Reproductive Assay Kits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Estrone Sulfate
Available online at www.sciencedirect.com Journal of Steroid Biochemistry & Molecular Biology 109 (2008) 158–167 Estrone sulfate (E1S), a prognosis marker for tumor aggressiveness in prostate cancer (PCa)ଝ Frank Giton a,∗, Alexandre de la Taille b, Yves Allory b, Herve´ Galons c, Francis Vacherot b, Pascale Soyeux b, Claude Clement´ Abbou b, Sylvain Loric b, Olivier Cussenot b, Jean-Pierre Raynaud d, Jean Fiet b a AP-HP CIB INSERM IMRB U841eq07, Henri Mondor, Facult´edeM´edecine, 94010 Cr´eteil, France b INSERM IMRB U841 eq07, CHU Henri Mondor, Facult´edeM´edecine, 94010 Cr´eteil, France c Service de Chimie organique, Facult´e de Pharmacie Paris V, 75006 Paris, France d Universit´e Pierre et Marie Curie, 75252 Paris, France Received 26 December 2006; accepted 26 October 2007 Abstract Seeking insight into the possible role of estrogens in prostate cancer (PCa) evolution, we assayed serum E2, estrone (E1), and estrone sulfate (E1S) in 349 PCa and 100 benign prostatic hyperplasia (BPH) patients, and in 208 control subjects in the same age range (50–74 years). E1 (pmol/L ± S.D.) and E1S (nmol/L ± S.D.) in the PCa and BPH patients (respectively 126.1 ± 66.1 and 2.82 ± 1.78, and 127.8 ± 56.4 and 2.78 ± 2.12) were significantly higher than in the controls (113.8 ± 47.6 and 2.11 ± 0.96). E2 was not significantly different among the PCa, BPH, and control groups. These assays were also carried out in PCa patients after partition by prognosis (PSA, Gleason score (GS), histological stage, and surgical margins (SM)). -
Testosterone, DHP, Progesterone, Es
UC Davis Clinical Endocrinology Laboratory Volume Required: Testosterone: 2 mL serum AMH equine: 1 ml serum Estrone Sulfate, Progesterone: 1 mL serum each. Inhibin: 1 ml serum, sent overnight on ice. AMH Canine/Feline Spaychek: 200 µL serum, fasted, 30 days post- surgery. Send 0.5 ml for Progesterone/AMH and 2 ml for testosterone/AMH. Cryptorchid Panel: 2 mL serum Pregnancy Panel: 2 mL serum Granulosa Cell Tumor Panel: 3 mL serum Sample Handling and Shipment Requirements: PLEASE SEND SERUM ONLY, no whole or clotted blood. Blood contains active enzymes which may affect the results. The use of serum separator tubes is not recommended; they may degrade the analytes, particularly progesterone and AMH, and may invalidate results. Draw in a tube with no additive (red top). If you do use a serum separator tube, transfer the serum to a new tube as soon as possible. For AMH and inhibin testing: Please separate the serum and ship priority overnight on an ice pack. Store the sample in the freezer if shipping will be delayed, but you may ship it on an ice pack, dry ice is not required. Do not ship the sample via the US Postal Service, as the delivery will be delayed in the campus mailroom for up to a week, causing sample degradation. Do not ship the samples to arrive on a holiday or a weekend, as UPS and Fed Ex will not deliver it to us, and it will sit at the shipping facility, causing sample degradation. Please check our site for university holidays. For steroid hormone (testosterone, DHP, progesterone, estrone) testing: These hormones are more stable; however, they may be degraded by poor handling conditions, and shipment as whole or clotted blood. -
LCMS Saliva Steroid & Steroid Synthesis Inhibitor Profile
PROVIDER DATA SHEET LCMS Saliva Steroid & Steroid Synthesis Inhibitor Profile ZRT Laboratory now offers a comprehensive LC-MS/MS saliva assay that measures the levels of 18 endogenous steroid hormones (see Steroid Hormone Cascade Tests Included diagram on the next page) including estrogens, progestogens, androgens, Estrogens glucocorticoids, and mineralocorticoids. In addition to endogenous hormones Estradiol (E2), Estriol (E3), Estrone (E1), the new assay quantifies the level of melatonin and the synthetic estrogen ethinyl Ethinyl Estradiol (EE) estradiol, present in most birth control formulations, as well as several synthetic Progestogen Precursors and Metabolites aromatase inhibitors (anastrozole and letrozole) and the 5α-reductase inhibitor Pregnenolone Sulfate (PregS), Progesterone (Pg), finasteride. Allopregnenolone (AlloP), 