, marl, and soil carbonate is minerals: New York, Academic Press, 603 p. readily contaminated. 12. Ladurie, E.L., 1971, of feast, times of famine--A history of climate since the year 5. 'Uranium series* A variety of oto s of the U-decay series Used to date coral, mollusks, bone, cave car­ 1000: Garden City, N.Y., Doubleday and Co., 425 p. �� �� are used: 2 Th/ 4u (<350 mo common bonate, and carbonate coats on stones. Has 13. Shrader, J.F., Jr., 1980, Dendrogeomorphology--Review and new techniques of tree-ring �! �j 4 8 been used in dating travertine and soil dating: Progress in Physical Geography, v. 4, p. 161-18S. ,r===J method, descr i bed •t left), u/ u 2 carbonate. Errors due to open chemical 14. Antevs, Ernst, 1925, Retreat of the last ice sheet in eastern Canada: Canadian Geological (<600 ka), 2" P•t "5u 610-150 ka), U-He (0-2 Ha), and 226Rat23 Th (<10 ka). (1- systems and incorporation of secondary ura­ Survey Memoir 146, 142 p. 6,20,21} nium are �ammon problems, especially in 15. Sturm, H., and Matter A., 1978, Turbidites and varves in Lake Brientz (Switzerland)-­ mollusks, bones, and soils. Deposition of clastic detritus by density currents, in Matter, v. A., and Tucker, M.E., 6. Potassium-argon* Based on decay of 4°K to 40Ar. Requires K­ Directly applicable to igneous rocks and glau­ eds., Modern and ancient lake sediments: International Association of Sedimentologists and argon-argon bearing phases such as feldspar, mica, conite. Subject to errors due to excess Special Publication No. 2, p. 145-166. I (_) glass, and others. (1-4,22,23} argon, loss a on, and contamination. The 16. Grootes, P.M., 1983, Radioisotope� in the Holocene, in Vright, H.E., Jr., ed., Late LJ.J �' 8f �� IC9 a_ associated 4 Ar- Ar method produces dates Quaternary Environments of the 1:1nited ·states, v. 2, The Holocene: Minneapolis, University c:t 0 alo us to K-Ar dates; the step-heating of Minnesota Press, p. 86-105. ; l t8 �� I f--- Ar- Ar method can be used on small sam­ 17. Grootes, P.M., 1978, Carbon-14 time scale extended--Comparison of : Science, v. 0 200, p. 11-15. I_J (J) ples! on those with excess argon, or on those . lo.c:t which have lost rgo due to reheati 18. Goh, K.H., Molloy, B.J.P., and Rafter, T.A .• , 1977, Radiocarbon dating of Quaternary loess 23 d'; £3 4 230 "tJ2 deposits, Banks Peninsula, Canterbury, New Zealand: Quaternary Research, v. 7, p. 177-196. 0::: 7. Uranium trend* Based on the uranium-series decay system and Measurements of U, u, Th, and Th 1 the open-system flux of uranium through made on samples (usually five or more} from a 19. Stuiver, M., 1982, A high-precision calibration of the AD radiocarbon timescale: LJ.J �' sediment and soil. (4,6,24} given age of deposit. The samples must have Radiocarbon, v. 24, p. 1-26. 1:::;: different isotopic compositions so that an 20. Kaufman, A., Broecker, V.S., Ku, T.L., and Thurber, D.L., 1971, Status of U-series methods isochron �an be constructed. The method must of mollusc dating: Geochimica and Cosmochemica Acta, v. 35, p. 1155-1183. I� 21. Ku, T.L., 1976, The uraniuin-serie� methods of age determination: Annual Review Earth and I be calibrated with independent age estimates. I 8. Lead-210 Based on the ac ulation and decay in Smbject to uncertainty in flux, accumulation, Planetary Science Letters, v. 4, p. 347-379. 1�� I I I I I and bioturbation rates, and limited to 22. Dalrymple, G.B., and Lanphere, M.A., 1969, Potasium-Argon dating--Principles, techniques, sediments of Pb produced �n the ffi I atmosphere by the decay of 2 2Rn. (2,3,25} lacustrine and marine sediment less than and applications to geochronology: San Francisco, V.H. Freeman and Co., 258 p. I about 100 years old. 23. McDougall, Ian, 1985, K-Ar and 40Ar/39Ar dating of the hominid-bearing Pliocene-Pleistocene 9. Cosmogenic iso­ Based on the accumulation and decay of Dating based on either atmospheric flux rates sequence at Koobi Fora, Lake Turkana, northern Kenya: Geological Society of America I ? ? ? ? 3 pes ot than cosmogenic isoto s (half-li in 10 yr or on in-place production on surfaces. !g �ib �� {i Bulletin, v. 96, p. 159-175. I C and Ph in parenthese•l Si (0.3), Ca (13) Requires knowledge of the generation rates, 24. Rosholt, J.R., 1985, Uranium-trend systematics for dating Quaternary sediments: U.S. ! 29 I 36cl (30.8), Z6Al (73), lOBe (1500), I flux rates, and retention efficiency of the Geological Survey Open-File Report 85-298, 34 p. 53 material being dated. These radioisotopes I (16000), 1�9 Hn (3700); artificially 25. Robbins, J.A., 1978, Geochemical and geophysical application of radioactive �ead, in Nriagu, produced Cs (0.03} can be used in a occur in very low abundances and are measured J.O., ed., The biogeochemisty of lead in the environment: terdam, Elsevier, p. 285-393. �8 I similar way. (2-5,26-28} by accelerator mass spectrometry. 26. Pavich, M.J., Brown, L., Klein, J., and Middleton, R., 1984, Be accumulation in a soil chronosequence: Earth and Planetary Science Letters, v. 68, p. 198-204. 10. Fission 1track* Based on the formation of fission tracks Directly applicable to igneous rocks, including 27. Philips, F.M., Leavy, B.D., Jannik, N.O., Elmore, D., and Kubik, P.V., 1986; The (strained zones} during uranium fission; volcanic ash. Subject to errors due to mis­ accumulation of cosmogenic chlorine-36 in rocks--A method for surface exposure dating: ,r==l requires uranium-bearing material such as identification and annealing of tracks. Science, v. 231, p. 41-43. zircon, sphene, apatite, or glass. 28. Klein, J., Giegengack, R., Middleton, R., Sharma, P., Underwood J.R., Jr , and Veeks, R.A., A 6 6 (1,3-5,7,29) 1986, Revealing histories of exposure using in situ produced L Al and 1 Be in Lybian (_) 11. Thermoluminescence* Based on displacement of electrons in parent Mainly applicable to quartz and feldspar in Desert glass: Radiocarbon, v. 28, p. 547-555. I I I I I I I atoms by alpha, beta, and gamma radiation. sediments and carbonate in soils. Filtered 29. Naeser, C.Y., 1976, Fission-track dating: U.S. Geological Survey Open-File Report 76-190, z Electrons accumulate in energy traps fol­ light may also be used to release lumine­ 58 p. LJ.J (.!) lowing heating or exposure to light. scence. For ceramics in 0.4-10 ka range, TL 30. Vintle, A.G., and Huntley, D.J., 1982, Thermoluminescence dating of sediments: Quaternary 0 Amount of light released during laboratory preciSion is better than indicated. Science Reviews, v. 1, p. 31-53. 31. G.V., Huntley, D.J., and Stipp, J.J., 1984, Thermoluminescence studies on a l4 0 heating is compared with that released Berger, c­ c:t after known radiation dose. (3-5,8,30-31} dated marine core: Canadian Journal of Earth Sciences, v. 21, p. 1393-1399. 0::: 12. Electron spin Based on displacement of electrons in parent Applicable to a wide range of geologic and 32. Ikeya, M., and OhiDura, K., 1983, Comparison of ESR ages of corals from marine terraces with 2 0 resonance atoms by alpha, beta, and gamma radiation. archaeologic materials. Methodology largely 14c and 3 Th/234u ages: Earth and Planetary Science Letters, v. 65, p. 34-38. Electrons accumulate in energy traps fol­ experimental. 