Plasma Levels of Estrone, Estrone Sulfate, and Estradici and the Percentage of Unbound Estradici in Postmenopausal Women with and Without Breast Disease1

Total Page:16

File Type:pdf, Size:1020Kb

Plasma Levels of Estrone, Estrone Sulfate, and Estradici and the Percentage of Unbound Estradici in Postmenopausal Women with and Without Breast Disease1 [CANCER RESEARCH 43, 3940-3943, August 1983] Plasma Levels of Estrone, Estrone Sulfate, and Estradici and the Percentage of Unbound Estradici in Postmenopausal Women with and without Breast Disease1 M. J. Reed,2 R. W. Cheng, C. T. Noel, H. A. F. Dudley, and V. H. T. James Department of Chemical Pathology [M. J. R., R. W. C., C. T. N., V. H. T. J.] and Academic Surgical Unit [H. A. F. D.¡,St. Mary's Hospital Medical School, London W2 1PG, England ABSTRACT A preliminary account of some of the results obtained in this study has been presented (11). To investigate the possibility of increased tissue exposure to estrogen in breast cancer patients, plasma levels of estrogens and the percentage of unbound estradiol were measured in SUBJECTS postmenopausal women with benign or malignant breast disease Patients for the present study were recruited from postmenopausal and compared with levels in normal postmenopausal women. women [66 ±10 (S.D.) years old] attending a breast clinic. Blood (20 ml) The percentage of unbound estradiol in breast cancer patients was taken between 2 p.m. and 4:30 p.m. Steroid analyses were carried [1.85 ±0.35% (S.D.)] was significantly higher (p < 0.001) than out before the subject's clinical status was known. It was subsequently in normal postmenopausal women [1.52 ±0.33%] and was still established that some of the women had breast cancer, some had benign significantly higher when patients were matched with control breast disease, and others were women who had previously had breast subjects for weight (p < 0.001) or ideal body weight (p < 0.001). cancer (4 months to 18 years previously) who were undergoing follow- The binding capacity of sex hormone binding globulin was similar up examination. No distinction has been made in the results between women with breast cancer and those who had previously had breast in both groups of women. No significant differences in the plasma cancer. levels of estrone, estradiol, or estrone sulfate were detected Blood samples were obtained from normal postmenopausal women between breast cancer and normal subjects. (57 ±11 years old) between 9 a.m. and 6 p.m. These women were in It is concluded that, given similar concentrations of estradiol good health and without any endocrinological disorder. None of the in plasma of normal and breast cancer subjects, the significant subjects had received any hormone replacement therapy in the 3 months increase found in the unbound estradiol fraction may result in a preceding the study. very small increment in tissue exposure to estrogens in breast Blood obtained from patients and control subjects was centrifuged, cancer subjects. However, even such a small increase in tissue and the plasma was removed and stored at -20° until assayed. exposure to estradiol may be significant, given the length of time required for breast tumor development. MATERIALS AND METHODS INTRODUCTION Plasma levels of estrone, estradiol, and estrone sulfate were measured by methods described previously (4, 15). The percentage of unbound The circumstantial evidence suggesting that estrogens may estradiol was measured in undiluted plasma using a Dianorm dialysis be involved in the development of tumors in hormone-dependent machine (23). Analysis of a plasma pool gave values of 8.3% (n = 10) and 8.7% (n = 15) for the intra- and interassay coefficients of variation tissues such as the breast has resulted in a search for evidence for the measurement of the unbound fraction by this method. The fraction of estrogen excess in women with breast cancer (10). Several of estradiol not bound to SHBG3 was measured using