CARLETONITE, Knaacaasiaors(Coe)4(F,OH)'H2O, a NEW MINERAL from MOUNT ST

Total Page:16

File Type:pdf, Size:1020Kb

CARLETONITE, Knaacaasiaors(Coe)4(F,OH)'H2O, a NEW MINERAL from MOUNT ST THE AMERICAN MINERALOGIST. VOL. 56. NOVEMBER-DECEMBER. 1S71 CARLETONITE, KNaaCaaSiaOrs(COe)4(F,OH)'H2O, A NEW MINERAL FROM MOUNT ST. HILAIRE, QUEBEC G. Y. Cnao, Departmentof Geology,Caileton University, Ottawa, Canad,a AesrnA,cr Carletonite, KNarCarSisOrs(COa){(l',OH).HrO, occurs in thermally metamorphosed inclusions in the nepheline syenite at Mount St. Hilaire, Quebec. It is associated mainly with pectolite. albite, arfvedsonite, calcite, fluorite, and apophyllite The mineral is tetragonal, PL/mbm, with o:13.178+.003 A, ,:16.695+.004 A, c/a:L2669. The strongest X-ray powder diffraction lines and their relative intensities (visual), are: 8.353(100),4.t7t(100),4.053(50), 2.903(90),2.384(60). Z:4 Carletonite is pink to pale blue, with vitreous to pearly luster. E:4-4; on {OOt}. Density (meas.):2.45 g/cma, (calc.):2.426g/cms. Cleavage{001 } perfect, {tt0} good, fracture conchoidal.Optically uniaxial ( - ), o: 1.521+ 0.001, e: 1.517* 0.001, in Na light, for pink and blue varieties. The blue variety is weakly pleochroic with O: very pale blue and E : very pale pinkish brown. Analyses of pink and blue varieties gave, respectively, SiOz M.9,44.7, TiO2 tr., tr., AlzOa0.5,0.6, total Fe n.d., n.d., MgO 0.C9, C.13, CaO 19.92, 19.97, NazO 10.23, 10.64, KzO 3.28,3.31,COz -,15.2, F 0.70,0.73, HrO- 0.70,C.63, HzO+ -, 3.51, LOI 19.92,-, sum 100.24,99.42, - (O:F, 0.29,0.30:99.95,99.1270. DTA shows endothermic peaks at 300oC (vw), 692oC 1vs), and 915oC (wv), and an exothermic peak at 736"C (w). TGA shows 0.70/6weight loss below 430oC and 17.3/p above 430oC with major Ioss between 650o and 750oC. Infrared spectrum and its interpretation are given. INrnooucrror.r In a previous paper, Chao et al. (1967) briefly reported the occurrence of ten unidentified minerals from the nepheline syenite at Mount St. Hilaire, Quebec.One of these minerals, UK15, was later named carle- tonite, after Carleton University where it was first recognized.The name was approved by the Commission of New Minerals and Mineral Names of I.M.A. in June, 1969.The type specimensare depositedat the Na- tional Museum of Canada (No. T711). OccunnnNcB The geologicalsetting of the Mount St. Hilaire pluton has been given by Dresserand Denis (1944) and summarized bv Chao et al. (1967). Carletonite was found in the cores of wall-rock inclusions (shale inter- bedded with limestone) in the .nepheline syenite. The inclusions are thermally metamorphosed,either to-greenish gray and gray hornfels or to siliceousmarble. In one occurrencecarletonite was found in the quartz veins of a greenish gray hornfels, associatedwith lemon-yellow narsar- sukite, calcite, purple fluorite, and minor amounts of ancylite, molyb- 1855 1856 G. Y. CHAO denite, leucosphenite, ramsayite, and galena. In another occurrence, carletonite was found in the core of an inclusion two feet in diameter. The outer zone of this inclusion was mainly darli gray hornfels with Iarge patches of pink and white massive albite. The inner zone consisted primarily of coarsefi.brous pectolite, medium-grained arfvedsonite, small patches of massive pink albite, fine-grained qlrartz, apophyllite, purple fluorite, and carletonite. Massive pink