Amended Safety Assessment of Benzophenones As Used in Cosmetics

Total Page:16

File Type:pdf, Size:1020Kb

Amended Safety Assessment of Benzophenones As Used in Cosmetics Amended Safety Assessment of Benzophenones as Used in Cosmetics Status: Draft Amended Report for Panel Review Release Date: August 21, 2020 Panel Date: September 14-15, 2020 The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst, CIR and Jinqiu Zhu, Ph.D., Toxicologist. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ◊ Washington, DC 20036-4702 ◊ Ph 202.331.0651 ◊ fax 202.331.0088 ◊ [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: Expert Panel for Cosmetic Ingredient Safety Members and Liaisons From: Wilbur Johnson, Jr. Senior Scientific Analyst, CIR Date: August 21, 2020 Subject: Amended Safety Assessment of Benzophenones as Used in Cosmetics The Expert Panel for Cosmetic Ingredient Safety (Panel) first reviewed the safety of benzophenones in 1981. The Panel subsequently published a final report (in 1983) with a conclusion stating that Benzophenones-1, -3, -4, -5, -9, and -11 are safe for topical application to humans in the present practices of use and concentration in cosmetics. In the same year, the Panel published an addendum to the final report, having concluded that Benzophenones-2, -6, and -8 are not mutagenic or genotoxic and that the published conclusion on Benzophenones-1, -3, -4, -5, -9, and -11 is applicable to these 3 ingredients. In accordance with Cosmetic Ingredient Review (CIR) Procedures, because it had been at least 15 years since the safety assessment was published, the Panel considered whether the safety assessment of benzophenones should be reopened at the September 2001 Panel meeting. At the conclusion of their discussion, the Panel determined to not reopen the 1983 published safety assessment until results from National Toxicology Program (NTP) carcinogenicity studies on benzophenones were available. A re-review summary with this determination was published in 1985. Because an NTP oral carcinogenicity study on Benzophenone-3 was published earlier this year, the Panel is asked to determine whether the 1983 published safety assessment should be reopened to include these and other current safety test data, and to add Benzophenones-7, -10, and -12, along with any available safety test data on these 3 ingredients. These data are included in the attached Draft Amended Report (benzop092020rep) for the Panel’s review. This report also contains summaries of data from the published final report and addendum (indicated by italicized text), as well as studies dated 1983 forward. The published final report, addendum, and re-review summary (benzop092020orig1, benzop092020orig2, and benzop092020orig3, respectively) are included for your reference. Of the more recent data in the Draft Amended Report are 2020 ingredient use frequency data from FDA (benzop092020FDA). Also included in this package for your review are the report history (benzop092020hist), flow chart (benzop092020flow), literature search strategy (benzop092020strat), 2020 FDA VCRP data (benzop092020FDA), meeting minutes relating to the original reviews as well as the Panel’s decision on re-opening the safety assessment (benzop092020min), data from the Council’s 2020 use concentration survey on benzophenones (benzop092020data1), and the ingredient data profile (benzop092020prof). This profile identifies information from the original report as well as any new information that was identified since that original report was issued. After reviewing these documents, if the available data are deemed sufficient to make a determination of safety, the Panel should issue a Tentative Amended Report with a safe as used, safe with qualifications, or unsafe conclusion, and Discussion items should be identified. If the available data are insufficient, the Panel should issue an Insufficient Data Announcement (IDA), specifying the data needs therein. __________________________________________________________________________________________ 1620 L Street, NW, Suite 1200, Washington, DC 20036 (Main) 202-331-0651 (Fax) 202-331-0088 (email) [email protected] (website) www.cir-safety.org Distributed for Comment Only -- Do Not Cite or Quote RE-REVIEW FLOW CHART INGREDIENT/FAMILY_____Benzophenones-1 through -12 ______ MEETING _______ September 2020_____________________________________________________ Public Comment CIR Expert Panel Re-Review Rpt Status New Data; or announce > 15 years OR request The Panel first reviewed several since last JACT 2(5): 35-77, 1983 benzophenones in 1983 (report and review JACT 2(5): 79-84, 1983 addendum). A re-review was considered IJT 24 (Suppl 1): 10S-18S, 2005 in 2002, but was not re-opened, awaiting the results of an on-going NTP study. The NTP study was published in 2020, and a Re-review to Panel draft amended report was prepared. PRIORITY LIST Sept 2020 Are new data cause to reopen? YES NO DRAFT AMENDED REPORT DAR Sept 2020 Are new ingredients appropriate for inclusion/re-open? Table Table IDA TAR Yes No IDA Notice IDA RE-REVIEW Admin Book DRAFT TENTATIVE SUMMARY AMENDED REPORT Draft TAR Table Table Tentative Amended Report Issue TAR Draft FAR DRAFT FINAL 60 day Public comment period AMENDED REPORT Table Table Different Conclusion Final Amended Issue PUBLISH Report FAR *If Draft Amended Report (DAR) is available, the