a precipitation studies have been made of urinary estrogen excretion by women technique (16), and intra- and interassay coefficients of variation were with and without breast cancer (24), but few investigations have 4.2% (n = 21) and 5.5% (n = 24), respectively. The binding capacity of been carried out to measure plasma levels of estrogens. In the SHBG was measured by the method of Rosner (20) as modified by present study, plasma levels of estrone and estradiol have been Anderson er al. (2). A detailed description of the techniques used to measured in postmenopausal women with benign or malignant measure the fractions of unbound and non-SHBG-bound estradiol has been published previously (11). A subject's ideal body weight was breast disease and have been compared with levels in normal calculated by comparison of a subject's weight with tables for the postmenopausal women. Plasma levels of estrone sulfate have average weight of women of the same age (6). also been measured in subjects with breast cancer, inasmuch Statistics. Data were analyzed using Student's t test and linear as this hormone is a potential source of unconjugated estrone regression, using the method of least squares. and estradiol. Because measurement of plasma estrogen con centrations may not indicate the level of biologically available estrogen (21), the percentage of unbound estradiol was meas RESULTS ured. In addition, for some patients, the fraction of estradiol Plasma Estrogen Concentration. Plasma levels of estrone, bound to albumin was also determined. estradiol, and estrone sulfate are shown in Table 1. Plasma levels of estrone and estradiol in postmenopausal women with 1This investigation was supported by grants from the Cancer Research Cam benign or malignant breat disease and plasma levels of estrone paign (CP2) and Wellcome Trust (7964/1.5). 2 To whom requests for reprints should be addressed. Received November 17, 1982; accepted May 6, 1983. 3The abbreviation used is: SHBG, sex hormone binding globulin. 3940 CANCER RESEARCH VOL. 43 Downloaded from cancerres.aacrjournals.org on October 1, 2021. © 1983 American Association for Cancer Research. Estrogen and Breast Cancer Table1 = -0.36; p < 0.01) and also between SHBG binding capacity Plasma concentrations of estrone, estrone sulfate, and estradici in and subjects' percentage of ideal body weight (r = -0.33; p < postmenopausal breast disease patients and normal postmenopausal women 0.05). sulfate(pg/mi)302 (pg/ml)28.2±11.2"(35)i> (pg/ml)14.0 35 Normal ±197(46) ±6.0(32) Benign 21 .8 ± 5.4 ( 5) 11.4 ±5.2(10) CancerEstrone 31 .4 ±13.4 (26)Estrone 307 ±177(17)Estradici13.5 ±6.1(43) ' Mean ±S.D. ' Numbers in parentheses, number of subjects. 50 60 70 80 90 100 Body weight (Kg) Chart 2. Correlation between body weight and plasma levels of estradiol (E2)in normal postmenopausal women (•)and in postmenopausal women with benign (A) or malignant (•)breast disease. 40 50 60 70 80 90 100 700 Body weight (Kg) Chart 1. Correlation between body weight and plasma levels of estrone (E,) in 600 normal postmenopausal women (•)and in postmenopausal women with benign (A) or malignant (•)breast disease. 500 sulfate in patients with breast cancer did not differ from the 400 levels in normal postmenopausal women. Significant correlations CD were found between plasma levels of estrone (Chart 1) and a subjects' body weight and also between plasma levels of estra 300 dici and body weight (Chart 2). No such correlation was found between plasma levels of estrone sulfate and body weight (Chart 200 3) for patients with breast disease (r = 0.07, not significant). 