carletonite, constituting approxi- mately 80 percent of the core (about 8 inches in diameter), was asso- ciated with euhedral crystals of arfvedsonite, apophyllite, and acicular leifrte. In a third occurrencethe outer zone oI the inclusion was a coarse- grained marble and the inner zone was almost pure, fibrous, radiating pectolite. Pale blue carletonite was found at the core with microcline, arfvedsonite, and minute euhedral crystals of apophyllite. No crystals of carletonite were found in any of these occurrences. X-ney Cnvsrar.r-ocRAPEY Weissenberg and precessionphotographs indicate that carletonite is tetragonal,with o:13.t2+.01 A and c:16.70-1.01 A. Systematicex- tinctions are consistent with the space group P4/mbm, except for two weak reflections,050 and 070. These reflections may be due to Renninger effect (multiple reflection) (James, 1958, p. 26) because they were ob- served only on photographs taken with CuKa radiation, but not on photographs taken with MoKa radiation. The cell parameters derived from the single crystal photographs were refined by a least-squares method, using powder diffraction data obtained from photographs taken with CuKa radiation and a 114.6mm camera.Metallic silicon was used as an internal standard.The refinedvalues area:13.178+.003 A and c:16.695+.004 A, c/a:L2669. X-ray powder difiraction data of carle- tonite are given in Table 1. The indexing of the lines was made by com- paring the observed and calculated d-values, using single crystal photo- graphs as a guide. Cnalrrcar, CoruposrrroN The pink and the blue varieties were separatedby use of heavy liquids and an isodynamic magnetic separator. The separated fractions were hand-picked under a microscope.A preliminary semi-quantitative spec- trographic analysis indicated the presence of Na, Ca, K, Si as major constituents; Mg and Al as minor constituents; Mn and B as traces only. Theseresults were used as a guide for the wet-chemical analyses. Oxides of nine elements were determined for the pink and the blue varieties according to the proceduresdescribed by Hounslow and Moore (1966). COz was determined by an acid evolution-gravimetric method. CARLETONITE 1857 I DIE I X-Ray ?owder Dlffraction DaEa of Carletonite (cuK- radiation, ).=1.54I8R' 114.6 m caera, " Si standard) I dobs (8) d .(8) hk1 (vasual, cal 40 lb. /u) 15.695 001 30 9.3i9 9 .3 r85 It0 100 8.353 8.3476 o02 20 6.583 6,5892 200 10 5.890 5 .8935 2ro 003 25 f. toJ 5.5650 ).))tJ 22L 10 ).I/J 5.t720 202 40 4.816 4.8t45 212 30 4.659 4.6592 220 10 4.250 4.2516 203 100 4.L71 4.r737 004 4.1672 310 )u 4.053 4 .0683 222 4.0462 213 5 3.573 3.5725 223 25 3.40s 3.406I 2t4 40 5.5J)t 313 10 3.236 3.2322 401 5 3,202 3.1962 410 5 3.139 J.I4JJ 115 1 l?ol 411 10 3.109 3.1088 224 40 3.057 3.0550 323 25 2.945 2.9468 420 90 2.903 2.905r 2t5 2.9018 421 403 I) 2.835 2.8350 40 2.777 2.7787 422 l5 2.750 2.7497 324 20 2.7t3 2.7L40 225 2.7L22 5 2.667 z .oo0z 116 40 2:604 2.6042 423 2.6034 43r 2.584 2.5860 404 2.5844 510 l5 2.540 2.537.6 4r4 10 2.466 2.4688 512 2.46s2 325 5 2.42) 2.4212 521 60 2,384 2.3850 007 1858 G, Y. CHAO Table I (continued) IO 2.329 2.3296 440 5B 2.265 2.2742 335 2.2600 530 IO 2.239 2.2396 531 15 2.209 2.2094 l0 2.t65 2.1665 6I0 IO 2.149 2.t485 6tl 158 2.tzL 2.L240 602 2.1230 221 20 2.086 2.0869 008 2.0836 620 5 2.065 2.0676 62L IO 2.O37 2.0364 118 5 2.O23r 426 2.0216 622 IO r.996 | .9974 327 10 t.971 