Fluid and Mineral Inclusions and Inclusion Zones of Cave Calcite from Korsnäs Mine, Western Finland

Total Page:16

File Type:pdf, Size:1020Kb

Fluid and Mineral Inclusions and Inclusion Zones of Cave Calcite from Korsnäs Mine, Western Finland FLUID AND MINERAL INCLUSIONS AND INCLUSION ZONES OF CAVE CALCITE FROM KORSNÄS MINE, WESTERN FINLAND PENTTI REHTIJARVI and KARI A. KINNUNEN REHTI JÄRVI, PENTTI and KINNUNEN, KARI A. 1979: Fluid and mineral inclusions and inclusion zones of cave calcite from Korsnäs Mine, western Finland. Bull. Geol. Soc. Finland 51, 75—79. Inclusions and crystal forms of calcite crystals from a cave in the Korsnäs lead-lanthanide mine in western Finland have been studied. The primary fluid inclusions in the scalenohedral yellowish calcite show homogenization temperatures of 79° to 103°C and salinities of 3.6 to 4.9 eq. wt. °/o NaCl. The prevailing crystal form is scaleno- hedron. In some specimens it reveals a rhombohedral phantom. Four mineralization stages are proposed on the basis of correlation between inclusion zones in multiple-zoned calcite crystals. Pentti Rehtijärvi and Kari A. Kinnunen, Geological Survey of Fin- land, SF-02150 Espoo 15, Finland. Introduction K/Ar-method (Dr. Eric Welin, written com- munication in 1975). The isotopic composit- During mining operations in the Korsnäs ion of the galena indicates an age of 1770 lead-lanthanide mine (closed 1972), situated Ma for the sulphide ore (Isokangas 1975). about 30 km south of the town of Vaasa in The cave mineralization was studied by western Finland, a cave was found 190 m collecting information from the fluid and below the earth's surface (Tuominen 1961). The cave (0.5 m X 1.5 m X 30 m) is part of mineral inclusions of different zones in indi- a vertical fracture zone. Its walls were vidual calcite crystals. On the basis of the partly covered by euhedral crystals of calcite, mode of occurrence of the inclusions an in- harmotome, apophyllite, pyrite and apatite; clusion »stratigraphy» was established that the main mineral was calcite. A small amount is comparable to the sphalerite »stratigraphy» of euhedral quartz and ancylite was also described by Roedder (1977) as a result of a found. Apophyllite and harmotome have study of sphalerite zoning and paragenesis been described by Sahama (1965) and Sahama at Creede, Colorado. The calcite »strati- and Lehtinen (1967). An age of 88 Ma was graphy» established gives an overall view of determined for yellow apophyllite by the the cave mineralization in the Korsnäs mine. 76 Pentti Rehtijärvi and Kari A. Kinnunen N N S E PREVAILING INCLUSION SOM E CRYSTAL FORMS ZONES F OF IN O MINERAL R STAG E CALCITE CALCITE INERALIZATIO M ORDE CAV CRYSTALLIZATIO PROPOSED INDICES FOR THE CRYSTAL FACES OF CALCITE : a a (121) (302) b V \ i 9 // b (511) h (100) — E D c (101) i (010) d (883) j (041 ) e (001) k (561) HARMOTOM f (102) 1 (011 ) 0 o ? 3. iiiniiiiiii — E 1 1 1 EXPLANATION FOR THE 1 1 1 INCLUSION ZONES IN CALCITE: 9 APOPHYLLIT lTr( \ J 2 O PRIMARY FLUID INCUSIONS III PSEUDOSECONDARY FLUID INCUSIONS h k \ C ll / \ E I PYRITE A APOPHYLLITE HARMOTOM * REDEPOSITED CLAY n—i—n f^Vj MONTMORILLONITE - CHLORITE ^^ CLAY LAYER K^ C \ • • B d \ Fig. 1. The proposed mineralization stages, prevailing crystal forms of calcite, inclusion zones in cal- cite and the suggested crystallization order of the main cave minerals. Materials and methods logy. Some of these yellowish translucent scalenohedrons contain a white pyrite-cov- Thirty euhedral calcite crystals, varying ered rhombohedral phantom marking the in length from 2 to 7 cm, were examined. earlier growth stage of the crystal. Indi- Calcite shows parallel growth, and most of vidual rhombohedral calcite crystals were the specimens exhibit scalenohedral morpho- also found. A few of the calcite crystals are Fluid and mineral inclusions ... 