Panel may choose to review; if not, CIR staff prepares DAR for Panel Review. Distributed for Comment Only -- Do Not Cite or Quote CIR History of: Benzophenones-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, and -12 Panel: June of 1981 The Panel agreed there were sufficient data to make a safety determination on Benzophenones-1, -3, -4, -5, -7, -9, - 10, -11, and -12. However, there was discussion of the need for additional mutagenicity testing on Benzophenones- 2, -6, and -8. It was suggested the report be reconsidered by the Panel after the additional testing is done by industry; however, if testing is not done, the report would have to be separated, and Benzophenones-2, -6, and -8 deleted from the recommendation. An insufficient data report would be issued for Benzophenones -2, -6, and -8. Tentative Report, Panel: November of 1981 The following conclusion was unanimously accepted: “On the basis of the available animal data and clinical human experience presented in this report, the Panel concludes that Benzophenone-1, -3, -4, -5, -9, and -11 are safe for topical application to humans in the present practices of use and concentration in cosmetics.” Benzophenones-7, -10, and -12 were deleted from the approved safety recommendation and from the title of the report since they are not used in cosmetics. However, data on Benzophenones-7, -10, and -12 were left in the report as useful information because they are chemically similar to the other Benzophenones. The Panel agreed that, subject to minor revisions, the document will be issued as a Tentative Report for a 90-day comment period. With regard to Benzophenones-2, -6, and -8, the Panel recommended an Insufficient Data Report. The Panel reviewed the available mutagenesis data on Benzophenones-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, and -12, and found that the available data on Benzophenones-2, -6, and -8 were equivocal. Additional mutagenic testing is required for these three ingredients in a mammalian system, with Benzophenone-1 to be included in the study as a control. It should be noted that the Panel published a final report on benzophenones with the following conclusion in 1983: On the basis of the available animal data and clinical human experience presented in this report, the Panel concludes that Benzophenones -1, -3, -4, -5, -9, and -11 are safe for topical application to humans in the present practices of use and concentration in cosmetics. Final Report Addendum, Panel: December of 1982 The Expert Panel evaluated the mutagenicity data submitted in response to the Insufficient Data Report of November 25, 1981 on Benzophenones-2, -6, and -8, and found them to be adequate for an assessment of safety. The following conclusion of the report was unanimously approved: “The Panel concludes that Benzophenones-2, - 6, and -8 are not mutagenic or genotoxic, and that the conclusion for the Final Report on the Safety Assessment of 1, -3, -4, -5, -9, and -11 which states 'on the basis of the available animal data and clinical human experience presented in this report, the Panel concludes that Benzophenone-1, -3, -4, -5, -9, and -11 are safe for topical application to humans in the present practices of use and concentration in cosmetics' is also applicable to these ingredients.” It should be noted that the Panel published an addendum to the final report (in 1983), having concluded that Benzophenones-2, -6, and -8 are not mutagenic or genotoxic and that the published conclusion on Benzophenones - 1, -3, -4, -5, -9, and -11 is applicable to these 3 ingredients. Re-review, Teams/Panel: September of 2001 The Panel determined to not reopen the 1983 published safety assessment until results from National Toxicology Program (NTP) carcinogenicity studies on Benzophenones are available. Distributed for Comment Only -- Do Not Cite or Quote Draft Amended Report, Teams/Panel: September
Recommended publications
  • Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides
    Proceedings of the Iowa Academy of Science Volume 61 Annual Issue Article 26 1954 Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides B. R. Bluestein Coe College Albert Hybl Coe College Yoshimi Al Nishioka Coe College Let us know how access to this document benefits ouy Copyright ©1954 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Bluestein, B. R.; Hybl, Albert; and Nishioka, Yoshimi Al (1954) "Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides," Proceedings of the Iowa Academy of Science, 61(1), 225-232. Available at: https://scholarworks.uni.edu/pias/vol61/iss1/26 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Bluestein et al.: Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlor Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides By B. R. BLUESTEIN, ALBERT HYBL* AND YosHIMI AL NISHIOKA INTRODUCTION The reaction kinetics of the alcoholysis of substituted benzoyl chlorides was studied. The mechanism of the alcoholysis reaction, which is most generally accepted ( 1), shows that the overall re­ action should be second-order and that the reaction should be first-order with respect to the acid chloride and first-order with respect to the alcohol. This rate study was carried out using a large excess of alcohol as the solvent, thus obtaining pseudo-first order rate constants, first-order with respect to the acid chloride only.