r.9738 525 30 |,9r2 r.9135 436 1.9115 4r7 I5 I .890 1.8917 337 10B 1.860 I .8636 550 l. 8636 710 5 I .836 l. 8340 605 40 1.813 r.8122 328 t. /60 r.7852 642 <5 r. /oo t.7672 553 IO r.748 1.7474 418 l0B 1.731 L.7 322 338 r .7304 730 10 1.710 1.7094 olo 5 t.679 I .5788 651 5 I .653 1.6538 652 r.6523 733 IOB r .636 1.6405 740 1.6361 537 1.6345 438 30 1.603 r.6044 419 r .6036 617 1 603I 645 l5 I .568 r.5692 627 l58 I.553 r.s544 448 I .5530 660 5 1.533 t.5332 538 l5 1,517 t.5r71 00.1l Plus l7 lines B = Broad llne CARLETONITE 1859 HzO was analysed by direct determination of H (on two 25 mg samples) by Dr. A. D. Campbell, University of Otago, New Zealand. Results of the analysesare tabulated in Table 2. Crystal structure analysis (to be published elsewhere)showed that in carletonite, the SiOatetrahedra share three of their four oxygen atoms to form sheets consisting of four-membered and eight-membered rings, re- sembling the sheets in apophyllite (Taylor and NSray-Szab6, l93t; Chao, 1971). Two apophyllite-like sheetsare cross-linkedin carletonite, by half of the oxygen atoms not shared in the single sheets, to form "double sheets" of the composition SisOrs.Potassium, sodium and cal- cium atoms occupy distinct positions. These Iead to the ideal structural formula: KNa+CaESiaO18(COB)4(F,OH)' HrO The formula of carletonite was calculated from the average of the two analvses, on the basis of 8 (Si, AI) atoms per formula, resulting in: Ko.znNar.so(Caa.zr,Mgo.or) (Sit.rr, A10.11) O18(COr)r.uuFo.nt' 2.05 HrO Carletonite, thus, is non-stoichiometric, rvith deficienciesin K, Na, Ca, COa, and F. The water contents given in the analyses are much higher than the structural formula requires, even if one assumesthat some of the water is present in the form of OH in substitution for F.
Recommended publications
  • Infrared and Raman Spectroscopic Characterization of the Silicateв
    Journal of Molecular Structure 1042 (2013) 1–7 Contents lists available at SciVerse ScienceDirect Journal of Molecular Structure journal homepage: www.elsevier.com/locate/molstruc Infrared and Raman spectroscopic characterization of the silicate–carbonate mineral carletonite – KNa4Ca4Si8O18(CO3)4(OH,F)ÁH2O ⇑ Ray L. Frost a, , Yunfei Xi a, Ricardo Scholz b, Andrés López a, Fernanda Maria Belotti c a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-00, Brazil c Federal University of Itajubá, Campus Itabira, Itabira, MG 35903-087, Brazil article info abstract Article history: An assessment of the molecular structure of carletonite a rare phyllosilicate mineral with general chem- Received 28 February 2013 ical formula given as KNa4Ca4Si8O18(CO3)4(OH,F)ÁH2O has been undertaken using vibrational spectros- Received in revised form 19 March 2013 copy. Carletonite has a complex layered structure. Within one period of c, it contains a silicate layer of Accepted 19 March 2013 composition NaKSi O ÁH O, a carbonate layer of composition NaCO Á0.5H O and two carbonate layers Available online 26 March 2013 8 18 2 3 2 of composition NaCa2CO3(F,OH)0.5. À1 2À Raman bands are observed at 1066, 1075 and 1086 cm . Whether these bands are due to the CO m1 Keywords: 3 symmetric stretching mode or to an SiO stretching vibration is open to question. Carletonite Multiple bands are observed in the 300–800 cmÀ1 spectral region, making the attribution of these Carbonate Infrared bands difficult.