77 yellow and either transparent or translucent. individual calcite crystals. In mineralization The transparent crystals are characterized stage A the pyrite inclusions simulate a cube; by a basal plane. In some crystals the pyra- in stage B they are elongated cubes. The midal faces are curved. The three prevail- calcite generation of mineralization stage C ing crystal forms are depicted in Fig. 1. contains pyrite inclusions showing parallel The homogenization temperatures of the growth. The oldest pyrite generation in this fluid inclusions were determined with a mineralization stage is a cube whose growth Leitz 350 heating stage and a Chaixmeca mi- started with the formation of the (112) crystal crothermometry apparatus. The Chaixmeca face. In the following zones of stage C, pyrite exhibits parallel growth along the stage was also used for the freezing point triad axis. The habit of pyrite in the fifth determinations. The temperature readings and sixth inclusion zones is similar to that were calibrated with organic melting point of the first. The youngest pyrite of stage C standards. The accuracy of the temperature shows parallel growth along the triad axis. measurements was ± 2°C, at 50° to 150°C, The pyrite in the youngest calcite from stage and ± 0.1°C at —5° to 0°C. D is combination of a cube and a pentagonal dodecahedron. Mineralization stages Apophyllite and clay are found in three different inclusion zones (Fig. 1). Primary The cave mineralization was divided into fluid inclusions were usually formed in these zones when pyrite, apophyllite or clayey ma- four stages on the basis of the mineral para- terial disturbed the growth of the crystal genesis and the prevailing crystal forms of faces of calcite. Calcite crystals of similar calcite (see Fig. 1). Mineralization stage A habit have similar outermost inclusion zones, is characterized by the crystallization of which confirms their contemporaneous cry- montmorillonite-chlorite clay, stage B by the stallization. crystallization of rhombohedral calcite and Pseudosecondary fluid inclusions charac- pyrite, stage C by the crystallization of scale- terize two of the inclusion layers situated be- nohedral calcite, harmotome and apophyllite tween the mineralization stages. At the end and stage D by the crystallization of yellow- of stage B white calcite with a rough surface ish scalenohedral calcite. The crystallization had crystallized over the rhombohedron in order of the cave minerals was inferred from a layer about 0.5 mm thick that was found the mineral inclusion zones in calcite crys- to contain appreciable pseudosecondary fluid tals, the mineral crystallizing in the cave inclusions. Before the youngest calcite gen- often having been trapped inside growing eration crystallized, a fracture layer about calcite. 0.2 mm thick developed on some of the faces of the calcite crystals. Pseudosecondary fluid inclusions are abundant in these fractures Inclusion zones as well. The crystal habit of pyrite is distinct and hence characteristic in the different inclusion Fluid inclusions zones of the proposed mineralization stages (Fig. 1). This observation was utilized in The primary fluid inclusions in calcite were correlating the fluid inclusion zones found in found to be concentrated in specific inclusion 78 Pentti Rehtijärvi and Kari A. Kinnunen inclusions was —1.9° to -—2.7°C, correspond- ing to a salinity of 3.6 to 4.9 wt.%> NaCl equivalent. During cooling many of the in- I clusions decrepitated when ice was crys- tallized at about — 50°C. The homogenization temperature of about 600 secondary fluid inclusions in the calcite of mineralization stages B and C ranges from 50°C to about 80°C. In addition, micro- cracks have been found to radiate from some of the primary fluid inclusion cavities of mineralizing stage D. These cavities contain secondary fluid filling with a freezing tem- perature of about 0.0°C. Fig. 2. Photomicrograph of typical primary fluid inclusions with liquid (L) and vapour (V) in yellowish scalenohedral calcite; homogenization Conclusions temperatures 92°C, 93°C and 88°C; freezing tem- peratures —2.4°C, —2.4°C and —2.3°C correspond- ing