100 r=oi3 Percentage of Unbound Estradici, Percentage of Non- N.S. SHBG-bound Estradici and SHBG Binding Capacity. The frac tion of unbound estradici in plasma from normal women and 40 50 60 70 80 90 100 patients with breast disease is shown in Chart 4 and Table 2. Body weight (Kg) The fraction of unbound estradici was significantly higher (p < Chart 3. Lack of significant correlation between body weight and plasma levels 0.001 ) in the breast cancer group than in normal women and of estrone sulfate (£,S)in postmenopausal women with breast cancer. also in women with benign breast disease (p < 0.02). Because the binding capacity of SHBG is reduced in obese women, the unbound estradiol fraction was compared in a group (16) (33) (60) of weight-matched controls and breast cancer patients and also rP<0-02n rP<0-001, in a group matched for ideal body weight (Chart 5), and a - significant difference (p < 0.001) was still found. ui 2 The fraction of estradiol not bound to SHBG (I.e., unbound plus mainly albumin bound) was also measured in the women with breast disease (Table 2), but there was no significant difference between women with benign or malignant disease. There was no significant difference in the binding capacity of SHBG (expressed as ng 5 a-dihydrotestosterone per 100 ml plasma) in patients with breast cancer [2.1 ±1.2 (S.D.)], in those with benign breast disease [2.5 ±1.8], or in normal postmeno Benign Normal Breast Cancer pausal women [2.0 ±1.4] (Table 2). For patients with breast Chart 4. Percentage of unbound estradiol (E¡)in plasma from normal postmen disease, significant negative correlations were found between opausal women and those with benign or malignant breast disease. Numbers in the fraction of unbound estradiol and SHBG binding capacity (r parentheses, number of subjects. AUGUST 1983 3941 Downloaded from cancerres.aacrjournals.org on October 1, 2021. © 1983 American Association for Cancer Research. M. J. Reed et al. Table 2 Tabte3 Percentage ol unbound estradici, percentage oínon-SHBG-bound estradiol, and Concentrations of unbound, non-SHBG-bound, SHBG-bound, and albumin-bound SHBG binding capacity in postmenopausal breast disease patients and normal estradiol in postmenopausal women with benign or malignant breast disease postmenopausal women Albumin- binding ca Non-SHBG- SHBG-bound bound pacity (¿ig5a-dihy- Unbound estradiol bound estradiol estradiol estradiol of unbound of non-SHBG- drotestosterone/ (pg/100 ml) (pg/100 ml) (pg/100 ml) (pg/100 ml) estradiol1.52 boundestradiol31 100ml)2.0 19.5±10.0s(10)" Benign 411±331(8) 838±227(8)434±318(8) ±0.33" (33)" Normal ±1.4 (32) Cancer 24.1±12.4(42) 540±363(24)1056±408(24)530±346(24) 1.79±0.22C(16) Benign .2 ±12.7 (10) 2.5 ±1.8 (15) a Mean ±S.D.
Recommended publications
  • Estrone Sulfate
    Available online at www.sciencedirect.com Journal of Steroid Biochemistry & Molecular Biology 109 (2008) 158–167 Estrone sulfate (E1S), a prognosis marker for tumor aggressiveness in prostate cancer (PCa)ଝ Frank Giton a,∗, Alexandre de la Taille b, Yves Allory b, Herve´ Galons c, Francis Vacherot b, Pascale Soyeux b, Claude Clement´ Abbou b, Sylvain Loric b, Olivier Cussenot b, Jean-Pierre Raynaud d, Jean Fiet b a AP-HP CIB INSERM IMRB U841eq07, Henri Mondor, Facult´edeM´edecine, 94010 Cr´eteil, France b INSERM IMRB U841 eq07, CHU Henri Mondor, Facult´edeM´edecine, 94010 Cr´eteil, France c Service de Chimie organique, Facult´e de Pharmacie Paris V, 75006 Paris, France d Universit´e Pierre et Marie Curie, 75252 Paris, France Received 26 December 2006; accepted 26 October 2007 Abstract Seeking insight into the possible role of estrogens in prostate cancer (PCa) evolution, we assayed serum E2, estrone (E1), and estrone sulfate (E1S) in 349 PCa and 100 benign prostatic hyperplasia (BPH) patients, and in 208 control subjects in the same age range (50–74 years). E1 (pmol/L ± S.D.) and E1S (nmol/L ± S.D.) in the PCa and BPH patients (respectively 126.1 ± 66.1 and 2.82 ± 1.78, and 127.8 ± 56.4 and 2.78 ± 2.12) were significantly higher than in the controls (113.8 ± 47.6 and 2.11 ± 0.96). E2 was not significantly different among the PCa, BPH, and control groups. These assays were also carried out in PCa patients after partition by prognosis (PSA, Gleason score (GS), histological stage, and surgical margins (SM)).
