Microsoft Office Outlook

Total Page:16

File Type:pdf, Size:1020Kb

Microsoft Office Outlook David Barthelmy From: John Betts [[email protected]] Sent: Tuesday, March 26, 2013 10:32 AM To: [email protected] Subject: More minerals Having trouble viewing this email? Click here Over 70 new mineral specimens were posted to my site. This email is advance notice you requested. (Use the SafeUnsubscribe link below if you no longer want to receive these email notices.) Go to: New Listings Page 1 New Listings Page 2 or http://www.johnbetts-fineminerals.com/jhbnyc/newlist.htm http://www.johnbetts-fineminerals.com/jhbnyc/newlist1.htm Highlight of this week's minerals include: - Tripuhyite on Quartz from Miniera di Le Cetine di Cotorniano, Italy - Allanite-(Ce) from Gotta-Walden Prospect, Connecticut - Wavellite from National Limestone Quarry, Lime Ridge, Pennsylvania - Fluorite on Quartz from Caravia-Berbes District, Spain - Quartz var. Amethyst Quartz from Balkhash Lake, Kazakhstan - Curite and Soddyite from Swambo Hill, Democratic Republic of the Congo - Calcite on Pyrite from San Antonio Mine, Santa Eulalia District, Mexico - Microcline from Pike's Peak, Colorado, ex. Stoddard - Barite from Cartersville District, Georgia - Coal with fossilized wood from Ekka Coal Mine, Alaska - Calcite from Lassellsville, New York - Analcime with Aegirine from Mont Saint-Hilaire, Canada - Grossular Garnet from Belvidere Mountain Quarries, Vermont - Eosphorite from Linopolis, Brazil - Xanthoconite-Proustite from Freiberg District, Germany - Apophyllite-(KOH) and Inesite from Wessels Mine, South Africa - Salammoniac from Ravat, Tajikistan - Woodhouseite on Quartz from Champion Mine, California - Quartz with Cookeite from Bennett Quarry, Maine - Barite from Hot Springs Barite District, North Carolina - Diopside from Kunlun Mountains, China - Bultfonteinite from N'Chwaning Mine, South Africa - Birnessite pseudomorph after Serandite from Mont Saint-Hilaire, Canada - Brucite and Hydromagnesite from Cedar Hill Quarry, Pennsylvania - Apophyllite-(KF) from Cornwall Iron Mines, Pennsylvania 1 - Sarabauite from Sarabau Mine, Malaysia - Durangite with Hematite from Thomas Range, Utah - Copper in Quartz from West Ridge Quarry, Charmian, Pennsylvania - Barite from Baia Sprie (Felsöbánya), Romania - Polybasite from Husky Mine, Elsa, Canada - Rhodonite in Galena from Broken Hill, Australia - Talc from Johnson, Rhode Island - Malachite from Planet Mine, Arizona - Buergerite Tourmaline from near Mexquitic, Mexico - Goethite from East Whitelands Township, Pennsylvania - Ettringite from N'Chwaning Mine #2, South Africa - Carletonite from Mont Saint-Hilaire, Canada - Quartz with Ajoite inclusions from Messina Mine, South Africa - Gold (crystallized) from Round Mountain Gold Mine, Nevada - Heulandite on Mordenite from Aurangabad, India - Almandine-Spessartine Garnet from Avondale, Pennsylvania - Rutile from Parkesburg, Pennsylvania PLUS MANY MORE... Sincerely, John Betts, owner JohnBetts-FineMinerals.com Forward email This email was sent to [email protected] by [email protected] | Update Profile/Email Address | Instant removal with SafeUnsubscribe ™ | Privacy Policy . John Betts - Fine Minerals | 215 West 98 Street, No. 2F | New York | NY | 10025 2.
Recommended publications
  • Nanoparticles of Lanthanide and Transition Metal Oxysulfides : from Colloidal Synthesis to Structure, Surface, Optical and Magnetic Properties Clement Larquet
    Nanoparticles of lanthanide and transition metal oxysulfides : from colloidal synthesis to structure, surface, optical and magnetic properties Clement Larquet To cite this version: Clement Larquet. Nanoparticles of lanthanide and transition metal oxysulfides : from colloidal synthe- sis to structure, surface, optical and magnetic properties. Material chemistry. Sorbonne Université, 2018. English. NNT : 2018SORUS432. tel-02950055 HAL Id: tel-02950055 https://tel.archives-ouvertes.fr/tel-02950055 Submitted on 27 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale 397 : Physique et chimie des matériaux Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP) Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) Nanoparticles of lanthanide and transition metal oxysulfides: from colloidal synthesis to structure, surface, optical and magnetic properties Par M. Clément Larquet Thèse de doctorat de Sorbonne Université Dirigée par Clément Sanchez et Andrea Gauzzi Présentée et soutenue publiquement le 25 septembre 2018 Devant un jury composé de : Mme. Elsje Alessandra Quadrelli Directrice de recherches - CPE Lyon Rapporteur M. Stéphane Jobic Directeur de recherches - IEMN Rapporteur Mme. Catherine Louis Directrice de recherches - SU Examinatrice Mme. Asma Tougerti Chargée de recherches – Univ.