17-OH Progesterone (17OHPg) The LC-MS/MS assay expands beyond the 5-steroid panel of parent hormones Androgen Precursors and Metabolites (estradiol, progesterone, testosterone, DHEAS, and cortisol) currently tested Androstenedione (Adione), Testosterone (T), by immunoassay (IA) at ZRT Laboratory. Testing the levels of both upstream Dihydrotestosterone (DHT), DHEA (D), precursors and downstream metabolites of these parent active steroids, listed DHEA-S (DS), 7-Keto DHEA (7keto) above and shown in the diagram on the next page, will help determine which steroid Glucocorticoid Precursors and Metabolites synthesis enzymes are low, overactive, blocked by natural or pharmaceutical 11-Deoxycortisol (11DC) Cortisol -
TX-004HR Vaginal Estradiol Has Negligible to Very Low Systemic Absorption of Estradiol
Himmelfarb Health Sciences Library, The George Washington University Health Sciences Research Commons Obstetrics and Gynecology Faculty Publications Obstetrics and Gynecology 12-19-2016 TX-004HR vaginal estradiol has negligible to very low systemic absorption of estradiol. David F Archer Ginger D Constantine James A Simon George Washington University Harvey Kushner Philip Mayer See next page for additional authors Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/smhs_obgyn_facpubs Part of the Female Urogenital Diseases and Pregnancy Complications Commons, Obstetrics and Gynecology Commons, and the Women's Health Commons APA Citation Archer, D., Constantine, G., Simon, J., Kushner, H., Mayer, P., Bernick, B., Graham, S., Mirkin, S., & REJOICE Study Group. (2016). TX-004HR vaginal estradiol has negligible to very low systemic absorption of estradiol.. Menopause (New York, N.Y.), 24 (5). http://dx.doi.org/10.1097/GME.0000000000000790 This Journal Article is brought to you for free and open access by the Obstetrics and Gynecology at Health Sciences Research Commons. It has been accepted for inclusion in Obstetrics and Gynecology Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact [email protected]. Authors David F Archer, Ginger D Constantine, James A Simon, Harvey Kushner, Philip Mayer, Brian Bernick, Shelli Graham, Sebastian Mirkin, and REJOICE Study Group. This journal article is available at Health Sciences Research Commons: http://hsrc.himmelfarb.gwu.edu/smhs_obgyn_facpubs/146 CE: M.S.; MENO-D-16-00223; Total nos of Pages: 7; MENO-D-16-00223 Menopause: The Journal of The North American Menopause Society Vol. 24, No. -
Plasma Levels of Aldosterone, Corticosterone, 1 1
Pediat. Res. 14: 39-46 (1980) aldosterone glucocorticoids corticosterone 17-hydroxyprogesterone cortisol mineralocorticoids cortisone progesterone 11-deoxycorticosterone progestins Plasma Levels of Aldosterone, Corticosterone, 11-Deoxycorticosterone, Progesterone, 17=Hydroxyprogesterone,Cortisol, and Cortisone During Infancy and Childhood WOLFGANG G. SIPPELL, HELMUTH G. D~RR,FRANK BIDLINGMAIER, AND DIETRICH KNORR Division of Pediatric Endocrinology, Department of Pediatrics, Dr. von Haunersches Kinderspiral, University of Munich School of Medicine, Munich, West Germany Summary other mineralocorticoids like DOC, and glucocorticoids like B and E exhibit similar patterns in different p&iatric age groups or not. Plasma aldosterone (A), corticosterone (B), deoxycorticoster- ~~~~~~l~published data on the progestins P and 17-0~pwith One progesterone ('1, 17-h~drox~~rogesterone(17-OHP), one exception (23) only covered either infancy (17) or puberty (4, (F), and cortisone (E) were measured simultaneously by 33, 34). Yet, a detailed evaluation of adrenocortical function is radiOimmunOassa~sin plasma samples obtained frequently needed in infants and children presenting with such from 174 infants and chi'dren between hr and yr of various symptoms as salt loss, virilization, staunted or excessive age. The levels (dml) 2-5 growth, obesity, premature pubarche, hypertension, etc., for which (A)14.1 53.0 ('I1 and '.' (''-OH') dropped appropriate, age-matched control values of adrenal steroids are of during infancy reaching prepubertal levels between 3 -
Pharmacologic Characteristics of Corticosteroids 대한신경집중치료학회