    [Show full text]
  • Antiestrogenic Action of Dihydrotestosterone in Mouse Breast
    Antiestrogenic action of dihydrotestosterone in mouse breast. Competition with estradiol for binding to the estrogen receptor. R W Casey, J D Wilson J Clin Invest. 1984;74(6):2272-2278. https://doi.org/10.1172/JCI111654. Research Article Feminization in men occurs when the effective ratio of androgen to estrogen is lowered. Since sufficient estrogen is produced in normal men to induce breast enlargement in the absence of adequate amounts of circulating androgens, it has been generally assumed that androgens exert an antiestrogenic action to prevent feminization in normal men. We examined the mechanisms of this effect of androgens in the mouse breast. Administration of estradiol via silastic implants to castrated virgin CBA/J female mice results in a doubling in dry weight and DNA content of the breast. The effect of estradiol can be inhibited by implantation of 17 beta-hydroxy-5 alpha-androstan-3-one (dihydrotestosterone), whereas dihydrotestosterone alone had no effect on breast growth. Estradiol administration also enhances the level of progesterone receptor in mouse breast. Within 4 d of castration, the progesterone receptor virtually disappears and estradiol treatment causes a twofold increase above the level in intact animals. Dihydrotestosterone does not compete for binding to the progesterone receptor, but it does inhibit estrogen-mediated increases of progesterone receptor content of breast tissue cytosol from both control mice and mice with X-linked testicular feminization (tfm)/Y. Since tfm/Y mice lack a functional androgen receptor, we conclude that this antiestrogenic action of androgen is not mediated by the androgen receptor. Dihydrotestosterone competes with estradiol for binding to the cytosolic estrogen receptor of mouse breast, […] Find the latest version: https://jci.me/111654/pdf Antiestrogenic Action of Dihydrotestosterone in Mouse Breast Competition with Estradiol for Binding to the Estrogen Receptor Richard W.
    [Show full text]
  • Degradation and Metabolite Formation of Estrogen Conjugates in an Agricultural Soil
    Journal of Pharmaceutical and Biomedical Analysis 145 (2017) 634–640 Contents lists available at ScienceDirect Journal of Pharmaceutical and Biomedical Analysis j ournal homepage: www.elsevier.com/locate/jpba Degradation and metabolite formation of estrogen conjugates in an agricultural soil a,b b,∗ Li Ma , Scott R. Yates a Department of Environmental Sciences, University of California, Riverside, CA 92521, United States b Contaminant Fate and Transport Unit, U.S. Salinity Laboratory, Agricultural Research Service, United States Department of Agriculture, Riverside, CA 92507, United States a r t i c l e i n f o a b s t r a c t Article history: Estrogen conjugates are precursors of free estrogens such as 17ß-estradiol (E2) and estrone (E1), which Received 10 April 2017 cause potent endocrine disrupting effects on aquatic organisms. In this study, microcosm laboratory Received in revised form 11 July 2017 ◦ experiments were conducted at 25 C in an agricultural soil to investigate the aerobic degradation and Accepted 31 July 2017 metabolite formation kinetics of 17ß-estradiol-3-glucuronide (E2-3G) and 17ß-estradiol-3-sulfate (E2- Available online 1 August 2017 3S). The aerobic degradation of E2-3G and E2-3S followed first-order kinetics and the degradation rates were inversely related to their initial concentrations. The degradation of E2-3G and E2-3S was extraordi- Keywords: narily rapid with half of mass lost within hours. Considerable quantities of E2-3G (7.68 ng/g) and E2-3S Aerobic degradation 17ß-estradiol-3-glucuronide (4.84 ng/g) were detected at the end of the 20-d experiment, particularly for high initial concentrations.