    [Show full text]
  • New Technology Provides Cosmetically Elegant Photoprotection Zoe Diana Draelos, MD; Christian Oresajo; Margarita Yatskayer; Angelike Galdi; Isabelle Hansenne
    COSMETIC CONSULTATION New Technology Provides Cosmetically Elegant Photoprotection Zoe Diana Draelos, MD; Christian Oresajo; Margarita Yatskayer; Angelike Galdi; Isabelle Hansenne he primary preventable cause of photoaging is United States, as there is no official rating system for exposure to UVA radiation. This wavelength UVA photoprotection yet. T emitted by the sun is present year round in all Ecamsule absorbs UVA radiation in the range of 320 to latitudes. Currently, the majority of sun-protective prod- 360 nm, but its peak absorbance occurs at 345 nm. It is ucts provide excellent UVB protection with minimal UVA typically combined with other organic sunscreen ingredi- protection. Although UVB protection is important in ents, such as avobenzone and octocrylene. Avobenzone, order to prevent sun damage to the skin from occurring, which is a photounstable photoprotectant, becomes UVA protection is equally important. New developments photostable when combined with octocrylene. These in raw material science have led to the manufacture of ingredients yield a photostable broad-spectrum sunscreen novel ingredients able to provide unprecedented photo- combination. However, the active sunscreen agents are protection COSin the UVA spectrum. DERMonly part of the formulation. Also important in sunscreen One of the most significant developments in cutaneous is the construction of the vehicle to deliver the photo- UVA protection was the discovery of ecamsule (Figure 1), protectants in an aesthetically pleasing manner, enticing also known as Mexoryl SX. Mexoryl SX, which has patients to wear the product. Sunscreens fail to be effec- the International Nomenclature of Cosmetic Ingredients tive if they remain in the bottle. name of terephthalylidene dicamphor sulfonic acid, is In order to evaluate the efficacy and tolerability of a water soluble.
    [Show full text]
  • FDA Proposes Sunscreen Regulation Changes February 2019
    FDA Proposes Sunscreen Regulation Changes February 2019 The U.S. Food and Drug Administration (FDA) regulates sunscreens to ensure they meet safety and eectiveness standards. To improve the quality, safety, and eectiveness of sunscreens, FDA issued a proposed rule that describes updated proposed requirements for sunscreens. Given the recognized public health benets of sunscreen use, Americans should continue to use broad spectrum sunscreen with SPF 15 or higher with other sun protective measures as this important rulemaking eort moves forward. Highlights of FDA’s Proposals Sunscreen active ingredient safety and eectiveness Two ingredients (zinc oxide and titanium dioxide) are proposed to be safe and eective for sunscreen use and two (aminobenzoic acid (PABA) and trolamine salicylate) are 1 proposed as not safe and eective for sunscreen use. FDA proposes that it needs more safety information for the remaining 12 sunscreen ingredients (cinoxate, dioxybenzone, ensulizole, homosalate, meradimate, octinoxate, octisalate, octocrylene, padimate O, sulisobenzone, oxybenzone, avobenzone). New proposed sun protection factor Sunscreen dosage forms (SPF) and broad spectrum Sunscreen sprays, oils, lotions, creams, gels, butters, pastes, ointments, and sticks are requirements 2 proposed as safe and eective. FDA 3 • Raise the maximum proposed labeled SPF proposes that it needs more data for from SPF 50+ to SPF 60+ sunscreen powders. • Require any sunscreen SPF 15 or higher to be broad spectrum • Require for all broad spectrum products SPF 15 and above, as SPF increases, broad spectrum protection increases New proposed label requirements • Include alphabetical listing of active ingredients on the front panel • Require sunscreens with SPF below 15 to include “See Skin Cancer/Skin Aging alert” on the front panel 4 • Require font and placement changes to ensure SPF, broad spectrum, and water resistance statements stand out Sunscreen-insect repellent combination 5 products proposed not safe and eective www.fda.gov.