    [Show full text]
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM
    I`mt`qx1/00Lhmdq`knesgdLnmsg9Rbnkdbhsd This month’s mineral, scolecite, is an uncommon zeolite from India. Our write-up explains its origin as a secondary mineral in volcanic host rocks, the difficulty of collecting this fragile mineral, the unusual properties of the zeolite-group minerals, and why mineralogists recently revised the system of zeolite classification and nomenclature. OVERVIEW PHYSICAL PROPERTIES Chemistry: Ca(Al2Si3O10)A3H2O Hydrous Calcium Aluminum Silicate (Hydrous Calcium Aluminosilicate), usually containing some potassium and sodium. Class: Silicates Subclass: Tectosilicates Group: Zeolites Crystal System: Monoclinic Crystal Habits: Usually as radiating sprays or clusters of thin, acicular crystals or Hairlike fibers; crystals are often flattened with tetragonal cross sections, lengthwise striations, and slanted terminations; also massive and fibrous. Twinning common. Color: Usually colorless, white, gray; rarely brown, pink, or yellow. Luster: Vitreous to silky Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction Fracture: Uneven, brittle Hardness: 5.0-5.5 Specific Gravity: 2.16-2.40 (average 2.25) Figure 1. Scolecite. Luminescence: Often fluoresces yellow or brown in ultraviolet light. Refractive Index: 1.507-1.521 Distinctive Features and Tests: Best field-identification marks are acicular crystal habit; vitreous-to-silky luster; very low density; and association with other zeolite-group minerals, especially the closely- related minerals natrolite [Na2(Al2Si3O10)A2H2O] and mesolite [Na2Ca2(Al6Si9O30)A8H2O]. Laboratory tests are often needed to distinguish scolecite from other zeolite minerals. Dana Classification Number: 77.1.5.5 NAME The name “scolecite,” pronounced SKO-leh-site, is derived from the German Skolezit, which comes from the Greek sklx, meaning “worm,” an allusion to the tendency of its acicular crystals to curl when heated and dehydrated.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Apophyllite-(Kf)
    December 2013 Mineral of the Month APOPHYLLITE-(KF) Apophyllite-(KF) is a complex mineral with the unusual tendency to “leaf apart” when heated. It is a favorite among collectors because of its extraordinary transparency, bright luster, well- developed crystal habits, and occurrence in composite specimens with various zeolite minerals. OVERVIEW PHYSICAL PROPERTIES Chemistry: KCa4Si8O20(F,OH)·8H20 Basic Hydrous Potassium Calcium Fluorosilicate (Basic Potassium Calcium Silicate Fluoride Hydrate), often containing some sodium and trace amounts of iron and nickel. Class: Silicates Subclass: Phyllosilicates (Sheet Silicates) Group: Apophyllite Crystal System: Tetragonal Crystal Habits: Usually well-formed, cube-like or tabular crystals with rectangular, longitudinally striated prisms, square cross sections, and steep, diamond-shaped, pyramidal termination faces; pseudo-cubic prisms usually have flat terminations with beveled, distinctly triangular corners; also granular, lamellar, and compact. Color: Usually colorless or white; sometimes pale shades of green; occasionally pale shades of yellow, red, blue, or violet. Luster: Vitreous to pearly on crystal faces, pearly on cleavage surfaces with occasional iridescence. Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction Fracture: Uneven, brittle. Hardness: 4.5-5.0 Specific Gravity: 2.3-2.4 Luminescence: Often fluoresces pale yellow-green. Refractive Index: 1.535-1.537 Distinctive Features and Tests: Pseudo-cubic crystals with pearly luster on cleavage surfaces; longitudinal striations; and occurrence as a secondary mineral in association with various zeolite minerals. Laboratory analysis is necessary to differentiate apophyllite-(KF) from closely-related apophyllite-(KOH). Can be confused with such zeolite minerals as stilbite-Ca [hydrous calcium sodium potassium aluminum silicate, Ca0.5,K,Na)9(Al9Si27O72)·28H2O], which forms tabular, wheat-sheaf-like, monoclinic crystals.