    [Show full text]
  • Total Estradiol and Total Testosterone
    Laboratory Procedure Manual Analyte: Total Estradiol and Total Testosterone Matrix: Serum Method: Simultaneous Measurement of Estradiol and Testosterone in Human Serum by ID LC-MS/MS Method No: 1033 Revised: as performed by: Clinical Chemistry Branch Division of Laboratory Sciences National Center for Environmental Health contact: Dr. Hubert W. Vesper Phone: 770-488-4191 Fax: 404-638-5393 Email: [email protected] James Pirkle, M.D., Ph.D. Division of Laboratory Sciences Important Information for Users CDC periodically refines these laboratory methods. It is the responsibility of the user to contact the person listed on the title page of each write-up before using the analytical method to find out whether any changes have been made and what revisions, if any, have been incorporated. Total Estradiol and Total Testosterone NHANES 2015-16 Public Release Data Set Information This document details the Lab Protocol for testing the items listed in the following table for SAS file TST_I: VARIABLE NAME SAS LABEL (and SI units) LBXTST Testosterone, total (nmol/L) LBXEST Estradiol (pg/mL) 1 of 49 Total Estradiol and Total Testosterone NHANES 2015-16 Contents 1 Summary of Test Principle and Clinical Relevance 7 1.1 Intended Use 7 1.2 Clinical and Public Health Relevance 7 1.3 Test Principle 8 2 Safety Precautions 10 2.1 General Safety 10 2.2 Chemical Hazards 10 2.3 Radioactive Hazards 11 2.4 Mechanical Hazards 11 2.5 Waste Disposal 11 2.6 Training 11 3 Computerization and Data-System Management 13 3.1 Software and Knowledge Requirements 13 3.2 Sample Information 13 3.3 Data Maintenance 13 3.4 Information Security 13 4 Preparation for Reagents, Calibration Materials, Control Materials, and All Other Materials; Equipment and Instrumentation.
    [Show full text]
  • Testosterone, DHP, Progesterone, Es
    UC Davis Clinical Endocrinology Laboratory Volume Required: Testosterone: 2 mL serum AMH equine: 1 ml serum Estrone Sulfate, Progesterone: 1 mL serum each. Inhibin: 1 ml serum, sent overnight on ice. AMH Canine/Feline Spaychek: 200 µL serum, fasted, 30 days post- surgery. Send 0.5 ml for Progesterone/AMH and 2 ml for testosterone/AMH. Cryptorchid Panel: 2 mL serum Pregnancy Panel: 2 mL serum Granulosa Cell Tumor Panel: 3 mL serum Sample Handling and Shipment Requirements: PLEASE SEND SERUM ONLY, no whole or clotted blood. Blood contains active enzymes which may affect the results. The use of serum separator tubes is not recommended; they may degrade the analytes, particularly progesterone and AMH, and may invalidate results. Draw in a tube with no additive (red top). If you do use a serum separator tube, transfer the serum to a new tube as soon as possible. For AMH and inhibin testing: Please separate the serum and ship priority overnight on an ice pack. Store the sample in the freezer if shipping will be delayed, but you may ship it on an ice pack, dry ice is not required. Do not ship the sample via the US Postal Service, as the delivery will be delayed in the campus mailroom for up to a week, causing sample degradation. Do not ship the samples to arrive on a holiday or a weekend, as UPS and Fed Ex will not deliver it to us, and it will sit at the shipping facility, causing sample degradation. Please check our site for university holidays. For steroid hormone (testosterone, DHP, progesterone, estrone) testing: These hormones are more stable; however, they may be degraded by poor handling conditions, and shipment as whole or clotted blood.
    [Show full text]
  • Feminizing Gender-Affirming Hormone Care the Michigan Medicine Approach
    Feminizing Gender-Affirming Hormone Care The Michigan Medicine Approach Our goal is to partner with you to provide the medical care you need in affirming your gender. Our focus is on your lifelong health, safety, and individual medical and transition-related needs. The Michigan Medicine approach is based on the limited but growing medical evidence surrounding gender-affirming hormone care. Based on the available science, we believe mimicking normal physiology will provide you with the best balance of physical and emotional changes and long-term health. This philosophy aligns with current national and international medical guidelines in the care of gender diverse people. We are committed to staying up-to-date with the latest research and medical evidence to ensure you are getting the highest quality care. We know that there are competing approaches to gender-affirming care that are not based on validated scientific evidence. These approaches make scientifically unsubstantiated claims and have unknown short and long-term risks. We are happy to discuss these with you. Below are some answers to questions our patients have asked us about gender- affirming hormone care. We hope the Q&A will help you understand the medical evidence behind our approach to your gender-affirming hormone care, and how it may differ from other approaches, including the approach other well-known clinics in Southeast Michigan. Is there a benefit for monitoring both estrone (E1) and estradiol (E2) levels and aiming for a particular ratio? There are 3 naturally occurring human estrogens: estrone (E1), estradiol (E2), and estriol (E3). Your body naturally balances your estradiol and estrone ratio.