to salinities of 4.5, 4.5 and 4.3 eq. wt. °/o NaCl. The study of fluid and mineral inclusions Transmitted light, one nicol, bar length 10 /<m. of 30 euhedral calcite crystals from a cave in the Korsnäs mine shows that the inclusion zones in individual multiple-zoned calcite crystals can be correlated. The crystallizat- zones (Fig. 1). At room temperature these ion order of the main cave minerals could inclusions usually consisted of liquid and a also be inferred from the inclusion zones in small bubble of vapour; in stage D, how- calcite. The prevailing calcite crystal form ever, the primary fluid inclusions often con- is yellowish scalenohedron which in some tained only liquid. At room temperature the specimens reveals a white rhombohedral py- inclusions are metastable (cf. Roedder 1971). rite-covered phantom. The mode of growth The shape of the primary fluid inclusions of calcite and pyrite has varied in different tend to resemble the crystal form of the host mineralization stages, and inclusions are calcite (negative crystals, Fig. 2). Some of usually located in the zones where the calcite these primary inclusion cavities are as much habit has changed. Homogenization temper- as 1 cm long in stage D. The inclusions atures of primary fluid inclusions varied with a length of over 150 /im were almost from 79° to 103°C. always leaked as a result of fracturing. The homogenization temperatures obtained The homogenization and freezing temper- allow the following estimates to be made atures were measured from the primary for the formation temperature under different fluid inclusions embedded in the scaleno- pressure conditions in a 5-percent NaCl sol- hedral calcite of mineralization stage D (see ution (Potter 1977, Fig. 2): 200 bar 110°— Fig. 1 for location). The homogenization 130°C, 400 bar 130°—150°C, 1000 bar 170°— temperature of about 100 inclusions was 79° 190°C, and 2000 bar 235°—255°C. The aut- to 103°C, with the maximum frequency at hors consider the pressure estimate from 90° to 95°C.
Recommended publications
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM
    I`mt`qx1/00Lhmdq`knesgdLnmsg9Rbnkdbhsd This month’s mineral, scolecite, is an uncommon zeolite from India. Our write-up explains its origin as a secondary mineral in volcanic host rocks, the difficulty of collecting this fragile mineral, the unusual properties of the zeolite-group minerals, and why mineralogists recently revised the system of zeolite classification and nomenclature. OVERVIEW PHYSICAL PROPERTIES Chemistry: Ca(Al2Si3O10)A3H2O Hydrous Calcium Aluminum Silicate (Hydrous Calcium Aluminosilicate), usually containing some potassium and sodium. Class: Silicates Subclass: Tectosilicates Group: Zeolites Crystal System: Monoclinic Crystal Habits: Usually as radiating sprays or clusters of thin, acicular crystals or Hairlike fibers; crystals are often flattened with tetragonal cross sections, lengthwise striations, and slanted terminations; also massive and fibrous. Twinning common. Color: Usually colorless, white, gray; rarely brown, pink, or yellow. Luster: Vitreous to silky Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction Fracture: Uneven, brittle Hardness: 5.0-5.5 Specific Gravity: 2.16-2.40 (average 2.25) Figure 1. Scolecite. Luminescence: Often fluoresces yellow or brown in ultraviolet light. Refractive Index: 1.507-1.521 Distinctive Features and Tests: Best field-identification marks are acicular crystal habit; vitreous-to-silky luster; very low density; and association with other zeolite-group minerals, especially the closely- related minerals natrolite [Na2(Al2Si3O10)A2H2O] and mesolite [Na2Ca2(Al6Si9O30)A8H2O]. Laboratory tests are often needed to distinguish scolecite from other zeolite minerals. Dana Classification Number: 77.1.5.5 NAME The name “scolecite,” pronounced SKO-leh-site, is derived from the German Skolezit, which comes from the Greek sklx, meaning “worm,” an allusion to the tendency of its acicular crystals to curl when heated and dehydrated.