33. Yehmiller, J.F., 1982, A review of amino-acid racemization studies in Quaternary molluscs: lowing heating or exposure to light. ESR Quaternary Science Reviews, v. 1, p. 83-120. measured as microwave energy absorbed when 34. Friedman, Irving, and Long, V., 1976, Hydration rates of obsidian: Science, v. 191, electrons change spin direction as they p. 347-352. are released from traps. (4,5,32} 35. Pierce, K.L., Obradovich, J.D., and Friedman, I., 1976, Obsidian hydration dating and correlation of Bull Lake and Pinedale Glaciations near Vest Yellowstone, Montana: Geological Society of America Bulletin, v. 87, p. 703-710. I 13. Amino acid* Based on release of amino acids from protein Shells tend to be more reliable than bone, wl 36. Steen-Mcintyre, V., 1975, Hydration and superhydration of tephra glass--A potential tool for I ( diagenesis and subsequent inversion of their stereo­ wood, or organic-rich sediment. Strongly .!)I estimating the age of Holocene and Pleistocene ash beds in Quaternary studies, in Suggate, c:t isomers. Requires shell, skeletal, or dependent on other variables, especially I I R.P., and Cresswell, M.H., eds., Quaternary Studies: Royal Society of New Zealand Bulletin 0I other organic material. (1-5,9,33} temperature and leaching history. Commonly used as a or correlation 13, p. 271-278. I WI 37. Locke, V.V. III, Andrews, J.T., an'd Veber, P.J., 1979, A manual for lichenometry: Institute t­ technique, but yields numerical ages when I calibrated by other techniques. of British Geographers, British Geomorphological Research Group, Technical Bulletin 26, <:l:l 47 p. 0::: 14. Obsidian hydr:ation Based on thickness of the hydrated layer May also be used on volcanic glass in tephra. I 38. Innes, J.L., 1984, The optimum sample size in lichenometric studies: Arctic and Alpine along obsidian crack or surface formed Calibration depends on experimental deter­ ' all I Research, v. 15, p. 233-244. I _Jc:t during an abrasion or cooling event. Age mination of hydration rate or independent 39. Darn, R.I., 1983, Cation-ratio dating--A new rock varnish age-determination technique: (_) proportional to the square of the thick­ dating. Subject to errors due to temperature I Quaternary Research, v. 20, p. 49-73. ;:tl() ness of the hydrated layer. (2-4,10,34-35) history and variation in chemical compo- _ I (.!) 40. I s! tion. Darn, R.I. and Oberlander, T.M., 1982, Rock varnish: Progress in Physical Geography, v. 6, p. 317-367. 3 15. Tephra superh;y­ Based on the progressive filling of bubble Subject to the same limits as obsidian hydra­ I I 41. Birkeland, P.V., 1984, Soils and geomorphology: New York, Oxford University Press, 372 p. 0 dration cavities with water in glass shards. Re­ tion, plus others, including variations due 42. I I Q) quires volcanic ash. (2,36) to the thickness of bubble walls. Machette, M.N., 1985, Calcic soils of the southwestern United States, in Veide, D.L., ed., Soils and Quaternary geology of the southwestern United States: Geological Society of I I America Special Paper 203, p. 1-21. 0 16. Lichenometry Based on systematic growth of ; Mainly useful in alpine and arctic regions. I I z c:t �' thallus diameter is proportional to Subject to errors due to climatic differ­ 43. McFadden, L.D., and Hendricks, D.M., 1985, Changes in the content and composition of I I age. Requires exposed, stable rock suit­ ences, lichen kill, misidentification of pedogenic iron oxyhydroxides in a chronosequence of soils in Southern California: able for lichen growth. (2-3,37-38} species, and limits on useful age ranges, Quaternary Research, v. 23, no. 2, p. 189-204. _J I I I c:t which vary with climate and rock type. 44. Morrison, R.B., 1978, Quaternary soil stratigraphy--Concepts, methods, and problems, in I (_ I ) 17. Rock varnish Based on the systematic changes in chemistry Mostly used in desert environments, although Mahaney, V.C., ed., Quaternary Soils: Norwich, England, GeoAbstracts, p. 77-108. I ::2: chemistry ,'----J ' of rock varnish, primarily cation rock varnjsh has a wide distribution. The 45. Burke, R.M., and Birkeland, P.V., 1979, Reevaluation of multiparameter relative dating I LJ.J composition. Color and thickness used as relation of most physical features, such as techniques and their application to the glacial sequence along the eastern escarpment of I ::t: a relative-age indicator. (39-40} color and thickness, to time is poorly known, I (.) the Sierra Nevada, California: Quaternary Research, v. 11, p. 21-51. I but chemical methods show a progressive 46. Barden, J,V., 1982, A quantitative index of soil development from field descriptions-­ I leaching of cations with time. Examples from a chronosequence in central California: Geoderma, v. 28, p. 1-28. I I 18. Soil chemistr:y Based on changes in soil chemistry, Rates of change of soil chemistry are dependent 47. Locke, V.V., 1979, Etching of hornblende grains in arctic soils--An indicator of relative c.-- , .s- 1 - , -, -.,'--;] especially the accumulation of secondary on other variables in addition to time age and paleoclimate: Quaternary Research, v. 11, p. 197-212. I LJ.J I products in soils, with time. Chemical (parent m'terial, climate, organisms, 48. Colman, S.M., and Pierce, K.L., 1981, Veathering rinds on andesitic and basaltic stones as a (.!) topographj). Most effective when these other I c:t I measurements of calcium carbonate, iron Quaternary age indicator, western United States: U.S. Geological Survey Professional Paper oxyhydroxides, pH, phosphate, nitrogen, variables are held constant or can be 1210, 56 p. I r I LJ.J and organic carbon are most common evaluated. Comparisons with independent age 49. Vallace, R.E., 1977, Profiles and ages of young fault scarps, north central Nevada: I (2-5,41-43) estimates suggests that age precision within I > Geological Society of America Bulletin, v. 88, p. 1267-1281. I I 20 percent may be possible 50. Bucknam, R.C. and Anderson, R.E., 1979, Estimation of fault-scarp ages from scarp-height-- slope-angle relationship: Geology, v. 7, p. 11-14. � properties are dependent on other variables _J 19. Soil-profile Encompasses a number of soil properties that All 51. Nash, D.B., 1980, Forms of bluffs degraded for different lengths of time in Emmet County, I __II, ,-. LJ.J systematically develop with time through in additi•n to time (parent material, cli­ · development: =-=-s- , - "--:l Michigan: Earth Surface Processes and Landforms, v. 5, p. 331-345. I 0::: weathering, translocation of materials, mate, orgtnisms, topography). Most effective 52. Colman, S.M., 1983� Progressive changes in the morphology of fluvial terraces and scarps I and additions to and losses from soil. when these other variables are held constant along the Rappahannock River, Virginia: Earth Surface Processes and Landforms, v. B, (2-5,41-46) or can be evaluated. Comparisons with p. 201-212. I independett age estimates suggests that age 53. Andrews, D.J. and Hanks, T.C., 1985, Scarp degraded by linear diffusion--inverse solution precision within 30 percent may be possible. for age: Journal of Geophysical Research, v. 90, no. B12, p. 10193-10208. I Includes rna� features, such as thickness of 20. Rock and mine�ral Based on rock and mineral-weathering 54. Yells, S.G., Dohrenwend, J.C., McFadden, L.D., Turrin, B.D., and Mahrer, K.D., 1985, Late weatherint rinds, solution of limestone, I weathering features that systematically develop with Cenozoic landscape evolution on lava flow surfaces of the Cima volcanic field, Mojave I time as a result of near-surface etching of , and grussification of Desert, California: Geologi.cal Society of America Bulletin, v. 96, p. 1518-1529. weathering processes. (2-5,11,41,45,47-48} granite. Has the same basic limitations as 55. Bull, V.B., 1985, Correlation of flights of global marine terraces, in Hack, J.T. and I (_) soil deve�opment. Precision varies with the Morisawa, H., eds., Tectonic Geomorphology: Boston, Allen and Unwin, p. 129-152. I weatherint feature measured. 