    [Show full text]
  • Hormonal and Immunological Aspects of the Phylogeny of Sex Steroid
    Proc. Nati. Acad. Sci. USA Vol. 77, No. 8, pp. 4578-4582, August 1980 Biochemistry Hormonal and immunological aspects of the phylogeny of sex steroid binding plasma protein (estradiol/dihydrotestosterone/a-fetoprotein) JACK-MICHEL RENOIR, CHRISTINE MERCIER-BODARD, AND ETIENNE-EMILE BAULIEU Unite de Recherches sur le Metabolisme Mol6culaire et la Physiopathologie des St6roides de l'Institut National de la Sante et de la Recherche MWdicale, (U 33), Universite Paris-Sud, DMpartement de Chimie Biologique, 78 rue du GUn6ral Leclerc, 94270 Bicetre, France Communicated by Seymour Lieberman, May 5,1980 ABSTRACT Sex steroid binding plasma protein (Sbp) in man acetate, 1:1 (vol/vol) for estradiol. Nonradioactive steroids were and in monkeys binds the androgens dihydrotestosterone and a gift of Roussel-Uclaf (Romainville) (guaranteed 99% testosterone and the estrogen estradiol with high affinity (Kd tO.5, 1, and 2 nM, respectively). Detailed studies of steroid pure). binding specificity give the same results in all primates, except Chemicals and Animals. Tubing [Visking-Nojax, 8/32 in. that in humans and chimpanzees estrone does not compete for (6.4 mm); from Union Carbide Corporation, New York] was dihydrotestosterone binding. In other mammals, Sbps of Arti- used in equilibrium dialyses. Agarose (Indubiose A 37) was odactyla and Lagomorpha have the same range of affinities for purchased from l'Industrie Biologique Francgaise (Paris), Ul- androgens but they do not bind estradiol to any significant ex- trogel AcA 34 was from LKB (Uppsala, Sweden), and Freund's tent (Kd >280 nM). The dog has an unusual Sbp (Kd for dihy- drotestosterone, 7.1 nM; for estiadiol, 125 nM), and rodents do complete and incomplete adjuvants were from Difco.
    [Show full text]
  • TX-004HR Vaginal Estradiol Has Negligible to Very Low Systemic Absorption of Estradiol
    Himmelfarb Health Sciences Library, The George Washington University Health Sciences Research Commons Obstetrics and Gynecology Faculty Publications Obstetrics and Gynecology 12-19-2016 TX-004HR vaginal estradiol has negligible to very low systemic absorption of estradiol. David F Archer Ginger D Constantine James A Simon George Washington University Harvey Kushner Philip Mayer See next page for additional authors Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/smhs_obgyn_facpubs Part of the Female Urogenital Diseases and Pregnancy Complications Commons, Obstetrics and Gynecology Commons, and the Women's Health Commons APA Citation Archer, D., Constantine, G., Simon, J., Kushner, H., Mayer, P., Bernick, B., Graham, S., Mirkin, S., & REJOICE Study Group. (2016). TX-004HR vaginal estradiol has negligible to very low systemic absorption of estradiol.. Menopause (New York, N.Y.), 24 (5). http://dx.doi.org/10.1097/GME.0000000000000790 This Journal Article is brought to you for free and open access by the Obstetrics and Gynecology at Health Sciences Research Commons. It has been accepted for inclusion in Obstetrics and Gynecology Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact [email protected]. Authors David F Archer, Ginger D Constantine, James A Simon, Harvey Kushner, Philip Mayer, Brian Bernick, Shelli Graham, Sebastian Mirkin, and REJOICE Study Group. This journal article is available at Health Sciences Research Commons: http://hsrc.himmelfarb.gwu.edu/smhs_obgyn_facpubs/146 CE: M.S.; MENO-D-16-00223; Total nos of Pages: 7; MENO-D-16-00223 Menopause: The Journal of The North American Menopause Society Vol. 24, No.