    [Show full text]
  • Apophyllite-(Kf)
    December 2013 Mineral of the Month APOPHYLLITE-(KF) Apophyllite-(KF) is a complex mineral with the unusual tendency to “leaf apart” when heated. It is a favorite among collectors because of its extraordinary transparency, bright luster, well- developed crystal habits, and occurrence in composite specimens with various zeolite minerals. OVERVIEW PHYSICAL PROPERTIES Chemistry: KCa4Si8O20(F,OH)·8H20 Basic Hydrous Potassium Calcium Fluorosilicate (Basic Potassium Calcium Silicate Fluoride Hydrate), often containing some sodium and trace amounts of iron and nickel. Class: Silicates Subclass: Phyllosilicates (Sheet Silicates) Group: Apophyllite Crystal System: Tetragonal Crystal Habits: Usually well-formed, cube-like or tabular crystals with rectangular, longitudinally striated prisms, square cross sections, and steep, diamond-shaped, pyramidal termination faces; pseudo-cubic prisms usually have flat terminations with beveled, distinctly triangular corners; also granular, lamellar, and compact. Color: Usually colorless or white; sometimes pale shades of green; occasionally pale shades of yellow, red, blue, or violet. Luster: Vitreous to pearly on crystal faces, pearly on cleavage surfaces with occasional iridescence. Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction Fracture: Uneven, brittle. Hardness: 4.5-5.0 Specific Gravity: 2.3-2.4 Luminescence: Often fluoresces pale yellow-green. Refractive Index: 1.535-1.537 Distinctive Features and Tests: Pseudo-cubic crystals with pearly luster on cleavage surfaces; longitudinal striations; and occurrence as a secondary mineral in association with various zeolite minerals. Laboratory analysis is necessary to differentiate apophyllite-(KF) from closely-related apophyllite-(KOH). Can be confused with such zeolite minerals as stilbite-Ca [hydrous calcium sodium potassium aluminum silicate, Ca0.5,K,Na)9(Al9Si27O72)·28H2O], which forms tabular, wheat-sheaf-like, monoclinic crystals.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • POUDRETTEITE, Knarb3si12o3e, a NEW MEMBER of the OSUMILITE GROUP from MONT SAINT-HILAIRE, OUEBEC, and ITS CRVSTAL STRUCTURE Assr
    Canadian Mineralogist Vol. 25, pp.763-166(1987) POUDRETTEITE,KNarB3Si12O3e, A NEW MEMBEROF THE OSUMILITEGROUP FROM MONT SAINT-HILAIRE,OUEBEC, AND ITS CRVSTALSTRUCTURE JOEL D. GRICE, T. SCOTT ERCIT AND JERRY VAN VELTHUIZEN Mineral SciencesDivision, National Museumof Natural Sciences,Ottawa, Ontario KIA 0M8 PETE J. DUNN Departmentof Mineral Sciences,Smithsonian Institution, Washington,D.C, 20560,U,S.A. Assrnact positionC d coordinanceXII, le sodium,la position,4d unecoordinance VI, le bore,la position72 ir coordinance Poudretteiteis a newmineral species from the Poudrette IV, le silicium,la position71 i coordinanceIV, etla posi- quarry, Mont Saint-Hilaire,Quebec. It occursin a marble tion B estvacante. xenolith includedin nephelinesyenite, associated with pec- tolite, apophyllite, quartz and minor aegirine.It forms clear, Mots-clds: poudrettdite, nouvelle espbce min6rale, groupe colorlessto very pale pink, equidimensional,subhedral del'osumilite, mont Saint-Hilaire, borosilicate, affi ne. prismsup to 5 mm. It is brittle, H about 5, with a splin- mentde Ia structure. tery fracture;Dmetr. 2.51(l) g/cml, D"6".2.53 g/cm3. Uniaxialpositive, co 1.516(l), e 1.532(l).It is-hexagonal, spacegroup P6/ mcc, a I 0.239(l), c 13.485(3)A and,Z : 2. INTRoDUcTIoN The strongestten X-ray-diffractionlines in the powderpat- tern [d in A(r\(hkDl are: 6.74(30)(002),5.13 (100)(110), The optical and physical propertiesof members 4.07(30)(r 12), 3.70(30)(202), 3.3 6e(30)(004), 3.253 ( I 00) of the osumilite group are similar to those of com- (2r r), 2.9s6(40)(3 00), 2.8 I 5(60)(I I 4), 2.686(50)(213,204) mon mineralssuch as quartz and cordierite;for this and 2.013(30)(321).An analysisby electron microprobe reason, they are probably generally overlooked.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • Nature's Art: Geodes from the Collection of Robert R. Wiener