56. I Izett, G.A., 1971, Volcanic ash beds--Recorders of upper Cenozoic silicic pyroclastic Based on reconstruction of original Rates and fcrms strongly affected by climate a_ 21. Progressive land­ volcanism in the western United States: Journal of Geophysical Research, v. 86, no. Bll, and litho�ogy in addition to time. Includes I 0::: form modification and modeling of processes such as gullying p. i0200-10222. I 0 and colluviation that result in change of empririca� and theoretical models of degrada­ 57. Sarna-Vojcicki, A.M., Champion, D.E., and Davis, J.O., 1983, Holocene volcanism in the ::2: landforms. (3,4,49-54} tion of fmlt, terrace, and wave-cut scarps. conterminous United States and the role of silicic volcanic ash layers in correlation of I 0 Assumes relctively constant rate of sedi­ LJ.J 22. Rate of depos:ition Commonly based on sediment thickness between latest Pleistocene and Holocene deposits, in Vright, H.E., Jr., ed., Late Quaternary I (.!) horizons dated by other methods. (2-3} mentation over time intervals considered. Environments of the United States, v. 2, The Holocene: Minneapolis, University of I Rates par:icularly variable in alluvial Minnesota Press, p. 52-85. deposits. 58. Maniken, E.A., and Dalrymple, G.B.1 1979, Revised geomagnetic polarity time scale for the I Has similar limitations to those of landform 23. Geomorphic po1sition Based on relative level or position in an interval 0-5 m.y. B.P.: Journal of Geophysical Research, v. 84, n. B2, p. 615-626. I J age sequence of landforms. (2} modificat1on, and is commonly used to de­ 59. Johnson, N.H., Opdyke, N.D., and Lindsey, E.H., 1975, Magnetic polarity stratigraphy of I Fl age I El ,tj termine sequence. Only useful for cer­ Pliocene-Pleistocene terrestrial deposits and vertebrate faunas, San Pedro Valley, tain types of landforms, such as terraces, Arizona: Geological Society of America Bulletin, v. 86, p. 5-12. moraines, alluvial fans, and pediments. I 60. Sprowl, D.R., Banerjee, S.K., 1985, High-Resolution paleomagnetic record of geomagnetic De�ends on assumption of constant deformation I 24. Rate of defor;mation ? ? Based on amount of tectonic deformation com­ field fluctuations from the varved sediments of Elk Lake, Minnesota: Geology, v. 13, p. either as an interpolation between dated I IIIII D pared to an average deformation rate. 531-533. (4,55) events, or as an extrapolation beyond dated I 61. Johnson, R.G., 1982, Brunhes-Matuyalll.a bou:ndary dated at 790,000 yr B.P. by marine­ events. Best results obtained at plate astronomical correlations: Quaternary Research v. 17, p. 135-147. I boundaries, where nearly constant rates may be valid for intervals of millions of years. 62. Reppening, C.A., 1984, Quaternary rodent biochronology and its correlation with climatic and I magnetic stratigraphies, in Mahaney, V.C., ed., Correlation of Quaternary chronologies: Norwich, England, Geo Books, p. 105-118. - Deposition of Quaternary units commonly occurs 25. Stratigraphy ,------, Based on geologic sequence and physical 63. Hays, J.D., Imbrie, J., and Shackleton, N.J., 1976, Variations in the earth's orbit-­ I in response to cyclic climatic changes on 1 properties of units; depends on the es­ Pacemaker of the ice ages: Science, v. 194, p.1121-1132. I I timescales of 1 to 100 ka. tablishment of time equivalence of units. 64. Imbrie, John, Bays, J.D., Martinson, D.G., Mcintyre, A., Mix, A.C., Morley, J.J., Pisias, Ill I ! I I I I (2,4) N.G., Prell, V.L., and Shackleton, N.J., 1984, The o ital theory of Pleistocene Very useful 'in correlation because ash erup­ f� 26. Tephrochronology Requires volcanic ash (tephra} and unique climates--Support from a revised chronology of the 0 record, in Berger, A.L., Imbrie, I I tions represent virtually instantaneous chemical or petrographic identification, J., Hayses, J.D., Kukla, G.J., and Salt2man, B., eds., Milankovitch and Climate, Part 1: I I I II I RESOLUTION I geologic events, and because ash deposits are I along with independent dating of the ash Dordrecht, D. Reidel Publishing Co., p. 269-305. D I commonly videspread. I or related eruption. (4-5,7,56-57) 65. Glass, B.P., 1982, Possible correlations between tectite events and climatic changes?, in I V�ry useful in dating or correlating 27. * I Depends on correlation of magnetic proper­ Silver, L.T., and Schultz, P.B., eds., Geological Implications of impacts of large DEPENDS ON terrestrial and marine sequences, including I ties (magnetic vector or polarity, or a asteroids and comets on the earth: Geological Society of America Special Paper 190, I those in deep-sea and lake cores. Subject to I sequence of vectors or polarity} with a p. 251-256. I I errors due to chemical or viscous magnetic AND known chronology of magnetic variation. 66. Colman, S.M., and Pierce, K.L., 1977, Summary table of Quaternary dating techniques: U.S. I RECOGNITION I overprinting and physical disturbance. Requires material with stable remanent Geological Survey Miscellaneous Field Studies Hap MF-904. I z I I magnetism. (1,3-5,58-61} 0 I R�esolution depends on the rate of evolution or 0r I 28. Fossils and INDEPENDENT I Requires fossils (including pollen} and (or} LJ.J f--­ artifacts I artifacts. (1-4,62} change of organisms or cultures and on I c:t I I calibration by other techniques. Subject to f--­ _J I c:t I I errors due to misidentification, interpre­ LJ.J I DATING OF 0::: tation, and inclusion of older materials. _JLJ.J I Oxygen-isotopic record is especially useful in 0::: 0::: 29. Stable isotopes I I Depends on correlation of a sequence of 0 changes in stable isotopes (most commonly deep-sea and icecap cores, and perhaps in 1 0:::1 (.) I FEATURE 2 0 I I oxygen and carbon isotopes} with an age­ cave de posits. APPLICABILITY TO DEPOSITS 0PTIMUM RESOLUTION I I controlled master chronology. (1,61,63-64} OF THE PROPER AGE RANGE of error) 01 I (magnitude I Based on correlation of deposits or events S1ubject to uncertainties in relating deposits I 30. Orbital vari­ ations I related to large-scale climatic changes or events to orbitally induced climatic I change and to errors due to leads and lags of I I with the known timing of variations in the I I earth's orbit. Orbital changes have been the clim atic system in relation to timing of I orbital variations. •VERY OFTEN APPLICABLE I I shown to be a primary forcing function for •OFTEN APPLICABLE: climatic change. (61,63-64} [ I I I ,--SOMETIMES APPLICIABLE 31. Tektites and Requires identifica�ion and dating of glassy Ilncludes the Australo-Asian tektite field, I SELDOM OR NEVER APPLICABLE I I I which was deposited about 0.7 Ma. � microtektites I It material (tektites) formed and scattered I 0 I I I I ftJI I I I over large areas by impact of extraterres­ trial masses. (65) I L_ -- J ...1..

