Different Levels of Estradiol Are Correlated with Sexual Dysfunction in Adult
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antiestrogenic Action of Dihydrotestosterone in Mouse Breast
Antiestrogenic action of dihydrotestosterone in mouse breast. Competition with estradiol for binding to the estrogen receptor. R W Casey, J D Wilson J Clin Invest. 1984;74(6):2272-2278. https://doi.org/10.1172/JCI111654. Research Article Feminization in men occurs when the effective ratio of androgen to estrogen is lowered. Since sufficient estrogen is produced in normal men to induce breast enlargement in the absence of adequate amounts of circulating androgens, it has been generally assumed that androgens exert an antiestrogenic action to prevent feminization in normal men. We examined the mechanisms of this effect of androgens in the mouse breast. Administration of estradiol via silastic implants to castrated virgin CBA/J female mice results in a doubling in dry weight and DNA content of the breast. The effect of estradiol can be inhibited by implantation of 17 beta-hydroxy-5 alpha-androstan-3-one (dihydrotestosterone), whereas dihydrotestosterone alone had no effect on breast growth. Estradiol administration also enhances the level of progesterone receptor in mouse breast. Within 4 d of castration, the progesterone receptor virtually disappears and estradiol treatment causes a twofold increase above the level in intact animals. Dihydrotestosterone does not compete for binding to the progesterone receptor, but it does inhibit estrogen-mediated increases of progesterone receptor content of breast tissue cytosol from both control mice and mice with X-linked testicular feminization (tfm)/Y. Since tfm/Y mice lack a functional androgen receptor, we conclude that this antiestrogenic action of androgen is not mediated by the androgen receptor. Dihydrotestosterone competes with estradiol for binding to the cytosolic estrogen receptor of mouse breast, […] Find the latest version: https://jci.me/111654/pdf Antiestrogenic Action of Dihydrotestosterone in Mouse Breast Competition with Estradiol for Binding to the Estrogen Receptor Richard W. -
On the Decorrelated Fast Cipher (DFC) and Its Theory
On the Decorrelated Fast Cipher (DFC) and Its Theory Lars R. Knudsen and Vincent Rijmen ? Department of Informatics, University of Bergen, N-5020 Bergen Abstract. In the first part of this paper the decorrelation theory of Vaudenay is analysed. It is shown that the theory behind the propo- sed constructions does not guarantee security against state-of-the-art differential attacks. In the second part of this paper the proposed De- correlated Fast Cipher (DFC), a candidate for the Advanced Encryption Standard, is analysed. It is argued that the cipher does not obtain prova- ble security against a differential attack. Also, an attack on DFC reduced to 6 rounds is given. 1 Introduction In [6,7] a new theory for the construction of secret-key block ciphers is given. The notion of decorrelation to the order d is defined. Let C be a block cipher with block size m and C∗ be a randomly chosen permutation in the same message space. If C has a d-wise decorrelation equal to that of C∗, then an attacker who knows at most d − 1 pairs of plaintexts and ciphertexts cannot distinguish between C and C∗. So, the cipher C is “secure if we use it only d−1 times” [7]. It is further noted that a d-wise decorrelated cipher for d = 2 is secure against both a basic linear and a basic differential attack. For the latter, this basic attack is as follows. A priori, two values a and b are fixed. Pick two plaintexts of difference a and get the corresponding ciphertexts. -
Degradation and Metabolite Formation of Estrogen Conjugates in an Agricultural Soil
Journal of Pharmaceutical and Biomedical Analysis 145 (2017) 634–640 Contents lists available at ScienceDirect Journal of Pharmaceutical and Biomedical Analysis j ournal homepage: www.elsevier.com/locate/jpba Degradation and metabolite formation of estrogen conjugates in an agricultural soil a,b b,∗ Li Ma , Scott R. Yates a Department of Environmental Sciences, University of California, Riverside, CA 92521, United States b Contaminant Fate and Transport Unit, U.S. Salinity Laboratory, Agricultural Research Service, United States Department of Agriculture, Riverside, CA 92507, United States a r t i c l e i n f o a b s t r a c t Article history: Estrogen conjugates are precursors of free estrogens such as 17ß-estradiol (E2) and estrone (E1), which Received 10 April 2017 cause potent endocrine disrupting effects on aquatic organisms. In this study, microcosm laboratory Received in revised form 11 July 2017 ◦ experiments were conducted at 25 C in an agricultural soil to investigate the aerobic degradation and Accepted 31 July 2017 metabolite formation kinetics of 17ß-estradiol-3-glucuronide (E2-3G) and 17ß-estradiol-3-sulfate (E2- Available online 1 August 2017 3S). The aerobic degradation of E2-3G and E2-3S followed first-order kinetics and the degradation rates were inversely related to their initial concentrations. The degradation of E2-3G and E2-3S was extraordi- Keywords: narily rapid with half of mass lost within hours. Considerable quantities of E2-3G (7.68 ng/g) and E2-3S Aerobic degradation 17ß-estradiol-3-glucuronide (4.84 ng/g) were detected at the end of the 20-d experiment, particularly for high initial concentrations. -