    [Show full text]
  • Infrared and Raman Spectroscopic Characterization of the Silicateв
    Journal of Molecular Structure 1042 (2013) 1–7 Contents lists available at SciVerse ScienceDirect Journal of Molecular Structure journal homepage: www.elsevier.com/locate/molstruc Infrared and Raman spectroscopic characterization of the silicate–carbonate mineral carletonite – KNa4Ca4Si8O18(CO3)4(OH,F)ÁH2O ⇑ Ray L. Frost a, , Yunfei Xi a, Ricardo Scholz b, Andrés López a, Fernanda Maria Belotti c a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-00, Brazil c Federal University of Itajubá, Campus Itabira, Itabira, MG 35903-087, Brazil article info abstract Article history: An assessment of the molecular structure of carletonite a rare phyllosilicate mineral with general chem- Received 28 February 2013 ical formula given as KNa4Ca4Si8O18(CO3)4(OH,F)ÁH2O has been undertaken using vibrational spectros- Received in revised form 19 March 2013 copy. Carletonite has a complex layered structure. Within one period of c, it contains a silicate layer of Accepted 19 March 2013 composition NaKSi O ÁH O, a carbonate layer of composition NaCO Á0.5H O and two carbonate layers Available online 26 March 2013 8 18 2 3 2 of composition NaCa2CO3(F,OH)0.5. À1 2À Raman bands are observed at 1066, 1075 and 1086 cm . Whether these bands are due to the CO m1 Keywords: 3 symmetric stretching mode or to an SiO stretching vibration is open to question. Carletonite Multiple bands are observed in the 300–800 cmÀ1 spectral region, making the attribution of these Carbonate Infrared bands difficult.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Apophyllite-(Kf)
    December 2013 Mineral of the Month APOPHYLLITE-(KF) Apophyllite-(KF) is a complex mineral with the unusual tendency to “leaf apart” when heated. It is a favorite among collectors because of its extraordinary transparency, bright luster, well- developed crystal habits, and occurrence in composite specimens with various zeolite minerals. OVERVIEW PHYSICAL PROPERTIES Chemistry: KCa4Si8O20(F,OH)·8H20 Basic Hydrous Potassium Calcium Fluorosilicate (Basic Potassium Calcium Silicate Fluoride Hydrate), often containing some sodium and trace amounts of iron and nickel. Class: Silicates Subclass: Phyllosilicates (Sheet Silicates) Group: Apophyllite Crystal System: Tetragonal Crystal Habits: Usually well-formed, cube-like or tabular crystals with rectangular, longitudinally striated prisms, square cross sections, and steep, diamond-shaped, pyramidal termination faces; pseudo-cubic prisms usually have flat terminations with beveled, distinctly triangular corners; also granular, lamellar, and compact. Color: Usually colorless or white; sometimes pale shades of green; occasionally pale shades of yellow, red, blue, or violet. Luster: Vitreous to pearly on crystal faces, pearly on cleavage surfaces with occasional iridescence. Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction Fracture: Uneven, brittle. Hardness: 4.5-5.0 Specific Gravity: 2.3-2.4 Luminescence: Often fluoresces pale yellow-green. Refractive Index: 1.535-1.537 Distinctive Features and Tests: Pseudo-cubic crystals with pearly luster on cleavage surfaces; longitudinal striations; and occurrence as a secondary mineral in association with various zeolite minerals. Laboratory analysis is necessary to differentiate apophyllite-(KF) from closely-related apophyllite-(KOH). Can be confused with such zeolite minerals as stilbite-Ca [hydrous calcium sodium potassium aluminum silicate, Ca0.5,K,Na)9(Al9Si27O72)·28H2O], which forms tabular, wheat-sheaf-like, monoclinic crystals.