    Nature’s Art: Geodes from the Collection of Robert R. Wiener The Rye Arts Center Spring - Summer 2021 Curated by Gail Harrison Roman, PhD A Tribute to Robert R. Wiener The Rye Arts Center extends its gratitude and love to Bob Wiener: Humanitarian, Connoisseur, Collector, Scholar, Educator, Cherished Friend Front cover: Vanadite, Morocco Back cover: Malachite, Congo 1 NATURE’S ART: GEODES FROM THE COLLECTION OF ROBERT R. WIENER Guiding Light of The Rye Arts Center Robert R. Wiener exemplifies the Mission of The Rye Arts Center. He is a supporter of cultural endeavors for all and a staunch believer in extending the educational value of the arts to underserved populations. His largesse currently extends to the Center by his sharing geodes with us. This is the latest chapter of his enduring support that began thirty-five years ago. Bob is responsible for saving 51 Milton Road by spearheading in 1986 the movement to prevent the city’s demolition of our home. He then led the effort to renovate the building that we now occupy. As a member of the RAC Board in the 1980s and 1990s, Bob helped guide the Center through its early years of expansion and success. His efforts have enabled RAC to become a beacon of the arts for the local community and beyond it. Bob has joined with RAC to place cases of his geodes in area schools, where they attract excited attention from children and adults alike. Bob’s maxim is “The purpose of life is to give back.” Led and inspired by Bob, The Wiener Family Philanthropy supports dozens of organizations devoted to the arts, community initiatives, education, health care, and positive youth empowerment.
    [Show full text]
  • Calcium-Aluminum-Silicate-Hydrate “
    Cent. Eur. J. Geosci. • 2(2) • 2010 • 175-187 DOI: 10.2478/v10085-010-0007-6 Central European Journal of Geosciences Calcium-aluminum-silicate-hydrate “cement” phases and rare Ca-zeolite association at Colle Fabbri, Central Italy Research Article F. Stoppa1∗, F. Scordari2,E.Mesto2, V.V. Sharygin3, G. Bortolozzi4 1 Dipartimento di Scienze della Terra, Università G. d’Annunzio, Chieti, Italy 2 Dipartimento Geomineralogico, Università di Bari, Bari, Italy 3 Sobolev V.S. Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia 4 Via Dogali, 20, 31100-Treviso Received 26 January 2010; accepted 8 April 2010 Abstract: Very high temperature, Ca-rich alkaline magma intruded an argillite formation at Colle Fabbri, Central Italy, producing cordierite-tridymite metamorphism in the country rocks. An intense Ba-rich sulphate-carbonate- alkaline hydrothermal plume produced a zone of mineralization several meters thick around the igneous body. Reaction of hydrothermal fluids with country rocks formed calcium-silicate-hydrate (CSH), i.e., tobermorite- afwillite-jennite; calcium-aluminum-silicate-hydrate (CASH) – “cement” phases – i.e., thaumasite, strätlingite and an ettringite-like phase and several different species of zeolites: chabazite-Ca, willhendersonite, gismon- dine, three phases bearing Ca with the same or perhaps lower symmetry of phillipsite-Ca, levyne-Ca and the Ca-rich analogue of merlinoite. In addition, apophyllite-(KF) and/or apophyllite-(KOH), Ca-Ba-carbonates, portlandite and sulphates were present. A new polymorph from the pyrrhotite group, containing three layers of sphalerite-type structure in the unit cell, is reported for the first time. Such a complex association is unique.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Notes and Neii,S 565 Skeletonized Apophyllite