    [Show full text]
  • The Journal of Gemmology Editor: Dr R.R
    he Journa TGemmolog Volume 25 No. 8 October 1997 The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London Eel N SSU Tel: 0171 404 1134 Fax: 0171 404 8843 e-mail: [email protected] Website: www.gagtl.ac.uklgagtl President: Professor R.A. Howie Vice-Presidents: LM. Bruton, Af'. ram, D.C. Kent, R.K. Mitchell Honorary Fellows: R.A. Howie, R.T. Liddicoat Inr, K. Nassau Honorary Life Members: D.). Callaghan, LA. lobbins, H. Tillander Council of Management: C.R. Cavey, T.]. Davidson, N.W. Decks, R.R. Harding, I. Thomson, V.P. Watson Members' Council: Aj. Allnutt, P. Dwyer-Hickey, R. fuller, l. Greatwood. B. jackson, J. Kessler, j. Monnickendam, L. Music, l.B. Nelson, P.G. Read, R. Shepherd, C.H. VVinter Branch Chairmen: Midlands - C.M. Green, North West - I. Knight, Scottish - B. jackson Examiners: A.j. Allnutt, M.Sc., Ph.D., leA, S.M. Anderson, B.Se. (Hons), I-CA, L. Bartlett, 13.Se, .'vI.phil., I-G/\' DCi\, E.M. Bruton, FGA, DC/\, c.~. Cavey, FGA, S. Coelho, B.Se, I-G,\' DGt\, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, f1GA, Cj.E. Halt B.Sc. (Hons), FGr\, G.M. Howe, FG,'\, oo-, G.H. jones, B.Se, PhD., FCA, M. Newton, B.Se, D.PhiL, H.L. Plumb, B.Sc., ICA, DCA, R.D. Ross, B.5e, I-GA, DGA, P..A.. Sadler, 13.5c., IGA, DCA, E. Stern, I'GA, DC/\, Prof. I.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • General Index
    CAL – CAL GENERAL INDEX CACOXENITE United States Prospect quarry (rhombs to 3 cm) 25:189– Not verified from pegmatites; most id as strunzite Arizona 190p 4:119, 4:121 Campbell shaft, Bisbee 24:428n Unanderra quarry 19:393c Australia California Willy Wally Gully (spherulitic) 19:401 Queensland Golden Rule mine, Tuolumne County 18:63 Queensland Mt. Isa mine 19:479 Stanislaus mine, Calaveras County 13:396h Mt. Isa mine (some scepter) 19:479 South Australia Colorado South Australia Moonta mines 19:(412) Cresson mine, Teller County (1 cm crystals; Beltana mine: smithsonite after 22:454p; Brazil some poss. melonite after) 16:234–236d,c white rhombs to 1 cm 22:452 Minas Gerais Cripple Creek, Teller County 13:395–396p,d, Wallaroo mines 19:413 Conselheiro Pena (id as acicular beraunite) 13:399 Tasmania 24:385n San Juan Mountains 10:358n Renison mine 19:384 Ireland Oregon Victoria Ft. Lismeenagh, Shenagolden, County Limer- Last Chance mine, Baker County 13:398n Flinders area 19:456 ick 20:396 Wisconsin Hunter River valley, north of Sydney (“glen- Spain Rib Mountain, Marathon County (5 mm laths donite,” poss. after ikaite) 19:368p,h Horcajo mines, Ciudad Real (rosettes; crystals in quartz) 12:95 Jindevick quarry, Warregul (oriented on cal- to 1 cm) 25:22p, 25:25 CALCIO-ANCYLITE-(Ce), -(Nd) cite) 19:199, 19:200p Kennon Head, Phillip Island 19:456 Sweden Canada Phelans Bluff, Phillip Island 19:456 Leveäniemi iron mine, Norrbotten 20:345p, Québec 20:346, 22:(48) Phillip Island 19:456 Mt. St-Hilaire (calcio-ancylite-(Ce)) 21:295– Austria United States
    [Show full text]
  • Carbon Mineral Ecology: Predicting the Undiscovered Minerals of Carbon