    [Show full text]
  • Chemical UVR Absorbers
    Chemical UVR Absorbers The names given in bold and used Diisopropyl methyl cinnamate Glyceryl ethyihexanoate dimethoxy- throughout this handbook are those of Empirical formula: cinnamate the International Nomenclature of C 6H22O2 Chemical names. Cosmetic Ingredients. Glyceryl octanoate dimethoxycinnamate; Chemical names: 2-propenoic acid, 3-(4-methoxyphenyl)-, 2-Propenoic acid, 3-12,4bis(1 diester with 1 ,3-dihydroxy-2-(2-ethyl-1 - methylethyphenyl-methyl ester; 2,5- oxohexyl)oxypropane diisopropyl methyl cinnamate _ lsoamyl-para-methoxycinnamate Ethyihexyl methoxycinnamate Empirical formula: Empirical formula: C151-12003 C 8H26O3 Chemical names: Cinnamates Chemical names: Amyl4-methoxycinnamate; isopentyl-4- 2-Ethylhexyl-4-methoxycin nam ate; methoxycinnamate; isopenlyl-para- Cinoxate 2-ethyl-hexyl-para-methoxycinnamate; methoxy-cinnamate; 3-(4-methoxyphenyl)- Empirical formula: para-methoxycinnamic acid, 2-ethylhexyl 2-propenoic acid, isopentyl ester Ci4HieO4 ester; 3-(4-methoxyphenyl)-2-propenoic acid, 2-ethylhexyl ester; octinoxate; octyl Trade names: Chemical names: methoxycinnamate; 2-propenoic acid, 3- Neo Heliopan type E 1000; Solarum AMC 2- Ethoxyothyl-para-methoxyci n nam ate; (4-methoxyphenyl)-2-ethylhexyl ester 2-propenoic acid, 3-(4-methoxyphery- para-A minobenzoic acids (PA BAs) 2-ethoxyethyl ester; 2-ethoxyethyl-4- Trade names: methoxycinnamate AEC Octyl Methoxycinnamate; Escalol Amyl dimethyl FABA 557; Eusolex 2292; Heliosol 3; Empirical formula: Trade names: Jeescreen OMC; Katoscreen OMC; Nec C14H21 NO2 Giv Tan F; Phiasol
    [Show full text]
  • United States Patent Office 3,321,512 Patiented May 23, 1967 2 3,321,512 Peroxide Can Be Prepared in Any Convenient Manner
    United States Patent Office 3,321,512 Patiented May 23, 1967 2 3,321,512 peroxide can be prepared in any convenient manner. It MANUFACTURE OF PERBENZOIC ACDS is preferred, however, to produce the suspension by dis David James Cooper and Tony Nicholas Gibson, both of tributing the corresponding benzoyl chloride in finely di Whitley Bay, Northumberiand, England, assignors to vided form in an aqueous alkaline solution of hydrogen Thecorporation Procter of & OhioGamble Company, Cincinnati, Cilio, a peroxide having a pH of not less than 10. The benzoyl No Drawing. Fified Jan. 22, 1964, Ser. No. 339,323 chloride reacts with the hydrogen peroxide solution pro Ciains priority, application (Great Britaia, Jan. 31, 1963, ducing the benzoyl peroxide which is obtained in the form 4,012/63 of a fine suspension. This can be achieved by introducing 2. Ciaisas. (C. 260-502) the benzoyl chloride at the periphery of a high speed agi IO tator (for example, an agitator of at least 2 inches in This invention relates to an improved process for the diameter rotating at 1500 to 2000 rp.m.) which is located manufacture of perbenzoic acids. in the solution. Alternatively, the benzoyl chloride can The conventional method of preparing aromatic percar be introduced into the throat of a Venturi mixer through boxylic acids is a two stage process in which the diacyl which the aqueous alkaline solution is passing. peroxide is prepared by reacting the aromatic acyl chlo 15 As stated above, the alkaline solution of hydrogen per ride (e.g., benzoyl chloride) with alkaline hydrogen per oxide must have a pH of at least 10.