    [Show full text]
  • Different Levels of Estradiol Are Correlated with Sexual Dysfunction in Adult
    www.nature.com/scientificreports OPEN Diferent levels of estradiol are correlated with sexual dysfunction in adult men Tong Chen1,2,3,5, Fei Wu1,4,5, Xianlong Wang2, Gang Ma2, Xujun Xuan2, Rong Tang2, Sentai Ding1 & Jiaju Lu1,2* Ejaculatory dysfunction, including premature ejaculation (PE) and delayed ejaculation (DE), as well as erectile dysfunction (ED), constitute the majority of male sexual dysfunction. Despite a fair amount of data on the role of hormones and erection and ejaculation, it is inconclusive due to controversy in the current literature. To explore the correlation of male sexual dysfunction with hormonal profle, 1,076 men between the ages of 19–60 years (mean: 32.12 years) were included in this retrospective case–control study; 507 were categorized as ED, PE and DE groups. Five hundred and sixty-nine men without sexual dysfunction were enrolled in the control group. The background characteristics and clinical features of the four groups were collected and analyzed. The estradiol value was signifcantly elevated in the ED group than the control group (109.44 ± 47.14 pmol/L vs. 91.88 ± 27.68 pmol/L; P < 0.001). Conversely, the DE group had signifcantly lower level of estradiol than control did (70.76 ± 27.20 pmol/L vs. 91.88 ± 27.68 pmol/L; P < 0.001). The PE group had similar level of estradiol (91.73 ± 31.57 pmol/L vs. 91.88 ± 27.68 pmol/L; P = 0.960) but signifcantly higher level of testosterone (17.23 ± 5.72 nmol/L vs. 15.31 ± 4.31 nmol/L; P < 0.001) compared with the control group.
    [Show full text]
  • A New Aromatase Inhibitor, in Postmenopausal Women
    (CANCERRESEARCH52, 5933-5939, November1, 1992J Phase I and Endocrine Study of Exemestane (FCE 24304), a New Aromatase Inhibitor, in Postmenopausal Women T. R. Jeffry Evans,' Enrico Di Salle, Giorgio Ornati, Mercedes Lassus, Margherita Strolin Benedetti, Eio Pianezzola, and R. Charles Coombes Department ofMedical OncoIoij@,St. Geoa@ge'sHospital Medical School, Creamer Terrace, London SWI7 ORE, England fT. R. I. E.J; Departments of Oncology IE. D. S., G. 0., M. Li and Pharmacokinetics and Metabolism [M. S. B., E. P.J, Farmitalia Carlo Erba, Via Carlo Imbonati, Milan, Italy; and Department of Medical Oncology, Charing Cross Hospital, FuThoin Palace Roa@ London W6 8RF, England (R. C. C.] ABSTRACT aminoglutethimide and fadrozole (CGS 16949A) (7). Objective tumor regression occurred in approximately 21% of patients Aromatase inhibitors are a useful therapeutic option in the manage treated with 4}IAI@@,2witha low incidence of adverse effects; ment of endocrine-dependent advanced breast cancer. A single-dose 4.5% of patients were withdrawn from treatment because of administration of exemestane (FCE 24304; 6-methylenandrosta-l,4-dl ene-3,17-dione), a new Irreversible aromatase inhibitor, was investi side effects. However, 4HAD undergoes extensive metabolism gated in 29 healthy postmenopausal female volunteers. The compound, in the liver to form the inactive glucuronide (8) and conse given at p.o. doses ofO.5, 5, 12.5, 25, 50, 200, 400, and 800 mg(n = 3—4), quently it is recommended that it is given i.m. rather than p.o. was found to be a well tolerated, potent, long-lasting, and specific in The use of aminoglutethimide as an aromatase inhibitor is re hibitor of estrogen biosynthesis.