    NOTESAND NEII,S 565 SKELETONIZEDAPOPHYLLITE FROM CRESTMORE AND RI\,'ERSIDE,C-\LIFORNIA Epcan H. Barrnv, Ontario, California,. Skeletonizedapophyllite is hydrous silica after apophyllite, which re- tains some of the physical and optical properties of the parent mineral, as well as its crystal form, and thus differs from merely pseudomorphic opal. Simiiar skeletonizationhas been demonstratedfor other silicate minerals and also has been produced in the laboratory. Recent blasting at Crestmore Commercial Quarry, the well known mineral locality three miles north of Riverside, California, has revealed snow-white tetragonal crystals up to 5 mm. long, associatedwith veins of colorlessprehnite cutting garnet-diopsiderock. Diligent searchyielded only approximately 10 grams of the material with less than one gram of well-formed crystals. A few of the crystals were found to have sufficiently smooth faces to give reflections which, though multiple and hazy, were good enough to measure on a one circle goniometer. The average of 12 measurementsof (111) to (111) gave 119o50' as contrastedwith l2|o 04'for apophyllite as given in Dana's Syslem.A closervalue of I19" 33'was obtained by Luedecke(1) on apophyllitefrom Radauthal. The crystalshave the habit of the apophyilite from Crestmore describedby Eakle (2) with dominant pyramid [111], generally subordinate prism {100} and very small, or absent, base {001}. No other forms were found on the Crestmorema- terial. The New City Quarry in the Victoria district of Riverside has yielded apophyllite crystals of cubo-octahedral habit up to 3 cm. in size. No prehnite was found with these crystals but late coatings of honey-colored calcite with dog-tooth habit are common.
    [Show full text]
  • Apophyllite from Traprain Law, East Lothian. NTRODUCTION and Mode of Occurrence
    90 Apophyllite from Traprain Law, East Lothian. By J. G. C. ANDE1~SON,M.A., B.Sc., Ph.D., Carnegie Research Scholar, and S. ELDER, B.Sc., Baxter Demonstrator, University of Glasgow. [Communicated by Dr. W. Q. Kennedy; read January 24, 1935.] NTRODUCTION and mode of occurrence.--During a visit in 1929 I to the well-known phonolitic ]accolith of Traprain Law, East Lothian, beautiful crystals of apophyllite were discovered in drusy cavities. It was found possible to collect numerous specimens which are now in the Hunterian Museum, University of Glasgow (M 5970). There is no previous record from the locality and the following is a brief description of the rock and its associates. Along with the apophyllite occur well-formed icositetrahedra of analcime. 1 A thin section reveals that the apophyllite is of later crystallization than the analcime. The latter mineral lines the walls of the cavities, with which the apophyllite is seldom in con- tact. Radiating fibres of loectolite are occasionally seen on the surface of the analcime. The discovery of the pectolite is due to Mr. D. M. C0okson of Cambridge University. Mr. Cookson, to whom the present authors were referred by Mr. D. Balsillie, very kindly forwarded specimens. The phonolite bordering the druse is considerably decomposed. The first episode in the infilling of the cavity, preceding the forma- tion of the analcime and the apophyllite, was a crystallization of albite and aegirine-augite. These minerals, though somewhat altered, are fresher than the felspar (soda-orthoclase) and pyroxene (aegirine- augite) in the body of the rock. Chloritie aggregates are found included in, or on the surface of, the apophyllite crystals.