    American Mineralogist, Volume 101, pages 889–906, 2016 Carbon mineral ecology: Predicting the undiscovered minerals of carbon ROBERT M. HAZEN1,*, DANIEL R. HUMMER1, GRETHE HYSTAD2, ROBERT T. DOWNS3, AND JOSHUA J. GOLDEN3 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Calumet, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. ABSTRACT Studies in mineral ecology exploit mineralogical databases to document diversity-distribution rela- tionships of minerals—relationships that are integral to characterizing “Earth-like” planets. As carbon is the most crucial element to life on Earth, as well as one of the defining constituents of a planet’s near-surface mineralogy, we focus here on the diversity and distribution of carbon-bearing minerals. We applied a Large Number of Rare Events (LNRE) model to the 403 known minerals of carbon, using 82 922 mineral species/locality data tabulated in http://mindat.org (as of 1 January 2015). We find that all carbon-bearing minerals, as well as subsets containing C with O, H, Ca, or Na, conform to LNRE distributions. Our model predicts that at least 548 C minerals exist on Earth today, indicating that at least 145 carbon-bearing mineral species have yet to be discovered. Furthermore, by analyzing subsets of the most common additional elements in carbon-bearing minerals (i.e., 378 C + O species; 282 C + H species; 133 C + Ca species; and 100 C + Na species), we predict that approximately 129 of these missing carbon minerals contain oxygen, 118 contain hydrogen, 52 contain calcium, and more than 60 contain sodium.
    [Show full text]
  • AUTHOR INDEX to VOLUME 56 3-4 620 3-4 665 L-2 354 7-8 Ll47 3-4 628 5-6 888 9-10 1760 L-2 307 7-8 1208 7-8 1180 9-10 1617 Rr-12 2
    AUTHOR INDEX TO VOLUME 56 Albright, Jarnes N. Vaterite stability 3-4 620 Allen, Rhesa M., Jr. Memorial of Alfred Leonard Anderson; November 19, 3-4 665 1900-January 27, 1964 1-9 1))') Anderson, C. P. Refinement ofthe crystal structure ofapophyllite; I, X'ray diffraction and physical properties Anderson, Charles P. Refinement of the crystal structure of apophyllite [abstr.] l-2 354 Anthony, John W. The crystal structure of legrandite 7-8 ll47 Aoki, Ilideki Reactions of magnesium carbonates by direct x-ray diffraction under 3-4 628 hydrothermal conditions Appleman, Daniel E. Crystal chemistry of a lunar pigeonite 5-6 888 Aramaki, Shigeo. Hydrothermal determination of temperature and water pressure of 9-10 1760 the magma of Aira caldera, Japan Arern, Joel E. Chevkinite and perrierite; synthesis, crystal growth and polymorphism l-2 307 Bachinski, Sharon W. Rate of Al-Si ordering in sanidines from an ignimbrite cooling 7-8 1208 unit Bailey, S. W. Antiphase domain structure of the intermediate composition plagioclase 7-8 1180 feldspars Bancroft, G. M. Miissbauer spectra of minerals along the diopside-hedenbergite tie 9-10 1617 line Barber, D. J. Mounting methods for mineral grains to be examined by high resolution rr-12 2152 electron microscopy Barton, Paul B., Jr. Sub-solidus relations in the system PbS-CdS ll-12 2034 Barton, R., Jr. Refinement of the crystal structure of elbaite [abstr.] r-2 356 Bates, Thornas F, Presentation of the Roebling Medal of the Mineralogical Society 3-4 653 of America for 1970 to George W. Brindley Bates,Ihornas F. Memorial of Paul Dimitri Krynine; September 19, 19O2-September 3-4 690 12.