    [Show full text]
  • The Journal of Gemmology Editor: Dr R.R
    he Journa TGemmolog Volume 25 No. 8 October 1997 The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London Eel N SSU Tel: 0171 404 1134 Fax: 0171 404 8843 e-mail: [email protected] Website: www.gagtl.ac.uklgagtl President: Professor R.A. Howie Vice-Presidents: LM. Bruton, Af'. ram, D.C. Kent, R.K. Mitchell Honorary Fellows: R.A. Howie, R.T. Liddicoat Inr, K. Nassau Honorary Life Members: D.). Callaghan, LA. lobbins, H. Tillander Council of Management: C.R. Cavey, T.]. Davidson, N.W. Decks, R.R. Harding, I. Thomson, V.P. Watson Members' Council: Aj. Allnutt, P. Dwyer-Hickey, R. fuller, l. Greatwood. B. jackson, J. Kessler, j. Monnickendam, L. Music, l.B. Nelson, P.G. Read, R. Shepherd, C.H. VVinter Branch Chairmen: Midlands - C.M. Green, North West - I. Knight, Scottish - B. jackson Examiners: A.j. Allnutt, M.Sc., Ph.D., leA, S.M. Anderson, B.Se. (Hons), I-CA, L. Bartlett, 13.Se, .'vI.phil., I-G/\' DCi\, E.M. Bruton, FGA, DC/\, c.~. Cavey, FGA, S. Coelho, B.Se, I-G,\' DGt\, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, f1GA, Cj.E. Halt B.Sc. (Hons), FGr\, G.M. Howe, FG,'\, oo-, G.H. jones, B.Se, PhD., FCA, M. Newton, B.Se, D.PhiL, H.L. Plumb, B.Sc., ICA, DCA, R.D. Ross, B.5e, I-GA, DGA, P..A.. Sadler, 13.5c., IGA, DCA, E. Stern, I'GA, DC/\, Prof. I.
    [Show full text]
  • JOURNAL the Russell Society
    JOURNAL OF The Russell Society Volume 20, 2017 www.russellsoc.org JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR Dr Malcolm Southwood 7 Campbell Court, Warrandyte, Victoria 3113, Australia. ([email protected]) JOURNAL MANAGER Frank Ince 78 Leconfield Road, Loughborough, Leicestershire, LE11 3SQ. EDITORIAL BOARD R.E. Bevins, Cardiff, U.K. M.T. Price, OUMNH, Oxford, U.K. R.S.W. Braithwaite, Manchester, U.K. M.S. Rumsey, NHM, London, U.K. A. Dyer, Hoddlesden, Darwen, U.K. R.E. Starkey, Bromsgrove, U.K. N.J. Elton, St Austell, U.K. P.A. Williams, Kingswood, Australia. I.R. Plimer, Kensington Gardens, S. Australia. Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, on the Society website (www.russellsoc.org) or obtained from the Editor or Journal Manager. Subscription rates: The Journal is free to members of the Russell Society. The non-member subscription rates for this volume are: UK £13 (including P&P) and Overseas £15 (including P&P). Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society: named after the eminent amateur mineralogist Sir Arthur Russell (1878–1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material.
    [Show full text]
  • General Index
    CAL – CAL GENERAL INDEX CACOXENITE United States Prospect quarry (rhombs to 3 cm) 25:189– Not verified from pegmatites; most id as strunzite Arizona 190p 4:119, 4:121 Campbell shaft, Bisbee 24:428n Unanderra quarry 19:393c Australia California Willy Wally Gully (spherulitic) 19:401 Queensland Golden Rule mine, Tuolumne County 18:63 Queensland Mt. Isa mine 19:479 Stanislaus mine, Calaveras County 13:396h Mt. Isa mine (some scepter) 19:479 South Australia Colorado South Australia Moonta mines 19:(412) Cresson mine, Teller County (1 cm crystals; Beltana mine: smithsonite after 22:454p; Brazil some poss. melonite after) 16:234–236d,c white rhombs to 1 cm 22:452 Minas Gerais Cripple Creek, Teller County 13:395–396p,d, Wallaroo mines 19:413 Conselheiro Pena (id as acicular beraunite) 13:399 Tasmania 24:385n San Juan Mountains 10:358n Renison mine 19:384 Ireland Oregon Victoria Ft. Lismeenagh, Shenagolden, County Limer- Last Chance mine, Baker County 13:398n Flinders area 19:456 ick 20:396 Wisconsin Hunter River valley, north of Sydney (“glen- Spain Rib Mountain, Marathon County (5 mm laths donite,” poss. after ikaite) 19:368p,h Horcajo mines, Ciudad Real (rosettes; crystals in quartz) 12:95 Jindevick quarry, Warregul (oriented on cal- to 1 cm) 25:22p, 25:25 CALCIO-ANCYLITE-(Ce), -(Nd) cite) 19:199, 19:200p Kennon Head, Phillip Island 19:456 Sweden Canada Phelans Bluff, Phillip Island 19:456 Leveäniemi iron mine, Norrbotten 20:345p, Québec 20:346, 22:(48) Phillip Island 19:456 Mt. St-Hilaire (calcio-ancylite-(Ce)) 21:295– Austria United States