Hemiunu Used Numerically Tagged Surface Ratios to Mark Ceilings Inside the Great Pyramid Hinting at Designed Spaces Still Hidden Within
Archaeological Discovery, 2018, 6, 319-337 http://www.scirp.org/journal/ad ISSN Online: 2331-1967 ISSN Print: 2331-1959 Hemiunu Used Numerically Tagged Surface Ratios to Mark Ceilings inside the Great Pyramid Hinting at Designed Spaces Still Hidden Within Manu Seyfzadeh Institute for the Study of the Origins of Civilization (ISOC)1, Boston University’s College of General Studies, Boston, USA How to cite this paper: Seyfzadeh, M. Abstract (2018). Hemiunu Used Numerically Tagged Surface Ratios to Mark Ceilings inside the In 1883, W. M. Flinders Petrie noticed that the vertical thickness and height Great Pyramid Hinting at Designed Spaces of certain stone courses of the Great Pyramid2 of Khufu/Cheops at Giza, Still Hidden Within. Archaeological Dis- Egypt markedly increase compared to those immediately lower periodically covery, 6, 319-337. https://doi.org/10.4236/ad.2018.64016 and conspicuously interrupting a general trend of progressive course thinning towards the summit. Having calculated the surface area of each course, Petrie Received: September 10, 2018 further noted that the courses immediately below such discrete stone thick- Accepted: October 5, 2018 Published: October 8, 2018 ness peaks tended to mark integer multiples of 1/25th of the surface area at ground level. Here I show that the probable architect of the Great Pyramid, Copyright © 2018 by author and Khufu’s vizier Hemiunu, conceptualized its vertical construction design using Scientific Research Publishing Inc. surface areas based on the same numerical principles used to design his own This work is licensed under the Creative Commons Attribution International mastaba in Giza’s western cemetery and conspicuously used this numerical License (CC BY 4.0). -
Report on the AES Candidates
Rep ort on the AES Candidates 1 2 1 3 Olivier Baudron , Henri Gilb ert , Louis Granb oulan , Helena Handschuh , 4 1 5 1 Antoine Joux , Phong Nguyen ,Fabrice Noilhan ,David Pointcheval , 1 1 1 1 Thomas Pornin , Guillaume Poupard , Jacques Stern , and Serge Vaudenay 1 Ecole Normale Sup erieure { CNRS 2 France Telecom 3 Gemplus { ENST 4 SCSSI 5 Universit e d'Orsay { LRI Contact e-mail: [email protected] Abstract This do cument rep orts the activities of the AES working group organized at the Ecole Normale Sup erieure. Several candidates are evaluated. In particular we outline some weaknesses in the designs of some candidates. We mainly discuss selection criteria b etween the can- didates, and make case-by-case comments. We nally recommend the selection of Mars, RC6, Serp ent, ... and DFC. As the rep ort is b eing nalized, we also added some new preliminary cryptanalysis on RC6 and Crypton in the App endix which are not considered in the main b o dy of the rep ort. Designing the encryption standard of the rst twentyyears of the twenty rst century is a challenging task: we need to predict p ossible future technologies, and wehavetotake unknown future attacks in account. Following the AES pro cess initiated by NIST, we organized an op en working group at the Ecole Normale Sup erieure. This group met two hours a week to review the AES candidates. The present do cument rep orts its results. Another task of this group was to up date the DFC candidate submitted by CNRS [16, 17] and to answer questions which had b een omitted in previous 1 rep orts on DFC. -
Cryptanalysis of a Reduced Version of the Block Cipher E2
Cryptanalysis of a Reduced Version of the Block Cipher E2 Mitsuru Matsui and Toshio Tokita Information Technology R&D Center Mitsubishi Electric Corporation 5-1-1, Ofuna, Kamakura, Kanagawa, 247, Japan [email protected], [email protected] Abstract. This paper deals with truncated differential cryptanalysis of the 128-bit block cipher E2, which is an AES candidate designed and submitted by NTT. Our analysis is based on byte characteristics, where a difference of two bytes is simply encoded into one bit information “0” (the same) or “1” (not the same). Since E2 is a strongly byte-oriented algorithm, this bytewise treatment of characteristics greatly simplifies a description of its probabilistic behavior and noticeably enables us an analysis independent of the structure of its (unique) lookup table. As a result, we show a non-trivial seven round byte characteristic, which leads to a possible attack of E2 reduced to eight rounds without IT and FT by a chosen plaintext scenario. We also show that by a minor modification of the byte order of output of the round function — which does not reduce the complexity of the algorithm nor violates its design criteria at all —, a non-trivial nine round byte characteristic can be established, which results in a possible attack of the modified E2 reduced to ten rounds without IT and FT, and reduced to nine rounds with IT and FT. Our analysis does not have a serious impact on the full E2, since it has twelve rounds with IT and FT; however, our results show that the security level of the modified version against differential cryptanalysis is lower than the designers’ estimation. -