    [Show full text]
  • Fluid and Mineral Inclusions and Inclusion Zones of Cave Calcite from Korsnäs Mine, Western Finland
    FLUID AND MINERAL INCLUSIONS AND INCLUSION ZONES OF CAVE CALCITE FROM KORSNÄS MINE, WESTERN FINLAND PENTTI REHTIJARVI and KARI A. KINNUNEN REHTI JÄRVI, PENTTI and KINNUNEN, KARI A. 1979: Fluid and mineral inclusions and inclusion zones of cave calcite from Korsnäs Mine, western Finland. Bull. Geol. Soc. Finland 51, 75—79. Inclusions and crystal forms of calcite crystals from a cave in the Korsnäs lead-lanthanide mine in western Finland have been studied. The primary fluid inclusions in the scalenohedral yellowish calcite show homogenization temperatures of 79° to 103°C and salinities of 3.6 to 4.9 eq. wt. °/o NaCl. The prevailing crystal form is scaleno- hedron. In some specimens it reveals a rhombohedral phantom. Four mineralization stages are proposed on the basis of correlation between inclusion zones in multiple-zoned calcite crystals. Pentti Rehtijärvi and Kari A. Kinnunen, Geological Survey of Fin- land, SF-02150 Espoo 15, Finland. Introduction K/Ar-method (Dr. Eric Welin, written com- munication in 1975). The isotopic composit- During mining operations in the Korsnäs ion of the galena indicates an age of 1770 lead-lanthanide mine (closed 1972), situated Ma for the sulphide ore (Isokangas 1975). about 30 km south of the town of Vaasa in The cave mineralization was studied by western Finland, a cave was found 190 m collecting information from the fluid and below the earth's surface (Tuominen 1961). The cave (0.5 m X 1.5 m X 30 m) is part of mineral inclusions of different zones in indi- a vertical fracture zone. Its walls were vidual calcite crystals.
    [Show full text]
  • POUDRETTEITE, Knarb3si12o3e, a NEW MEMBER of the OSUMILITE GROUP from MONT SAINT-HILAIRE, OUEBEC, and ITS CRVSTAL STRUCTURE Assr
    Canadian Mineralogist Vol. 25, pp.763-166(1987) POUDRETTEITE,KNarB3Si12O3e, A NEW MEMBEROF THE OSUMILITEGROUP FROM MONT SAINT-HILAIRE,OUEBEC, AND ITS CRVSTALSTRUCTURE JOEL D. GRICE, T. SCOTT ERCIT AND JERRY VAN VELTHUIZEN Mineral SciencesDivision, National Museumof Natural Sciences,Ottawa, Ontario KIA 0M8 PETE J. DUNN Departmentof Mineral Sciences,Smithsonian Institution, Washington,D.C, 20560,U,S.A. Assrnact positionC d coordinanceXII, le sodium,la position,4d unecoordinance VI, le bore,la position72 ir coordinance Poudretteiteis a newmineral species from the Poudrette IV, le silicium,la position71 i coordinanceIV, etla posi- quarry, Mont Saint-Hilaire,Quebec. It occursin a marble tion B estvacante. xenolith includedin nephelinesyenite, associated with pec- tolite, apophyllite, quartz and minor aegirine.It forms clear, Mots-clds: poudrettdite, nouvelle espbce min6rale, groupe colorlessto very pale pink, equidimensional,subhedral del'osumilite, mont Saint-Hilaire, borosilicate, affi ne. prismsup to 5 mm. It is brittle, H about 5, with a splin- mentde Ia structure. tery fracture;Dmetr. 2.51(l) g/cml, D"6".2.53 g/cm3. Uniaxialpositive, co 1.516(l), e 1.532(l).It is-hexagonal, spacegroup P6/ mcc, a I 0.239(l), c 13.485(3)A and,Z : 2. INTRoDUcTIoN The strongestten X-ray-diffractionlines in the powderpat- tern [d in A(r\(hkDl are: 6.74(30)(002),5.13 (100)(110), The optical and physical propertiesof members 4.07(30)(r 12), 3.70(30)(202), 3.3 6e(30)(004), 3.253 ( I 00) of the osumilite group are similar to those of com- (2r r), 2.9s6(40)(3 00), 2.8 I 5(60)(I I 4), 2.686(50)(213,204) mon mineralssuch as quartz and cordierite;for this and 2.013(30)(321).An analysisby electron microprobe reason, they are probably generally overlooked.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]