    [Show full text]
  • Carbon Mineral Ecology: Predicting the Undiscovered Minerals of Carbon
    American Mineralogist, Volume 101, pages 889–906, 2016 Carbon mineral ecology: Predicting the undiscovered minerals of carbon ROBERT M. HAZEN1,*, DANIEL R. HUMMER1, GRETHE HYSTAD2, ROBERT T. DOWNS3, AND JOSHUA J. GOLDEN3 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Calumet, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. ABSTRACT Studies in mineral ecology exploit mineralogical databases to document diversity-distribution rela- tionships of minerals—relationships that are integral to characterizing “Earth-like” planets. As carbon is the most crucial element to life on Earth, as well as one of the defining constituents of a planet’s near-surface mineralogy, we focus here on the diversity and distribution of carbon-bearing minerals. We applied a Large Number of Rare Events (LNRE) model to the 403 known minerals of carbon, using 82 922 mineral species/locality data tabulated in http://mindat.org (as of 1 January 2015). We find that all carbon-bearing minerals, as well as subsets containing C with O, H, Ca, or Na, conform to LNRE distributions. Our model predicts that at least 548 C minerals exist on Earth today, indicating that at least 145 carbon-bearing mineral species have yet to be discovered. Furthermore, by analyzing subsets of the most common additional elements in carbon-bearing minerals (i.e., 378 C + O species; 282 C + H species; 133 C + Ca species; and 100 C + Na species), we predict that approximately 129 of these missing carbon minerals contain oxygen, 118 contain hydrogen, 52 contain calcium, and more than 60 contain sodium.
    [Show full text]
  • AUTHOR INDEX to VOLUME 56 3-4 620 3-4 665 L-2 354 7-8 Ll47 3-4 628 5-6 888 9-10 1760 L-2 307 7-8 1208 7-8 1180 9-10 1617 Rr-12 2
    AUTHOR INDEX TO VOLUME 56 Albright, Jarnes N. Vaterite stability 3-4 620 Allen, Rhesa M., Jr. Memorial of Alfred Leonard Anderson; November 19, 3-4 665 1900-January 27, 1964 1-9 1))') Anderson, C. P. Refinement ofthe crystal structure ofapophyllite; I, X'ray diffraction and physical properties Anderson, Charles P. Refinement of the crystal structure of apophyllite [abstr.] l-2 354 Anthony, John W. The crystal structure of legrandite 7-8 ll47 Aoki, Ilideki Reactions of magnesium carbonates by direct x-ray diffraction under 3-4 628 hydrothermal conditions Appleman, Daniel E. Crystal chemistry of a lunar pigeonite 5-6 888 Aramaki, Shigeo. Hydrothermal determination of temperature and water pressure of 9-10 1760 the magma of Aira caldera, Japan Arern, Joel E. Chevkinite and perrierite; synthesis, crystal growth and polymorphism l-2 307 Bachinski, Sharon W. Rate of Al-Si ordering in sanidines from an ignimbrite cooling 7-8 1208 unit Bailey, S. W. Antiphase domain structure of the intermediate composition plagioclase 7-8 1180 feldspars Bancroft, G. M. Miissbauer spectra of minerals along the diopside-hedenbergite tie 9-10 1617 line Barber, D. J. Mounting methods for mineral grains to be examined by high resolution rr-12 2152 electron microscopy Barton, Paul B., Jr. Sub-solidus relations in the system PbS-CdS ll-12 2034 Barton, R., Jr. Refinement of the crystal structure of elbaite [abstr.] r-2 356 Bates, Thornas F, Presentation of the Roebling Medal of the Mineralogical Society 3-4 653 of America for 1970 to George W. Brindley Bates,Ihornas F. Memorial of Paul Dimitri Krynine; September 19, 19O2-September 3-4 690 12.