    [Show full text]
  • Benzoyl Peroxide
    BENZOYL PEROXIDE Prepared at the 63rd JECFA (2004), published in FNP 52 Add 12 (2004) superseding specifications prepared at the 55th JECFA (2000) and published in FNP 52 Add 8 (2000). Treatment of whey with benzoyl peroxide at a maximum concentration of 100 mg/kg does not pose a safety concern (63rd JECFA, 2004). SYNONYMS Benzoyl superoxide, INS No. 928 DEFINITION Benzoyl peroxide is manufactured by the reaction of benzoyl chloride, sodium hydroxide and hydrogen peroxide. Chemical name Dibenzoyl peroxide C.A.S. number 94-36-0 Chemical formula C14H10O4 Structural formula Formula weight 242.23 Assay Not less than 96.0% DESCRIPTION Colourless, crystalline solid having a faint odour of benzaldehyde. Caution: Benzoyl peroxide, especially in the dry form, is a dangerous, highly reactive, oxidizing material and has been known to explode spontaneously FUNCTIONAL USES Bleaching agent CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Insoluble in water, slightly soluble in ethanol and soluble in ether. Melting range (Vol. 4) 103 - 106° with decomposition Decomposition to benzoic To 0.5 g of the sample add 50 ml of 0.5 N ethanolic potassium hydroxide, heat acid gradually to boiling and continue boiling for 15 min. Cool and dilute with 200 ml of water. Add sufficient 0.5 N hydrochloric acid to make strongly acidic and extract with ether. Dry the ether solution over anhydrous sodium sulfate, and then evaporate to dryness on a steam bath. The benzoic acid so obtained melts between 121° and 123°. PURITY Lead (Vol. 4) Not more than 2 mg/kg Determine using an atomic absorption technique appropriate to the specified level.
    [Show full text]
  • Should a Toxicological Risk Assessment of Ubiquitous Chemicals Be Done Using Data from Only One Source of Exposure?
    Mini Review Open Acc J of Toxicol Volume 4 Issue 2 - January 2020 Copyright © All rights are reserved by Di Nardo JC DOI: 10.19080/OAJT.2020.04.555633 Should a Toxicological Risk Assessment of Ubiquitous Chemicals Be Done Using Data from Only One Source of Exposure? Di Nardo JC1* and CA Downs2 1Retired Toxicologist, Vesuvius, USA 2Executive Director, Haereticus Environmental Laboratory, Clifford, USA Submission: January 09, 2020; Published: January 23, 2020 *Corresponding author: Di Nardo JC, Retired Toxicologist, Vesuvius, USA Keywords: Toxicological; Chemicals; Dioxybenzone; Octocrylene; Oxybenzone; Sulisobenzone Introduction consumers to believe that there is no further risk associated with the After much discussion and petitioning by several individuals, chemical. non-governmental organizations and scientists alike, the Food & Drug Administration (FDA) re-opened the sunscreen drug monograph Data on February 26, 2019 to review the safety of sunscreen actives In October of 2018 the Food & Drug Administration (FDA) banned considered Generally Recognized as Safe and Effective (GRASE) the chemical benzophenone from use in foods and/or in plastic food since 1978 [1]. After their review, the FDA concluded that the public wraps [3], because it was found to cause cancer in rodents according to a study conducted by the National Institute of Environmental safety of a dozen drug actives currently in use (several of which record “does not” currently contain sufficient data to support the Health Sciences in May 2007 [3]. In June 2012 the state of California are benzophenone based chemicals - avobenzone, dioxybenzone, added benzophenone to their Proposition 65 list recognizing it as octocrylene, oxybenzone and sulisobenzone) and, therefore, are a carcinogen and came to an agreement that a sunscreen product requesting industry to provide additional data (mainly toxicokinetics, should not contain any more that 50 parts per million [4].