lfl\9'}0The GeologicaJ.Societyof America,Inc. TheGoologieat Society of America,Inc. 3300 PenrosePlace, P. 0. Box 9140 Boulder,Colorado 80301. A publicationof the Decade of North Aino:ricanGeology Project,which is funded, in pan, bythe G.S.A. Foundation

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Terrace profiles and relative ages of alluvial surfaces and end moraines in the northwestern Uinta Basin

Mapped and compiled by: Alan R. Nelson, U.S. Geological Survey and U.S. Bureau of Reclamation, Federal Center, Denver, Colorado 80225 Gerald D. Osborn, Department of Geology, University of Calgary, Calgary, Alberta, Canada T2N 1 N4

A MOUNTAINS

YAMPA PLATEAU

Relative ages of alluvial surfaces and

end moraines In the northwestern Uinta Basin

kllormal regional Relative-age Distal edge of alostratigraphic Geochronologic ""'"" end moraines """ unit •. ' ...... Pinedale ...... Bull Lake ...... ,.--/ Pllt'*toc..,. pre-Bull Lake ... _,. ...___ pre-Bull Lake -- pre-Bull Lake )Pllocono Mountain front - .,.,.,. . Town Rivers ....,.,.. -basi'! boundary 0 • 10 ----Terrace scarp -- • in alluvial surface km � Relative age sample Site D U"'Certain & Pediments I

PLATE A. Longitudinal pro fi les of terrace surfaces along Rock Creek and the Duchesne River showing the projec­ N tion of correlative surfaces along the Lake fork River, EXPLANATION 8 Terrace Profiles moraine crest outlines, soil carbonate (Table 2) in TERRACE RELATIVE A('£ DESIGNATION exposures, and the location of paleomagnetic and amino­ 8200 2500 TERflACE SffiFACE� CHANGE IN acid samples {Fig . 15) Martin and others (1985) discuss ROCK CREEK PROJECTION OF LAKE FORK RIVER TERRACES MCIRAJ� \ --...... PROFILE Lake Fork· 0000 '"--\ ...... surfaces along the Yellowstone rivers in more BALD KNOLL DIRECTION detail. Circled numbers refer to relative·age groups (RAGs) MOOAINE CREST OUTLINE -- '""' \I i""" CD 7800 SW SOIL CARBONATE STAGE ll discussed In text. Dashes between RAGs Indicate age \ LOCATION OFAMINO AGIO ANO Pl\.LEOMAGNETIC uncertainty. SJW6>LE SITE A 7600 PLATE B. Major Quaternary erosion surfaces, fluvial 2300 ' \ \\ terraces, and the distal edge of major moraine systems in 7<00 \ ,, thE> northwestern Uinta Basin and their estimated relative ages (Table 2: RAG 1 "" late Tertiary or early Quaternary, 7200 ®� \\ RAG 6 = late Wisconsin; modified from Kinney, 1955, " • Osborn, 1973, Carrara, 1980, and Bryant, 1987). Where � 7000 the relative age of a surface is uncertain or where surfaces ""' of several ages are mapped as one unit, a range of relative z ""-LOW Q 6800 � ages is indicated. The map east of the Lapoint surface Is � � taken > largely from Kinney (1955) and Carrara {1980) and � 6600 ages are more uncertain in this area than in the western • part of the map. Because many older surfaces south of 6400 SADIES the Duchesne River and in the eastern part of the map may fLAT range in age from RAG 2 to RAG 4 (some near the • � Buckskin Hills may be In RAG 1) no relative ages are ------®- shown for some surfaces. Moraines of RAG 6 correlate 6000 regionally with Pinedale moraines {= late Wisconsin), 1800 • SN(RIVER those of RAG 5 with Bull Lake moraines, and older 5800 � moraines with pre-Bull Lake moraines. Along Dry Gulch • - Creek, RAG 2 moraines of at least two separate glacial 5600 11 -- advances and remnants of at least outwash terraces of - 3 ' OUCHES -�----- different relative height {about 15 to 30 m apart), deposited """ N;-- during the youngest of these advances, can be distinguish·

1600 - ed. However, because we have no other relative-age data 5200 ANTELOPE for these surfaces and because correlations with surfaces � CREEK I of about the same age at several different levels elsewhere LAKE FORK j MYTON 5000 RIVER In the basin are uncertain, we group all these surfaces into 1500 5 " " 50 55 60 65 70 75 80 85 �- one relative-age group. RAG 2. Cl 1990The Geological Societyof AmeriCII,Inc. DISTANCE (KM I TheGeological Society Ameri of e��, lnc. 3300Penrose Place, P. 0. Box 9140 - Boulder, Colorado 803(1 m""bli' •bolby' A publie��tionof theDecade of North AmericanGeology Projed.,which is funded,in pan., theG.S.A. Foundation :s::. ___::;;.-;:: Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 by Cenozoic Stratigraphy, Southern Great Plains and Adjacent Areas S. Christopher Caran