REVIEW J Neurocrit Care 2017;10(2):53-59 https://doi.org/10.18700/jnc.170035 eISSN 2508-1349 Pharmacologic Characteristics of Corticosteroids 대한신경집중치료학회 Sophie Samuel, PharmD1, Thuy Nguyen, PharmD1, H. Alex Choi, MD2 1Department of Pharmacy, Memorial Hermann Texas Medical Center, Houston, TX; 2Department of Neurosurgery and Neurology, The University of Texas Medical School at Houston, Houston, TX, USA Corticosteroids (CSs) are used frequently in the neurocritical care unit mainly for their anti- Received December 7, 2017 inflammatory and immunosuppressive effects. Despite their broad use, limited evidence Revised December 7, 2017 exists for their efficacy in diseases confronted in the neurocritical care setting. There are Accepted December 17, 2017 considerable safety concerns associated with administering these drugs and should be limited Corresponding Author: to specific conditions in which their benefits outweigh the risks. The application of CSs in H. Alex Choi, MD neurologic diseases, range from traumatic head and spinal cord injuries to central nervous Department of Pharmacy, Memorial system infections. Based on animal studies, it is speculated that the benefit of CSs therapy Hermann Texas Medical Center, 6411 in brain and spinal cord, include neuroprotection from free radicals, specifically when given Fannin Street, Houston, TX 77030, at a higher supraphysiologic doses. Regardless of these advantages and promising results in USA animal studies, clinical trials have failed to show a significant benefit of CSs administration Tel: +1-713-500-6128 on neurologic outcomes or mortality in patients with head and acute spinal injuries. This Fax: +1-713-500-0665 article reviews various chemical structures between natural and synthetic steroids, discuss its E-mail: [email protected] pharmacokinetic and pharmacodynamic profiles, and describe their use in clinical practice. -
A New Aromatase Inhibitor, in Postmenopausal Women
(CANCERRESEARCH52, 5933-5939, November1, 1992J Phase I and Endocrine Study of Exemestane (FCE 24304), a New Aromatase Inhibitor, in Postmenopausal Women T. R. Jeffry Evans,' Enrico Di Salle, Giorgio Ornati, Mercedes Lassus, Margherita Strolin Benedetti, Eio Pianezzola, and R. Charles Coombes Department ofMedical OncoIoij@,St. Geoa@ge'sHospital Medical School, Creamer Terrace, London SWI7 ORE, England fT. R. I. E.J; Departments of Oncology IE. D. S., G. 0., M. Li and Pharmacokinetics and Metabolism [M. S. B., E. P.J, Farmitalia Carlo Erba, Via Carlo Imbonati, Milan, Italy; and Department of Medical Oncology, Charing Cross Hospital, FuThoin Palace Roa@ London W6 8RF, England (R. C. C.] ABSTRACT aminoglutethimide and fadrozole (CGS 16949A) (7). Objective tumor regression occurred in approximately 21% of patients Aromatase inhibitors are a useful therapeutic option in the manage treated with 4}IAI@@,2witha low incidence of adverse effects; ment of endocrine-dependent advanced breast cancer. A single-dose 4.5% of patients were withdrawn from treatment because of administration of exemestane (FCE 24304; 6-methylenandrosta-l,4-dl ene-3,17-dione), a new Irreversible aromatase inhibitor, was investi side effects. However, 4HAD undergoes extensive metabolism gated in 29 healthy postmenopausal female volunteers. The compound, in the liver to form the inactive glucuronide (8) and conse given at p.o. doses ofO.5, 5, 12.5, 25, 50, 200, 400, and 800 mg(n = 3—4), quently it is recommended that it is given i.m. rather than p.o. was found to be a well tolerated, potent, long-lasting, and specific in The use of aminoglutethimide as an aromatase inhibitor is re hibitor of estrogen biosynthesis. -
Aldactone® Spironolactone Tablets, USP