Provable Security Evaluation of Structures Against Impossible Differential and Zero Correlation Linear Cryptanalysis ⋆
Provable Security Evaluation of Structures against Impossible Differential and Zero Correlation Linear Cryptanalysis ⋆ Bing Sun1,2,4, Meicheng Liu2,3, Jian Guo2, Vincent Rijmen5, Ruilin Li6 1 College of Science, National University of Defense Technology, Changsha, Hunan, P.R.China, 410073 2 Nanyang Technological University, Singapore 3 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, P.R. China, 100093 4 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, P.R. China, 100878 5 Dept. Electrical Engineering (ESAT), KU Leuven and iMinds, Belgium 6 College of Electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, P.R.China, 410073 happy [email protected] [email protected] [email protected] [email protected] [email protected] Abstract. Impossible differential and zero correlation linear cryptanal- ysis are two of the most important cryptanalytic vectors. To character- ize the impossible differentials and zero correlation linear hulls which are independent of the choices of the non-linear components, Sun et al. proposed the structure deduced by a block cipher at CRYPTO 2015. Based on that, we concentrate in this paper on the security of the SPN structure and Feistel structure with SP-type round functions. Firstly, we prove that for an SPN structure, if α1 → β1 and α2 → β2 are possi- ble differentials, α1|α2 → β1|β2 is also a possible differential, i.e., the OR “|” operation preserves differentials. Secondly, we show that for an SPN structure, there exists an r-round impossible differential if and on- ly if there exists an r-round impossible differential α → β where the Hamming weights of both α and β are 1. -
Recommendation for Block Cipher Modes of Operation Methods
NIST Special Publication 800-38A Recommendation for Block 2001 Edition Cipher Modes of Operation Methods and Techniques Morris Dworkin C O M P U T E R S E C U R I T Y ii C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2001 U.S. Department of Commerce Donald L. Evans, Secretary Technology Administration Phillip J. Bond, Under Secretary of Commerce for Technology National Institute of Standards and Technology Arden L. Bement, Jr., Director iii Reports on Information Security Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security, and its collaborative activities with industry, government, and academic organizations. Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. -
Total Estradiol and Total Testosterone
Laboratory Procedure Manual Analyte: Total Estradiol and Total Testosterone Matrix: Serum Method: Simultaneous Measurement of Estradiol and Testosterone in Human Serum by ID LC-MS/MS Method No: 1033 Revised: as performed by: Clinical Chemistry Branch Division of Laboratory Sciences National Center for Environmental Health contact: Dr. Hubert W. Vesper Phone: 770-488-4191 Fax: 404-638-5393 Email: [email protected] James Pirkle, M.D., Ph.D. Division of Laboratory Sciences Important Information for Users CDC periodically refines these laboratory methods. It is the responsibility of the user to contact the person listed on the title page of each write-up before using the analytical method to find out whether any changes have been made and what revisions, if any, have been incorporated. Total Estradiol and Total Testosterone NHANES 2015-16 Public Release Data Set Information This document details the Lab Protocol for testing the items listed in the following table for SAS file TST_I: VARIABLE NAME SAS LABEL (and SI units) LBXTST Testosterone, total (nmol/L) LBXEST Estradiol (pg/mL) 1 of 49 Total Estradiol and Total Testosterone NHANES 2015-16 Contents 1 Summary of Test Principle and Clinical Relevance 7 1.1 Intended Use 7 1.2 Clinical and Public Health Relevance 7 1.3 Test Principle 8 2 Safety Precautions 10 2.1 General Safety 10 2.2 Chemical Hazards 10 2.3 Radioactive Hazards 11 2.4 Mechanical Hazards 11 2.5 Waste Disposal 11 2.6 Training 11 3 Computerization and Data-System Management 13 3.1 Software and Knowledge Requirements 13 3.2 Sample Information 13 3.3 Data Maintenance 13 3.4 Information Security 13 4 Preparation for Reagents, Calibration Materials, Control Materials, and All Other Materials; Equipment and Instrumentation. -
Camellia: a 128-Bit Block Cipher Suitable for Multiple Platforms – Design Andanalysis
Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms – Design andAnalysis Kazumaro Aoki1, Tetsuya Ichikawa2, Masayuki Kanda1, Mitsuru Matsui2, Shiho Moriai1, Junko Nakajima2, and Toshio Tokita2 1 Nippon Telegraph and Telephone Corporation, 1-1 Hikarinooka, Yokosuka, Kanagawa, 239-0847Japan {maro,kanda,shiho}@isl.ntt.co.jp 2 Mitsubishi Electric Corporation, 5-1-1 Ofuna, Kamakura, Kanagawa, 247-8501 Japan {ichikawa,matsui,june15,tokita}@iss.isl.melco.co.jp Abstract. We present a new 128-bit block cipher called Camellia. Camellia supports 128-bit block size and 128-, 192-, and 256-bit keys, i.e., the same interface specifications as the Advanced Encryption Stan- dard (AES). Efficiency on both software and hardware platforms is a remarkable characteristic of Camellia in addition to its high level of se- curity. It is confirmed that Camellia provides strong security against differential and linear cryptanalyses. Compared to the AES finalists, i.e., MARS, RC6, Rijndael, Serpent, and Twofish, Camellia offers at least comparable encryption speed in software and hardware. An optimized implementation of Camellia in assembly language can encrypt on a Pen- tium III (800MHz) at the rate of more than 276 Mbits per second, which is much faster than the speed of an optimized DES implementation. In addition, a distinguishing feature is its small hardware design. The hard- ware design, which includes encryption and decryption and key schedule, occupies approximately 11K gates, which is the smallest among all ex- isting 128-bit block ciphers as far as we know. 1 Introduction This paper presents a 128-bit block cipher called Camellia, which was jointly developed by NTT and Mitsubishi Electric Corporation. -
Advanced Encryption Standard by Example 1.0 Preface 2.0 Terminology
Written By: Adam Berent Advanced Encryption Standard by Example V.1.5 1.0 Preface The following document provides a detailed and easy to understand explanation of the implementation of the AES (RIJNDAEL) encryption algorithm. The purpose of this paper is to give developers with little or no knowledge of cryptography the ability to implement AES. 2.0 Terminology There are terms that are frequently used throughout this paper that need to be clarified. Block: AES is a block cipher. This means that the number of bytes that it encrypts is fixed. AES can currently encrypt blocks of 16 bytes at a time; no other block sizes are presently a part of the AES standard. If the bytes being encrypted are larger than the specified block then AES is executed concurrently. This also means that AES has to encrypt a minimum of 16 bytes. If the plain text is smaller than 16 bytes then it must be padded. Simply said the block is a reference to the bytes that are processed by the algorithm. State: Defines the current condition (state) of the block. That is the block of bytes that are currently being worked on. The state starts off being equal to the block, however it changes as each round of the algorithms executes. Plainly said this is the block in progress. XOR Refers to the bitwise operator Exclusive Or. XOR operates on the individual bits in a byte in the following way: 0 XOR 0 = 0 1 XOR 0 = 1 1 XOR 1 = 0 0 XOR 1 = 1 For example the Hex digits D4 XOR FF 11010100 XOR 11111111 = 00101011 (Hex 2B) Another interesting property of the XOR operator is that it is reversible. -
Mixture Differential Cryptanalysis and Structural Truncated Differential Attacks on Round-Reduced
Mixture Differential Cryptanalysis and Structural Truncated Differential Attacks on round-reduced AES Lorenzo Grassi IAIK, Graz University of Technology, Austria [email protected] Abstract. At Eurocrypt 2017 the first secret-key distinguisher for 5-round AES - based on the “multiple-of-8” property - has been presented. Although it allows to distinguish a random permutation from an AES-like one, it seems rather hard to implement a key-recovery attack different than brute-force like using such a distinguisher. In this paper we introduce “Mixture Differential Cryptanalysis” on round-reduced AES- like ciphers, a way to translate the (complex) “multiple-of-8” 5-round distinguisher into a simpler and more convenient one (though, on a smaller number of rounds). Given a pair of chosen plaintexts, the idea is to construct new pairs of plaintexts by mixing the generating variables of the original pair of plaintexts. Here we theoretically prove that for 4-round AES the corresponding ciphertexts of the original pair of plaintexts lie in a particular subspace if and only if the corresponding pairs of ciphertexts of the new pairs of plaintexts have the same property. Such secret-key distinguisher - which is independent of the secret-key, of the details of the S-Box and of the MixColumns matrix (except for the branch number equal to 5) - can be used as starting point to set up new key-recovery attacks on round-reduced AES. Besides a theoretical explanation, we also provide a practical verification both of the distinguisher and of the attack. As a second contribution, we show how to combine this new 4-round distinguisher with a modified version of a truncated differential distinguisher in order to set up new 5-round distinguishers, that exploit properties which are independent of the secret key, of the details of the S-Box and of the MixColumns matrix.