" u " 0 EAST-CENTRAL NEW MEX�CO AND WESTERN TEXAS AND NORTHWESTERN TEXAS NORTHWESTERN AND NORTH-CENTRAL TEXAS u D. 0 w (OC) and Raton-Clayton Pecos River valley, and Western Caprock , and adjacent areas (including small sections of Basin and Range D. volcanic fields, Ocate(RC) Southern and Central High Plains and Eastern Caprock Escarpment, northwestern Texas and eastern New Mexico w NewMexico� physiographic provimce), eastern New Mexico and western Texas Canadian River valley, northwestern Texas and northeastern New Mexico western and northern Rolling Plains eastern and southern Rolling Plains ll)rtheastem j • lacuAinedepo$IIS and lorm any conU'IiaJ, Unnam:ed deposits; useof upper Unrwned _..,_ Umarned d:JnaListeeteoran unnamed n an::l terraoo}, lacUstilllEt(playa) I • c E 1..1nranec1nlNial (chanr'fl!and pa strine andl cusll"illedeposits (Harbour, ..,..., l.acusbineand • Boltlmlessand l.alr&s , 1975; 1975; / fluvial and flood anddunaVsheel hanne Vshee paiUSfrinedeposits c named liJnaLI!teel eol3l deposits ol '!he Sandhills' i namecllmial lchamel p (Huvial c l, llood·plaln, and liMa! un eoflan u Biller Lakes areas. HoodJiajn) deposits nl Stafford, 1981; Hollida:y, 1985c). (1981) Worm81 eoUan and minorlacustrine o i lind basins) • deposits Monaha"rs lu a Ha)llles, sqiliiEiries names Randd elay and h'l:h loam and u 0 crawsol Ytl, ll1d,... exisitirg streams lltiK:Istraligraphie names !Of In p.35

M 4 3 .u Epochal names and boundaries: mer RichmondaN publ"lcation) ::r: // /////////// oc The mber aNstrat]Oraphic of (1983); (19fl7); Monison . aa n !X>Sitions 'iii 5 promine anO'Of Siliereles wilt"in the Approx.irnate P Fullerton (lhis ==licand 4. M u 2../ chron namesand Oakympte � BefWenaR:I o!hels Undsayand the Ogalala vary.localy Thename ve e boundaries: Mankinen 1 ); (1985): (1987); � �::::::::r�///////////h oc: ntFm:!Gnx.p calcretes Morrison (!his publication) caliche" has been to Polarity and ( 9 o rs 4.4 Ma 'Caprock informally apelied ///////////// oc ._. .... calcretesan:l silcretes various stratigraphic oreo co r d 4.7 Ma table In ----,p:;;p;b�y �c hart ..J...J Land-mammalage names and bc!.K"!daries: Tedton:l andHunter ll.nlet�others aN Ma (Scht.Aiz, 1977b, p. 5, 16, 5; positions oola r 1984); {1987) ////////////./< oc wittin the \ . 1\. 4.8 Hawley, 1984;Wilson, { concept. ------'-- - (OoaflalaGroup Ogalala ardis vald � t.4eclalof ages vclcarlc !lows except mirirmm n maDrru.rnof aoes Ra.lrJn .Qaytonltllocene !lows{Baklwin andJ.\.oetle!ger , 1959; - -­ Pallon,1988) 1923] calcreles and Silcretes are variable Uncoolorrnabfy owr!ie overlies nconlormablyoverlie sratlgra.phtcterm or Ages of all 1972; O'Neill aNt.!elvlert, this pubicalion) 5.26Ma --Unconlonnably - U - Group sta1us Ogaflala not 1985) ol {Guslavson 1985). MOcene-Fiiccere DcclalllGroup various Permian lormations rio s IPermlan lonnations """"'.. and overlies reco(plizedi !his O}alalaFm. Slormllf, cited byBachman andUncoo loonablyDcclalll Group ot (Winkler, ,_,. unct�rrelated uncertain and Holliday, .!l.l Uranhn·seriesaoes (1980) Triassic va u Bri

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Tectonic Diagram Louisiana Geological Survey T

QUATERNARY GEOLOGY OF THE

LOWER MISSISSIPPI VALLEY

compiled by Roger T. Saucier and John I. Snead

SABINE UPLIFT 1989 ARKANSAS loess prepared by delta complexes prepared by

. �-- Bobby ). Miller Fonda E. Lindfors cartogr.1phy by T . . . John I. Snead Susan S. Birnbaum Edwin B. Millet ..

.. Scale 1:5,000.000

...... ·. SCALE 1:1,100,000 T T

• • • ·oo

Description of Map Units

All designalions are informal and include lithologic, morphologic, and aiiOS"tratigraphic units.

Open water - Darker shade indicates depths excel:'ding 8 meters. B t., !I Alluvium - Undifferentiated on sm

Mississippi River meander belts - Areas of ch;mnel deposition related to lateral migration of past and pre�ent river; final course positions are indicated but abandoned channels (cutoffs) arc not delineated. References youngest Anderson, K. H. et a!., 1979, Geologic map of Missouri: Missouri Geological Survey, 1:500,00J. T Barnes, V. E. et al.. Texarkana 1966, Tyler 1965, Palestine 1966, Beaumon\ 1966, and llouston 1982 quadrangles, Geologic atlas of Texas: Texas Bureau oi Economic Geology, oldest 1:250,(:0:). I + + Bicker, A. R., 1969, Geologic map of Mississippi: Mississippi Ab.andoned courses - Last course within each meander belt. � Geological Survey, l:SOO,OOJ. Fleetwood. A. R., 1969, Geological investigation of the Ouachita Arkansas River mtoander belts- Areas of channel deposition related to lateral migration of past and present Arkansas River courses. River area, Lower Mississippi Valley: U.S. Army Corps of I I A f.nginccrs Technical Report 5-69-2. youngest M 0 u NTAINS frazier, D. E., 1967, Recent deltaic deposits of the Mississippi Rrver, their development and chronology: Gulf Coast Association of Geological Societies Tr;:�nsactions, v. 17. Haley, B. R., compiler, 1976, Geologic map of Arkansas: U.S. Geological Survey, scale 1:500,000.