NDA 12-151/S-062 Page 2 Aldactone® spironolactone tablets, USP WARNING Aldactone has been shown to be a tumorigen in chronic toxicity studies in rats (see Precautions). Aldactone should be used only in those conditions described under Indications and Usage. Unnecessary use of this drug should be avoided. DESCRIPTION Aldactone oral tablets contain 25 mg, 50 mg, or 100 mg of the aldosterone antagonist spironolactone, 17-hydroxy-7α-mercapto-3-oxo-17α-pregn-4-ene-21-carboxylic acid γ-lactone acetate, which has the following structural formula: Spironolactone is practically insoluble in water, soluble in alcohol, and freely soluble in benzene and in chloroform. Inactive ingredients include calcium sulfate, corn starch, flavor, hypromellose, iron oxide, magnesium stearate, polyethylene glycol, povidone, and titanium dioxide. ACTIONS / CLINICAL PHARMACOLOGY Mechanism of action: Aldactone (spironolactone) is a specific pharmacologic antagonist of aldosterone, acting primarily through competitive binding of receptors at the aldosterone-dependent sodium-potassium exchange site in the distal convoluted renal tubule. Aldactone causes increased amounts of sodium and water to be excreted, while potassium is retained. Aldactone acts both as a diuretic and as an antihypertensive drug by this mechanism. It may be given alone or with other diuretic agents which act more proximally in the renal tubule. Aldosterone antagonist activity: Increased levels of the mineralocorticoid, aldosterone, are present in primary and secondary hyperaldosteronism. Edematous states in which secondary aldosteronism is usually involved include congestive heart failure, hepatic cirrhosis, and the nephrotic syndrome. By competing with aldosterone for receptor sites, Aldactone provides effective therapy for the edema and ascites in those conditions. -
Other Data Relevant to an Evaluation of Carcinogenicity and Its Mechanisms
COMBINED ESTROGEN−PROTESTOGEN MENOPAUSAL THERAPY 263 4. Other Data Relevant to an Evaluation of Carcinogenicity and its Mechanisms 4.1 Absorption, distribution, metabolism and excretion The distribution of progestogens is described in the monograph on Combined estro- gen–progestogen contraceptives. That of estrogens is described below. 4.1.1 Humans Little more has been discovered about the absorption and distribution of estrone, estradiol and estriol products and conjugated equine estrogens in humans since the previous evaluation (IARC, 1999). Greater progress has been made in the identification and characterization of the enzymes that are involved in estrogen metabolism and excre- tion. The various metabolites and the responsible enzymes, including genotypic varia- tions, are described below (see Figures 3 and 4). Sulfation and glucuronidation are the main metabolic reactions of estrogens in humans. (a) Metabolites (i) Estrogen sulfates Several members of the sulfotransferase (SULT) gene family can sulfate hydroxy- steroids, including estrogens. The importance of SULTs in estrogen conjugation is demons- trated by the observation that a major component of circulating estrogen is sulfated, i.e. estrone sulfate (reviewed by Pasqualini, 2004). In addition to the parent hormones, estrone and estradiol, SULTs can also conjugate their respective catechols and also methoxyestro- gens (Spink et al., 2000; Adjei & Weinshilboum, 2002). The resulting sulfated metabolites are more hydrophilic and can be excreted. In postmenopausal breast cancers, levels of estrone sulfate can reach 3.3 ± 1.9 pmol/g tissue, which is five to nine times higher than the corresponding plasma concentration (equating gram of tissue with millilitre of plasma) (Pasqualini et al., 1996). In contrast, levels of estrone sulfate in premenopausal breast tumours are two to four times lower than those in plasma. -
Hormonal Health
Hormonal Health Patient: SAMPLE PATIENT Age: Sex: MRN: Reference Range Reference Range Hormone Reference Range Hormone Reference Range Progesterone 0.61 0.30-1.13 ng/mL DHEA-S 91 35-430 mcg/dL Testosterone 0.34 0.10-0.80 ng/mL Free Androgen 1.47 0.22-5.78 Index Reference Range Hormone Reference Range Sex Hormone 80 18-114 nmol/L Binding Globulin Reference Range Hormone Reference Range 2-Hydroxyestrone 299 112-656 pg/mL Reference Range Hormone Reference Range 16α-Hydroxyestrone 323 213-680 pg/mL Estrone 2.18 0.56-2.67 ng/mL Sulfate (E1S) 2:16α-Hydroxy- 0.93 0.40-1.40 Estrone Ratio Estrone (E1) 85 20-95 pg/mL Estradiol (E2) 33 20-160 pg/mL Estriol (E3) 113 <= 80 pg/mL Reference ranges for the estrogen metabolites were determined with serum samples from women with a normal 2:16alpha-Hydroxyestrone Ratio. Other reference ranges were determined with follicular serum samples from premenopausal women who were not using hormone replacement therapy. These ranges serve as clinical guidelines to observe changes due to