    [Show full text]
  • Written in Stone: Remembering Master Facetor Art Grant
    GEMOLOGY Written in Stone: Remembering Master Faceter Art Grant By Elise A. Skalwold f ever a person’s legacy could be said to be “written Fig. 1: Arthur Tracey Grant, Jr. 1925-2015 in stone” it may well be that of legendary gem (Photo courtesy of cutter, Arthur Tracey Grant, Jr. who passed away on Nancy Grant Pritchard) September 24, 2015, in Richmond, Kentucky at the age of 90 (Fig. 1). Even for those Iwho do not frequent the yearly Fig. 2: The Scovil, Robert Weldon, Michael shows and symposia of the mineral 3,965.35-carat blue J. Bainbridge and Chip Clark; and gem community, a visit to the fluorite known as the latter’s images appear in the “Big Blue” from the venerable Smithsonian Institution in Minerva #2 mine, Smithsonian’s publications and Washington D.C. is hardly complete Hardin County, on its website. It was through a Illinois resides in without wandering through the gem the Smithsonian’s photographer’s eye and in the and mineral collections housed course of gemological studies Fig.2A: A restored National Gem within its great halls. 1987 snapshot of Collection, a gift of that I first became aware of the Harold and Doris Awestruck visitors, young and old, Art at the Desert astounding skill of this lapidary Inn, Tucson, Arizona Dibble in 1992 (Photo can gaze upon some of the largest holding the fluorite by Tino Hammid. artist and of the beauty which Courtesy of Nancy and most magnificent gemstones in octahedron from he was capable of bringing forth which he cut the Big Grant Pritchard).
    [Show full text]
  • Design Rules for Discovering 2D Materials from 3D Crystals
    Design Rules for Discovering 2D Materials from 3D Crystals by Eleanor Lyons Brightbill Collaborators: Tyler W. Farnsworth, Adam H. Woomer, Patrick C. O'Brien, Kaci L. Kuntz Senior Honors Thesis Chemistry University of North Carolina at Chapel Hill April 7th, 2016 Approved: ___________________________ Dr Scott Warren, Thesis Advisor Dr Wei You, Reader Dr. Todd Austell, Reader Abstract Two-dimensional (2D) materials are championed as potential components for novel technologies due to the extreme change in properties that often accompanies a transition from the bulk to a quantum-confined state. While the incredible properties of existing 2D materials have been investigated for numerous applications, the current library of stable 2D materials is limited to a relatively small number of material systems, and attempts to identify novel 2D materials have found only a small subset of potential 2D material precursors. Here I present a rigorous, yet simple, set of criteria to identify 3D crystals that may be exfoliated into stable 2D sheets and apply these criteria to a database of naturally occurring layered minerals. These design rules harness two fundamental properties of crystals—Mohs hardness and melting point—to enable a rapid and effective approach to identify candidates for exfoliation. It is shown that, in layered systems, Mohs hardness is a predictor of inter-layer (out-of-plane) bond strength while melting point is a measure of intra-layer (in-plane) bond strength. This concept is demonstrated by using liquid exfoliation to produce novel 2D materials from layered minerals that have a Mohs hardness less than 3, with relative success of exfoliation (such as yield and flake size) dependent on melting point.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 62, pages 1259-1262, 1977 NewMineral Names* MtcHe.rr-Flrlscsnn, Lours J. CesRrAND ADoLF Pe.ssr Franzinite* Six microprobe analyses gave (range and av.): AsrOu 44.96-45.68,45.36; CuO 16.84-20.22,18.81; ZnO 16.78-18.57, Stefano Merlino and Paolo Orlandi (1977)Franzinite, a new min- 17.90;CdO l3 58-14.93,14.08; CaO 0.41-l.ll' 0.80; PbO 0.14- eral phase from Pitigliano,ltaly. Neues Jahrb. Mineral. Mon- 1.42,0.63: MnO 0.'79-1.27,1.07; sum 97 8l-99 54' 98.65 percent, atsh., 163-167. corresponding to (Cu,Zn,Cd).(AsOa), with Cu:Zn:Cd : 1.19: Microchemical analysis gave SiO, 32.44, Al2Os 25.21, Fe"O" Lll:0.55. The mineral is readily dissolvedby concentratedacids 0.04,MgO 0.14,CaO 12.08,Na,O 11.50,K,O 4.24,SOa 10.65, CO, X-ray study showsthe mineral to be monoclinic,space group 12' 154, Cl 036,H,O 1.88,sum 100.08- (O:Cl,) 0.08 : 100.00 Im. or 12/m, a ll.65, b 12.68,c 6.87(all + 0.01A)' B 98 95 + 0.05'' percent. "SiO, and AlrO, were determined by X-ray fluorescence, Z = 6, G calc 4.95 The strongest X-ray lines (46 given) are 6.41 (vvs) account being taken of the proper correction factor for S and Cl (MS) (020, l0T), 3.29 (vSXll2), 2.876 (vSX400), 2.79s and assuming that the weight percentages sum up to 100 0." (222, 321, 240), 1.644(MS).
    [Show full text]