Kolb, C. R., and Van lopik, ]. R., 1958, Geology of the Mississippi River deltaic plain, southeastern louisiana; oldest U.S. Army Corps of Engineers Technical Report 3-483. Kolb, C. R., Smith, F. L., and Silva, R. C., 1975, Pleistocene Red River meander belts - Areas of channel deposition related to lateral sediments of the New Orleans-lake Pontchartrain area: migration of past and present Red River courses. U.S. Army Corps of Engineers Technical Report S-75-6. youngest Kolb, C. R., Steinriede, W. B. Jr., Krinitzsky, R. L., Saucier, R. T., Mabrey, P. R., Smith, F. L., and Fleetwood, A. R., 19&8, � Geological investigation of the Yazoo basin, Lower z Mississippi Valley: U.S. Army Corps of Engineers Technical Report 3-4&1. 0tJ � Lindfors, F. F.., Unpublished data, Holocene delta comple�es.

0 oldest Linebeck, J. A., 1979. Quaternary deposits of Illinois: Illinois :r: State Geological Survey, 1:500,0CO. Note: Correspondence of meander belt numbers does not 1mply similar ages. For example, Mississippi River meander belt 2 is not + McDowell, R. C, Grabowski, G. )., and Moore, S. L., 1981, necessarily the same age as Red River meander belt 2, etc. Geologic map of Kentucky, U.S. Geological Surveywith 10th Kentucky Geological Survey, 4 sheets, 1:250.0CO. Backswamp- Areas of overbank deposition not d1rectly affected by meandering - channels. Miller, R. A., HMdeman, W. D., and Fullerton. D. S., 1966, Geologic map of Tennessee: Tennessee Dept. of Mississippi plain - Surface areas of overlapping delta complexes; not Conserv;uion, Division of Geology, 4 sheets, 1:250,0CO. delineated where subsequent deposition by later complexes exceeds Miller, B. j., Unpublished data, Lower Mississippi Valley loess. 1 meter in thickness. Atchafaienland, S., and Boyd, R., eds., 1985, Transgressive depositional lafourche-Active appro�immely 3,500-400 years B.P. environments of the Mississippi River delta plain: A guide to the barrier islands, , and in Louisiana: St. Bernard - Active approximately 4,600-700 years B.P. Louisiana Geological Survey Guidebook Series 3. feche - Active approximately 6,000-2,500 years !H. Russ, D. f>., 197S, Quaternary geomorphology of the tower Red River valley, louisiana [Ph.D. dissertation]: State Maringouin - Acti� appro�i'!'ately 7,300-6,000 years B.P.; no subaerial College, Pennsylvania State University. � = �== � expreSSIOn remam1n1;. Saucier, R. T., 19&4, Geological investigation of the St. Francis ��;; �; ;; Delta limits - Maximum probable extent of abandoned delta complexes. basin, Lower Mississippi Valley: U.S. Army Corps of Engineers Technical Report 3-659. Deltaic barrier landforms - Deltaic sediments being reworked by - marine processes; includes barrier islands, beaches, and Sauder, R. T., 1967, Geological investigation of the Boeuf-Tcnsas beach ridges. basin, lower Mississippi Valley: U.S. Army Corps oi hstcrn lrmil§ of the Upland complel< (Pu) are indefinite Engineers Technical Report 3-757. Abandoned di5tributarics - Dashed where inferred; dotted where hut �reus�ally well wrthln the eastem loe» limit concealed. Saucier, R. T., 1969, Geological investigation of the Mississippi T River area, Artonish to Donaldsonville, Louisiana: Hcp Chenier plain - Areas of episodic deposition formed by longshore transport oi U.S. Army Corps of Engineers Technical Report S-69-4. j Mississippi River deltaic sediments. + Saucier, R. T. . 1974, Quaternary geology of the Lower Cheniers - Relict beach ridges (transgressive phases) within the chenier plain. Mississippi Valley: Arkansas Archeological Survey Research Series, v. 6.

Coa.stal plain barricr landforms - Stable barrier islands and peninsulas; older Sauder, R. T., 19n, The northern Gulf Coast during the - portions may be Pleistocene. Farmdalian substage: A search for evidence: U.S. Army Corps of Engineers Miscellaneous Paper Y-77-1. ----;;:'"':;:..:CC.c:;:;;:· Valley train of late Wisconsin glacialion - Terraced outwash deposits of braided c.J· j streams; two levels are recogniLed. Saucier, R. T., '1978, Sand dunes and related eolian features of the loess - Eolian silt veneer over earlier Pleistocene and older deposits; mapped Lower Mississippi River alluvial valley: Geoscience lhkknesses range from 1 to 27 meters. and Man, v. 19. Sand dune fields - Eolian sand deposits on valley trains. s�ucicr, R. T., 1987, Geomorphological interpretation of Late Me T Quaternary terraces in western Tennessee and their regional tectonic implications: U.S. Geological Survey Pd Deweyville complex - Fluvial and fluviolacustrine terraces on coastal plain streams Professional Paper 1336-A. J and certain Mississippi River tributaries; multiple levels are recognized but not delineated. Saucier, R. T., and Smith, L. M., 1986, Geomorphic mapping and P!c Cache River Terrace - Fluvial terrace formed only in the Western lowlands along an landscape classification of the Ouachiia and Saline I abandoned Black-St. Francis River meander belt. river valleys, Arkansas: Archeological Assessments Report 51. Valley train of early Wisconsin glaciation - Terraced outwash deposiTs of braided - streams; five levels are recogni.ted. Smith, F. L, and Russ, D. P., 1974, Geological investigation of Fi nley Terrace - fluvial terrace recognized only on Missir.sippi River tributaries in the lower Red River-Atchafalaya Basin area: U.S. Army western Tennessee. Corps of [nginecrs Technical Report S-74-5. Brownfield Terrace - Fluvial terrace recognized only in Cache valley and along Und)l(ert(lliated all��ll.lffi (Hal] prob;ibly irxludes Smith, F. L., and Saucier, It T., 19n, Geological investigation lower Ohio River in Illinois. terrae� (I'Tu) on lhP Homochrtto and upper Pearl rivers, of the Western lowlands areas, Lower Mississippi Valley: -Whith are not dehnealed. U.S. Army Corps of Engineers Technical Report S-71-5. Note: Finley and Brownfit!ld tt!rraces are probable tiine-stratigraphic equivalents of the early Wisconsin valley tram (Pvr). Smith, L M., Britsch, L. D., and Dunbar, ). B., 1985, Prairie complex - A diverse depositional sequence of the Mississippi River, its ' Geomorphological investigation of the Atchafalaya Basin, L_P:..cP_Jj tributaries, and coastal plain streams; includes terraces, fluvial (meander Area West, Alchafalaya delta and Terrebonne marsh: U.S. Army Corps of Engineers unnumbered report. belt and b1aided stream), colluvial, estuarine, deltaic, and marine units + deposited over a considerable part of the late Pleistocene (Wisconsin Snead, ). 1., and McCulloh, R. P., compilers, 1984, Geologic map to Sangamon); equivalt!nt to Beaumont formal ion in Texas; three levels are of Louisiana: Louisiana Geological Survey, 1:SOO,OCIO. recognized but not mapped. Relict Pleistocene channels - Abandoned courses and channels of ancestral streams are delineated on portions of the f>rairiecomplex. Acknowledgements Relict Pleistocene ridges - Possible barrier islands, beaches, or alluvial remnants T I are delineated on portions of the Prairie complex. Compiled by R. r. Saucier' and ]. I. Snead'. Hatchie Tt!rrace - Fluvial terrace recognizt!d only on Mississippi River tributaries in Contributions by F. E. Lindfors' and B. j. Miller'. western T enness.ee. Designed and drawn by 1. I. Snead'. Metropolis Terrace- Fluvial terrace recognized only along the lower Ohio River f>eelcoats byS. S. Birnbaum'. in Illinois. Typography by E. B. Millet>. Edited by W. Autin' and ). Monday>. Note: Hatchie and Metropolis terraces are po�sible time-stratigraphic 1. L funding and support by G. Groat, Director, equ1valeng of the Prairie Terrace complex (Pp). T C. Louisiana Geological Survey. Ptu Pleistocene Terrace - Undifferentiated. probably Prairie complex (Pp). I 1 -U.S. Army Corps of Engineers Waterways E.xperiment Station, Meander belt sequences in Vicksburg, Mississippi complex - Fluvial deposits of the Mississippi River, its tributaries, determined by crOiS•cutlrng Pi - Intermediate ;-;f::�::��: �;;2� 2 - louisiana Geological Survey, Baton Rouge, Louisiana � and coastal plain streams; includes terraces locally designated as alwavs correlale up or down slream: 3 - Quilternary Resource Investigations, Baton Rouge. Louisiana Montgomery, Irene, Humboldt, Henderson, and Lissie. con� frictions al CohaK ;,nd Grand: Ecorc. 4-Louisiana State University, Department of Agrormmy, Upland complex - Fluvial deposits from both gi.Jcial and non-glacial sources. 1!1> "" "" Baton Rouge, louisiana Includes higher fluvial terraces locally designated as Bentley and >- T C.::;=---- ��=�·�·=11 Williana as well as the l'liocene-Pil!istoceneCitrone\le, lafayette, Willis, and Mounds formations into which terraces were cut. C.::� T Tertiary and older formations - Undifferentiated. J(: � I