hormone replacement. However, each individual is unique and treatment should be tailored to the patient's clinical picture. © Genova Diagnostics · CLIA Lic. #34D0655571 · Medicare Lic. #34-8475 GDX-4-192 Patient: SAMPLE PATIENT ID: Page 2 0.61 91 0.34 80 2.18 33 85 113 299 323 © Genova Diagnostics · CLIA Lic. #34D0655571 · Medicare Lic. #34-8475 Patient: SAMPLE PATIENT ID: Page 3 Premenopausal Premenopausal Unsupplemented Analyte follicular luteal Menopausal Patient Results Estrone Sulfate 0.56 - 2.67 0.75 - 4.28 0.23 - 1.40 2.18 (ng/mL) Estrone 20 - 95 28 - 163 12 - 41 85 (pg/mL) Estradiol 20 - 160 27 - 246 20 - 24 33 (pg/mL) Estriol <= 80 <= 80 <= 80 113 (pg/mL) Progesterone 0.30 - 1.13 0.95 - 21.00 0.30 - 0.64 0.61 (ng/mL) Testosterone 0.10 - 0.80 0.10 - 0.80 0.07 - 0.46 0.34 (ng/mL) DHEA-s 35 - 430 35 - 430 30 - 202 91 (mcg/dL) © Genova Diagnostics · CLIA Lic. -
Estrone-3-Sulfate (Equine) ELISA
Estrone-3-sulfate (Equine) ELISA For the quantitative determination of estrone-3-sulfate in mare serum. For Research use Only. Not For Use In Diagnostic Procedures. Catalog Number: 55-E3SEQ-E01 Size: 96 Wells Version: 03-09-16-ALPCO 2.0 26-G Keewaydin Drive, Salem, NH 03079│P: (800) 592-5726│F: (603) 898-6854│[email protected]│www.alpco.com Page 1 of 12 1. Introduction 1.1. Intended Use The Estrone-3-Sulfate equine ELISA is a competitive enzyme immunoassay for the quantitative measurement of estrone-3-sulfate in mare serum. 1.2. Summary and Explanation Estrone-3-Sulfate (E3S) is the predominant conjugated estrogen during pregnancy. It is produced by the fetus, possibly in association with the endometrium in the pregnant mare. Different hormones are important for the complex events that occur during pregnancy in all mammals. In the mare, these events include the maintenance of the corpus luteum function, formation of endometrial cups and development of secondary corpora lutea. Progesterone and PMSG (pregnant mare serum gonadotropin, eCG) and also free estrogens, e.g. estrone, are associated with these processes. It has been shown, that estrone is rapidly conjugated after secretion and the ratio between conjugated and unconjugated estrogens is 100:1 in mare serum. The conjugated estrogens, especially estrone-3-sulfate, provide the opportunity to non-invasively study pregnancy and fetal development in mares. 2. Principle of the Assay The Estrone-3-Sulfate Equine ELISA test kit is a solid phase enzyme immunoassay (ELISA) in a microplate format, designed for the quantitative measurement of estrone-3-sulfate. -
Reproductive Estrone Sulfate
Reproductive Estrone sulfate Analyte Information - 1 - Estrone sulfate Introduction Estrone sulfate (E1-S) is a sulfate derivative of estrone, and is the most abundant form of circulating estrogens in both men and non-pregnant women1,2. It is the aromatized C18-steroid with a 3-sulfate group and a 17-ketone. Its chemical name is 1,3,5 (10)-estradien-3-ol-17-one-3-sulfate, its summary formula is C18H22O5S, and its molecular weight is 350.4 Da. Fig.1: Structural formula of estrone sulfate Biosynthesis Estrone sulfate is the major metabolite of both estradiol and estrone 2,3. Formation of estrone sulfate occurs in various tissues in the body, but primarily in the liver. The reaction requires hydroxysteroid sulfotransferase activity and sulfate ions in the form of an active sulfate, namely phosphoadenosine phosphosulfate (PAPS) (4). Metabolism Estrone sulfate is hydrolyzed to estrone and then converted to various conjugates via sulfonation, glucuronidation and O-methylation. The main site of degradation is the liver, but these reactions may also take place in estrogen target tissues such as the breast, ovary and uterus. The conjugated forms are finally excreted in urine. Estrone sulfate may also be excreted in urine directly. The direct excretion rate is slow compared to that of the conjugated forms. - 2 - Thus, serum concentrations of estrone sulfate are three to five times higher than that of the corresponding glucuronide, but the opposite is true in urine. This is partly due to albumin’s greater affinity for estrone sulfate compared to estrone glucuronide, but also because of estrone glucuronide’s higher glomerular filtration rate.