    [Show full text]
  • Label Extension of HERS, HERS II
    Depo®-Estradiol Estradiol cypionate injection, USP WARNINGS: ESTROGENS INCREASE THE RISK OF ENDOMETRIAL CANCER. Close clinical surveillance of all women taking estrogens is important. Adequate diagnostic measures including endometrial sampling when indicated, should be undertaken to rule out malignancy in all cases of undiagnosed persistent or recurring abnormal vaginal bleeding. There is currently no evidence that the use of “natural” estrogens result in a different endometrial risk profile than “synthetic” estrogens at equivalent estrogen doses. (See WARNINGS, malignant neoplasms, Endometrial cancer.) CARDIOVASCULAR AND OTHER RISKS Estrogens with and without progestins should not be used for the prevention of cardiovascular disease. (See WARNINGS, Cardiovascular disorders.) The Women’s Health Initiative (WHI) study reported increased risks of myocardial infarction, stroke, invasive breast cancer, pulmonary emboli, and deep vein thrombosis in postmenopausal women (50 to 79 years of age) during 5 years of treatment with oral conjugated estrogens (CE 0.625 mg) combined with medroxyprogesterone acetate (MPA 2.5 mg) relative to placebo. (see CLINICAL PHARMACOLOGY, Clinical Studies.) The Women’s Health Initiative Memory Study (WHIMS), a substudy of WHI, reported increased risk of developing probable dementia in postmenopausal women 65 years of age or older during 4 years of treatment with oral conjugated estrogens plus medroxyprogesterone acetate relative to placebo. It is unknown whether this finding applies to younger postmenopausal women or to women taking estrogen alone therapy. (See CLINICAL PHARMACOLOGY, Clinical Studies.) Other doses of conjugated estrogens with medroxyprogesterone acetate, and other combinations and dosage forms of estrogens and progestins were not studied in the WHI clinical trials and, in the absence of comparable data, these risks should be assumed to be similar.
    [Show full text]
  • Other Data Relevant to an Evaluation of Carcinogenicity and Its Mechanisms
    COMBINED ESTROGEN−PROTESTOGEN MENOPAUSAL THERAPY 263 4. Other Data Relevant to an Evaluation of Carcinogenicity and its Mechanisms 4.1 Absorption, distribution, metabolism and excretion The distribution of progestogens is described in the monograph on Combined estro- gen–progestogen contraceptives. That of estrogens is described below. 4.1.1 Humans Little more has been discovered about the absorption and distribution of estrone, estradiol and estriol products and conjugated equine estrogens in humans since the previous evaluation (IARC, 1999). Greater progress has been made in the identification and characterization of the enzymes that are involved in estrogen metabolism and excre- tion. The various metabolites and the responsible enzymes, including genotypic varia- tions, are described below (see Figures 3 and 4). Sulfation and glucuronidation are the main metabolic reactions of estrogens in humans. (a) Metabolites (i) Estrogen sulfates Several members of the sulfotransferase (SULT) gene family can sulfate hydroxy- steroids, including estrogens. The importance of SULTs in estrogen conjugation is demons- trated by the observation that a major component of circulating estrogen is sulfated, i.e. estrone sulfate (reviewed by Pasqualini, 2004). In addition to the parent hormones, estrone and estradiol, SULTs can also conjugate their respective catechols and also methoxyestro- gens (Spink et al., 2000; Adjei & Weinshilboum, 2002). The resulting sulfated metabolites are more hydrophilic and can be excreted. In postmenopausal breast cancers, levels of estrone sulfate can reach 3.3 ± 1.9 pmol/g tissue, which is five to nine times higher than the corresponding plasma concentration (equating gram of tissue with millilitre of plasma) (Pasqualini et al., 1996). In contrast, levels of estrone sulfate in premenopausal breast tumours are two to four times lower than those in plasma.
    [Show full text]