31

T

BAY

SOUND ""

' "" \, + '

+ + + + + +

I" H 0 A L

l 0 F X I c 0 F M E

GeologiQ! Societyof America, Cl 1990Th� Geologic:al Soci�tyof Am�rica, Inc. The Inc. 3300Penros� Place,P. 0. Box9140 Boold�r. Col.ondo 80301 A p.Jblication'Of th�Decade North ol AmericanGeology Projed , whieh is funded,part, in the by G.S.A. Foundation Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 A A' West East

Crowley's Ridge Pu/loess

0 > 0 LOUISIANA GEOLOGICAL SURVEY z MINGO • � " • � w Sikeston Ridge w • , Pv•

LOWER MISSISSIPPI VALLEY CROSS SECTIONS T T

KILOMETERS

A-F Geology by G-H Geology by Roger T. Saucier Whitney J. Autin MILES

Illustrations by B B' Edwin B. Millet David J. McCraw West East Crowley's Ridge

BLACK Pu /loess RIVER Pu/loess

MISSISSIPPI RIVER

0 > 0 z T Hmm1 T w� • T T

T

KILOMETERS

MILES

Crowley's Ridge c West East C' Pu/loess

ARKANSAS RIVER Pu/loess

Pp Grand Prairie T Hma-Hb Pd Pp 0 > " 0 z •" w � � w • " , • T 20

T T 0 T KILOMETERS

0 MILES Key to Map Units

Hal Holocene alluvium undifferentiated

Hmm Holocene Mississippi River meander bell D West East D

Hm� Holocene Arkansas River meander belt 120 SALINE Pu/loess RIVER Hmc Holocene Red River meander belt OUACHITA '" MISSISSIPPI Rlt(ER Hb Holocene backswamp RIVER p; 80 Loess T Pleistocene sand dune fields 80 T Hma-Hb • T • • p,, Pleistocene valley train of late Wisconsin T 40 tu T T • Pd Pleistocene Deweyville complex 20 Pleistocene valley train of early Wisconsin T

Pp Pleistocene Prairie complex T 0

KILOMETERS p; Pleistocene Intermediate complex

Pu Pleistocene Upland complex

T Tertiary undifferentiated MILES

(Subscripts denote re�tiva agesot subunits. Increasing values indicate •ru:reasing age.)

E' INDEX East c::::J HOLOCENE DEPOSITS E West mrrm VALLE\" TRAIN PLEISTOCENE DEPOSITS Pu/loess UPLAND PLEISTOCENE DEPOSITS OUA CHFTA MISSISSIPPI � RIVER RIVER

Macon Ridge SCA).E y ag 10 MOJ.n Hmm1 d""i"""'TO�OKl.OM€T€RS 0 T Hb T > Hma-Hb 0 z � w �

KILOMETERS T

MILES

F West East F'

CALCASJEU RIVER Key to A through F Loess veneer (not to scale) T p, " Loess T Marksv!lle Prairie T Po - 0 Hmr-Hb > Cloy and silt 0 Hb z T • 20 w" � � - • w Sand OF • , GUL F • � Sand and gravel

·------, 'ti22'J ' ' ' Tertiary , ______,

T

KILOMETERS

MILES

Chandeleur G' G Wesl Islands East

0 > 0 z � PLEISTOCENE UNDIFFERENTIATED w PLEISTOCENE UNDIFFERENTIATED w •

KILOMETERS

Mu.ES

H North South H' 20 LAKE PONTCHA RTRAIN Key to G and H 0

Natural levee

Abandoned channel !ill -80

co Distributary channel complex - delta front, distributary mouth bar, \ -80 crevasse, , abandoned course, backswamp

� 100 "' lnterdistrlbutary deposits - boy fill, lacustrine, marsh, swamp " w � � � 120 :::;: Prodelta P LEIST 0 C ENE UNDIFFEREN T lA TE D - Beach \ 160 Nearshore Gulf - marine facies undifferentiated 180

Substratum - sand and grovel undifferentiated IL'ZJ KILOMETERS Deltaic plain undifferentiated m MILES

"'bh•h

0 Boulder, Colorado 80301 ' A publication oflhc Decade ofNorth American Geology �- --� Project, which i� funded, in pan, bythe G.S.A. Foundation Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 I QUATERNARY GEOLOGY, NORTHWESTERN GULF COAST

Compiled by Charles D. Winker

Horizontal scale of all figures: 1:2,000,000

A. Quaternary geologic map of the northwesternGu lf coastal pl ain and shelf.

Coastal-plain morphostratigraphy by the author. Holocene Mississippi delta lobes fromFrazier (1967). Loessisopachs from Miller (1983). Offshore and isopachs of shelC-margin deltas from Suter and Berryhill (1985). Upper

- Pliocene-Pleistocene isopachs from Woodbury and others (1973). Former shelf-edge positions: mid-Pliocene from Woodbury and others (1973); base of Pleistocene from PoagandValentine (1976). Mississippi Canyons from Woodbury and others (1978).