    [Show full text]
  • United States Patent (19) 11 Patent Number: 6,086,858 Mceleney Et Al
    US006086858A United States Patent (19) 11 Patent Number: 6,086,858 McEleney et al. (45) Date of Patent: *Jul. 11, 2000 54). COLORED FORMULATIONS FOR 4,818,491 4/1989 Fariss. APPLICATION TO HUMAN SKIN 4.954,544 9/1990 Chandaria. 5,426.210 6/1995 Kato et al.. 75 Inventors: John McEleney, Newton; Wende SS 8.1. R el, Restry BMS Curtis A. Vock, 5,562,8962- - -2 10/1996 Repperepper et al..al. s 5,567,420 10/1996 McEleney et al. ....................... 424/60 5,609,852 3/1997 Galley et al.. 73 Assignee: IPA, LLC, Forth Worth, Tex. 5,753,210 5/1998 McEleney et al. ....................... 424/59 c: 5,955,062 9/1999 McEleney et al. ... ... 424/59 * Notice: This patent is Subject to a terminal dis- 5,958,383 9/1999 McEleney et al. ....................... 424/59 CC. OTHER PUBLICATIONS 21 Appl. No.: 09/333,088 Deposition Transcript of Jack Katz, Feb. 10, 1999, pp. 1-32, 22 Filled: 15, 1999 regarding civil action entitled, Playtex Products, Inc. and 22 File Jun. 15, Sun Pharmaceuticals Corporation vs. Schering-Plough Related U.S. Application Data Healthcare Products, Inc., Case No. 98–482-RPM, United States District Court, Middle District of Delaware. 63 Continuation of application No. 09/217,170, Dec. 21, 1998, First Amended Complaint, IPA v Schering-Plough et al., which is a continuation of application No. 09/024,458, Feb. Civil Action No. 98–482 (RRM), Jan. 22, 1999, 14 pages. ship, alengageplain E. Defendants' Answer & Counterclaims to First Amended ation of application N. Soss 64.
    [Show full text]
  • Sun Protection
    [ Oncology Watch] Sun Protection: What We and Our Patients Need to Know To preserve their health and the appearance of their skin, patients need straight- forward, practical advice on susncreen selection and protection strategies. By Jonathan Wolfe, MD rom preventing skin cancer to pre- measures protection against cutaneous burning. Even a FDA public education serving a youthful appearance, burning—the effects of UVB—and does piece states, “A higher number means it Fsunscreens play an important role not account for UVA radiation at all.5 As protects longer.”7 This is not a strictly in dermatologic care. However, some a result, a product with a high SPF could accurate interpretation of the SPF value confusion persists among patients and actually confer little or no protection and ignores the fact that unique proper- even some practitioners when it comes to against UVA. ties of the main sunscreen ingredients SPF, available chemical and physical sun- The somewhat esoteric description of (chemical or physical) and the formula- screens, and the best advice for sun SPF calculation is available online at the tion (waterproof, water resistant) influ- avoidance. In recognition of the AAD’s FDA website.6 Ultimately, the SPF num- ence duration of protection. Skin Cancer Detection and Prevention ber represents the ratio of the MED for Patients also often falsely assume that Month, I’ll review important patient protected skin (MED(PS)) to the MED the increase in SPF value is proportion- education points. for unprotected skin (MED(US)). Tests ate to the increase in UVB protection. It are conducted only in patients with skin is not.
    [Show full text]
  • Friedel and Crafts' Reaction-The Preparation of Orthobenzoyl-Benzoic Acid and Benzophenone
    732 C. R. RUBIDGE AND N. C. QUA. two and five-tenths grams of cyanimidocaxbonic ethyl ester, prepared from bromocyanogen, potassium cyanide, and alcohol1 were added to the suspended alcoholate. Heat was developed, the solution became yellow, and sodium cyanide was precipitated. The reaction mixture was heated for two hours in a flask connected with a reflux condenser, and enough water was added to dissolve the sodium cyanide. After the water solution had been extracted with ether several times, the ether was dried with calcium chloride. Thus, 32 g. of a light yellow oil, possessing a strong basic odor, were obtained when the ether was evaporated. Even at a pressure of 25 mm. the compound could not be distilled without consid- erable decomposition. Therefore, no analysis of the substance was at- tempted. Its identity was established by converting it into the corre- sponding oximido derivative. Preqaration of Oximidocarbonic Ethyl Isoamyl Ester, CZHS@-C~C~HII,- II NOH Eight and four-tenths grams of hydroxylamine, dissolved in a small amount of water, were added to 20 g. of the imido ester dissolved'in 20 cc. of ether. The mixture was shaken thirty minutes, the water layer was drawn off, extracted several times with ether, and the ether dried with sodium sulfate. Twenty grams of a reddish yellow oil were obtained when the ether evaporated. When cooled to -15', white crystals ap- peared which melted when they were spread out on a cold clay plate. 0.1754 g. gave 12.8 cc. Nz at 24.5' and 742 mm. Calc. for CsH1703N: N, 7.99.