    [Show full text]
  • Babingtonite, Fluorapophyllite and Sphene from Harcourt, Victoria, Australia
    MINERALOGICAL MAGAZINE, SEPTEMBER 1983, VOL. 47, PP. 377-80 Babingtonite, fluorapophyllite and sphene from Harcourt, Victoria, Australia W. D. BIRCU Department of Mineralogy and Petrology, National Museum of Victoria, 285-321 Russell Street, Melbourne, Victoria 3000, Australia ABSTRACT. Small crystals of babingtonite and rare vugs containing stilbite and apophyllite (variety sphene occur in a coarse-grained aggregate of fluora- 'albin') were described from the quarries by Hall pophyllite, stilbite, and calcite, infllling a late-stage cavity (1894). in granodiorite from Harcourt, Victoria. This is the first Two specimens of the Harcourt granodiorite in reported occurrence of babingtonite in Victoria. The the collections of the National Museum of Victoria assemblage crystallized from fluids in which Ca and F were significant and under P-T conditions of the order of are matching portions of a fibrous aggregate, 10 cm 0.5 kbar, I00-150~ Some of the fluorapophyllite has across, of colourless to pale pink stilbite, together been altered to opaline silica suggesting that the residual with a white, platy mineral with a pearly lustre and solutions were acidic. a few crystals of a black mineral superficially resembling hornblende. The aggregate fills what THE Harcourt granodiorite forms the southern was probably a late-stage gas cavity within the 'lobe' of a large arcuate composite intrusion of granodiorite (figs. 1 and 2). X-ray diffraction Devonian age in west-central Victoria, about 90- analysis showed the white mineral to belong to the 120 km north west of Melbourne. The intrusion has apophyllite group and the black mineral to be not been studied in detail, but the granodiorite in babingtonite, the first record of the latter mineral in the vicinity of Harcourt is light grey, even-grained Victoria.
    [Show full text]
  • THE DIFFERENTIAL THERMAL ANALYSIS CURVES and the DEHYDRATION CURVES of ZEOLITES* (Studies on Water in Minerals, Part 1)
    MINERALOGICAL JOURNAL, VOL. 1, No. 1, pp. 36-47, SEPTEMBER, 1953 THE DIFFERENTIAL THERMAL ANALYSIS CURVES AND THE DEHYDRATION CURVES OF ZEOLITES* (Studies on Water in Minerals, Part 1) MITSUE KOIZUMI Institute of Geological Sciences, Faculty of General Education, Osaka University. ABSTRACT Dehydration curves and differential thermal analysis curves of several dif ferent kinds of zeolites are presented here and discussed with reference to their dehydration phenomena. The zeolites include ptilolite , heulandite, epistilbite, stil bite, laumontite, chabazite , analcime, natrolite, scolecite, mesolite and thomsonite. And it was revealed that there are some types of dehydration phenomena . These types are : (1) Natrolite type showing sharp dehydration phenomena in which water of crystallization is entirely lost . •c•Natrolite. (2) Analcime type showing smooth dehydration phenomena .•cPtilolite, chabazite and analcime. (3) The com bined type of the two above mentioned .•cHeulandite, laumontite, scolecite and mesolite. (4) The type which does not belong to any of the two types .•c Epistilbite, stilbite and thomsonite . Introduction Zeolites having characteristic water of crystallization , which is called as " zeolitic water", and showing remarkable base exchange , are the most interesting one of many hydrous minerals . And, many studies on zeolites have been already carried out by chemists and mineralogists, but these studies are imperfect with many questions still undisolved. In this paper, a preliminary report of reexa mining studies on zeolite is given in which dehydration curves and diff eren. * The experiments had been carried o ut at Geological and Mineralogical Institute, Kyoto University, from 1946 to 1950. Read at the 57th Annual Meeting of the Geological Society of Japan held in Tokyo on April 7 , 1950, M.
    [Show full text]