ONSHORE OFFSHORE

terrace scarp filled fluvial channels and cuesta of pre-Lissie surface valleys

----�-,.. onlap contact isopachs of Late Pleistocene shelf-margin deltas

(interval = 20 m) Holocene deposits and post-Beaumont terraces

outlines of Holocene filled submarine canyons [] Mississippi Delta lobes � (numbered) LSJ modernshelf edge isopachs of surficial loess (200 m isobath) (in meters) T A A D -- - early Pleistocene shelf edge - (1.6 - 1.8 Ma) ' . . [IT] Holoceneeolian sand sheet ' .. (south Texas) . ' ..,.,.... . • l ...... • • mid-Pliocene shelf edge • •• • • • . _....., [] undifferentiated (-3.5M•l /' / ' and terraces isopach of upper Pliocene plus ---- \ D• Beaumont surface Pleistocene (interval = 0.6 km) \ \ distributary/meanderbelt C.O.S.T. well \ meander plain / - - -- \ lease area boundary - � -·1-- -3.0------...... Ingleside beach plain

- - - \ ------2.4 - _ --- - \ ------"intermediate" surface ------D Lissie surface 0' - - -- 9 ------pre-Lissie surface(s) - -- - - D ------(pre-Beaumont in Rio Grande [] region)

0 20 40 60 BO 100 km

0 20 40 60 80 100 mi

Red River terraces coastal terraces 0 pre-Lissie (profilesfrom Doering, 1956; (Doering, 1956) 0 nomenclature from Fisk) Lissie 16 500 6 Beaumont

D Holocene 100 0 modern river

12

• mO Oft Oft 0 2 Red/Mississippi

base "Williana" wlz - 1000 ft(300m) a "' 8 100 { a: � ,, " w 100- 500

a:� w __ "MISSISSIPPI 200 �----___s:_-j- DELTA" ' __J.JL__ __J�-24' � ' 98 7' \ �8 9 mO- � L a \ Sabine \ \ m/km ft/mi \ 300 1000

o L------� 0 .Q 0 � -o 0 100- N B. Generalized regional dip profiles, showing depositional sutiaces, sub�urface units, E E regional seismic reflectors (offshore), biostratigraphicbase of Pleistocene, and regi(onalgeometry of §c _Q , 0 Pleistocene deposits. Lines of section are shown in A. Where necessary, data were projected onto lines of «: c u section. Updip fluvial terraces by Doering (1956) where noted. Stratigraphy ofwells;.on outer continental B - c· shelf fromKhan and others (1975 a, b) and Poag and Valentine (1976). Shelf-margin a:ieltas based on Suter Jl m O � and Berryhill (1985). Offshore seismic reflectors after Pyle and Berryhill (1976), Winker (1979) , and Suter Neches and Berryhill (1985) . C. Average coastward gradients of modem rivers, floodplains, and fluvial terraces, Texas coastal plain. Gradients base of Pleistocene generally increase with age of surface, thought to indicate pro­ 3.6km(- 12000ft) gressive regional tilting. Beaumont grii.Ciients are virtually identi­ 40 0 20 60 BO 100 km cal to those of modem floodplains and rivers, probably due to 100- young age of Beaumont. Pre-Lissie surfaces probably represent 0 20 40 60 80 100 mi multiple ages.

vertical exaggeration "-'400:1

mO- -o m ONSHORE I

R low-water river profile -100 F modem"floodplain

100 - s modem shoreline "DELTA C"

Beaumont surface B -200

,, Ingleside shorene/beachli plain E E' mo- Gc -o m B zos Lissie surface ra L We 200- pL pre-Lissie surface(s) "DELTA -300 �. B" \ -100 OFFSHORE - Alprofile � 100- (Kreitler and others, 1977) baseAL -400 WB water bottom updip profiles from (Wesselman, 1971) Doering(1956) A1- regional seismic reflectors -200 R6 R F' "\'� Pyle & Berryhill, 1976 F R1, RS -Om Suter & Berryhill, 1985 mO- R2 Colorado -500 base of Pleistocene R3, R4, R6 Winker, 1979 -2.4km (8000fl) -300 c carbonate buildup (reef) '--+--AL profile (Petit & Winslow, 1957) AL Alta Lornasand -100

.!. offshore well 1100- -400

sheli margin delta "DELTA A" -200 ,, s G. ' G' D mO- -Om Guadalupe -500 \ ----tC--base of Pleistocene (DuBar, unpublished data) -300

- 100 -600

100- -400

-200

H' mO- San Amtonio

-300

100- -400

mO- Nueces neritic-littoral assemblage • ._, Ingleside beach-ridge plains

0 brackish assemblage c meanderbelt axis on shell beds reported in Beaumont surface -100 drillers' logs

100- D. Evidence forLate Pleistocene -200 high-stand paleogeography of Texas ' coastal plain and subsequent warping of

mO- str:andline .

shows distribution of Ingleside beach plains and Maw •o• locatlities of neritic-littoral and brackish-water \ AnfJulogerina B -300 assemblages inthe iliallow subsurface (less than base of 15 nn below surface). Beach ridges and neritic-littoral -� Pleistocene / - 100 faurnas in dicate maxin um extent of full-marine trans­ gression; brackish-waterassemblages indicate ex­ maxim um extent of full-marine trcmsgression \ tent of interdeltaic !:ays. Sources of data, by locality: 1, P:ampe (1971); 2-5, 23, Grnf(1966); 6-8, 19, 21-22, 24-310, 32, 35,39-40, Richacds (1939); 19-20, interdeltaic brackish-water embayment -200 Sell:ards etal. (1932); 31, 33-34, 36-38, W. A. Price \ (1978, written communication); 9-18, and complete I faumal lists for all localities, Winker (1979). Profile \ shows elevations relative to sea level of Ingleside awroximate Late Pleistocene hi gh-stand of sea level I ----- I beach plains, which give maximum high sea level, "" \ Trlmosln• A, and 1elevation of fossiliferous horizons at numbered -300 locallities (corresponding to those inmap), which give min.iimum high sea leveL These constraints on Late 40 Pleisotocene high sea level indicate regional warping 10 ...., -� ofth1.e strandline . f"**- - - -""' --- - � - 20 - 34 31 - 2 11 -400 'J 30 f ...- - - - 6 41 39 ------�3I 36-- 32 ------"2 "-_ ------.c:Zll.- _------t,.- ����� � �_c� ��= c=------�3 -1- o ,, - .. � �·� �5 .. '" base of ,,. 20 Pleistocene 0 20 40 60 80 100 mi " -500 ' 10 '" 0 20 40 60 80 100 km 40 " m

e 11)90Thu Geological Society of America, lne. TheGeological Societyof America, lne. 3300 l'enrose Place, P. 0. Bmt9140 Boulder, Colorado 803CX A publication of the Decade.of NorthAmerican Geology Projea, whieh is funded, inpart, by theG.S.A. F

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/988994/9780813754611_backmatter.pdf by guest on 24 September 2021