    [Show full text]
  • Material Safety Data Sheet HCS Risk Phrases HCS CLASS: Corrosive Liquid
    Material Safety Data Sheet HCS Risk Phrases HCS CLASS: Corrosive liquid. HCS CLASS: Combustible liquid IIIA having a flash point between 60.0°C (140°F) and 93.3°C (200°F) Section I. Chemical Product and Company Identification Common Name/ Benzoyl Chloride In Case of Trade Name Emergency In the continental U.S.A. call CHEMTREC 800-424-9300 (24 hours) Outside the continental U.S.A. call CHEMTREC 703-527-3887 (24 hours) Supplier Velsicol Chemical Corporation Manufacturer Velsicol Chemical Corporation 10400 W. Higgins Road 10400 W. Higgins Road Rosemont, IL 60018 U.S.A. Rosemont, IL 60018 U.S.A. Phone: 847-298-9000 Phone: 847-298-9000 Fax: 847-298-9015 Fax: 847-298-9015 Synonym Benzenecarbonyl Chloride Material Uses Agricultural Industry: Chloramber Chemical Name Benzoyl Chloride (herbicide). Intermediate for pesticides. Chemical Family Acyl Halide Industrial Applications: Acylation. Chemical C7 H5 CL 0 Polymerization initiator of benzophenone. Formula Intermediate for stabilizers. Acetic anhydride production. Textile Industry: Cellulosic yarn treatment agent. Fastness improver. Other Non-Specified Industry: Organic analysis. Dyes. Perfumes. Section II. Composition and Information on Ingredients Name CAS# % by Weight TLV/PEL OSHA Hazardous Ingredients 1) Benzoyl Chloride 98-88-4 >99.5 STEL: 2.8 (mg/m3) from Yes ACGIH (TLV) 2) Benzotrichloride 98-07-7 <0.02 STEL: 0.1 ppm from Yes ACGIH; Skin designation. 3) Benzyl Alcohol 100-44-7 <0.01 TWA: 1 (ppm) from Yes ACGIH (TLV) Section III. Hazards Identification Emergency Overview Clear. Liquid. Pungent. Acrid odor. DANGER! CAUSES SEVERE EYE, SKIN AND RESPIRATORY TRACT BURNS. MAY CAUSE BLINDNESS.
    [Show full text]
  • Bringing Order to Organic Chemistry
    Radicals and Types: Bringing Order to Organic Chemistry Organic Chemistry can now make you completely mad. It seems like a primeval forest in a tropical country where we hate to venture, full of the most peculiar things, an enormous thicket with no end and no way out. Friedrich Wöhler to Jakob Berzelius, January 28, 1835 Monday, October 4, 2010 Transformation of Organic Chemistry, 1820-1850 Reasons for this transformation: • Recognition of isomerism. • Explanation of isomerism by “arrangement.” • The rapid adoption of Berzelian notation as “paper tools” • Justus Liebig’s invention of the Kaliapparat for organic analysis Monday, October 4, 2010 Justus von Liebig (1803-1873) Friedrich Wöhler (1800-1882) Monday, October 4, 2010 Compounds with Identical Molecular Formulas • Liebig: Silver fulminate: 77.53% AgO, 22.47% cyanic acid • Wöhler: Silver cyanate: 77.23% AgO, 22.77% cyanic acid • Wöhler, 1828: • Cyanic acid + ammonia –––> ammonium cyanate –––> urea • Berzelius: • Isomers: compounds with different properties, but identical elemental composition. Monday, October 4, 2010 Liebig, Wöhler and the Oil of Bitter Almonds (1834) • C14H12O2 + oxidant --> C14H12O4 (benzoic acid) • C14H12O2 + chlorine --> C14H12O2Cl2 • C14H12O2 + bromine --> C14H12O2Br2 • (Many other reactions with iodine, ammonia, etc.) • Benzoyl Hydrogen: C14H10O2 • H2 • Benzoyl chloride: C14H10O2 • Cl2 • Benzoyl iodide: C14H10O2 • I2 • Benzoic acid: C14H10O2 • OH2 • Constant set of atoms: C14H12O2 Benzoyl radical Monday, October 4, 2010 Liebig, Wöhler and the Oil of Bitter Almonds (1834) Role of Berzelian formulas in creating the concept of the benzoyl radical • Elemental analysis results must be converted into integral numbers of “atoms” (C14H10O2 • H2 for oil of bitter almonds) • Formulas represent the benzoyl radical, but are also the means of “discovering” it, by manipulating symbols on paper.
    [Show full text]