Before Radicals Were Free – the Radical Particulier of De Morveau

Total Page:16

File Type:pdf, Size:1020Kb

Before Radicals Were Free – the Radical Particulier of De Morveau Review Before Radicals Were Free – the Radical Particulier of de Morveau Edwin C. Constable * and Catherine E. Housecroft Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-61-207-1001 Received: 31 March 2020; Accepted: 17 April 2020; Published: 20 April 2020 Abstract: Today, we universally understand radicals to be chemical species with an unpaired electron. It was not always so, and this article traces the evolution of the term radical and in this journey, monitors the development of some of the great theories of organic chemistry. Keywords: radicals; history of chemistry; theory of types; valence; free radicals 1. Introduction The understanding of chemistry is characterized by a precision in language such that a single word or phrase can evoke an entire back-story of understanding and comprehension. When we use the term “transition element”, the listener is drawn into an entire world of memes [1] ranging from the periodic table, colour, synthesis, spectroscopy and magnetism to theory and computational chemistry. Key to this subliminal linking of the word or phrase to the broader context is a defined precision of terminology and a commonality of meaning. This is particularly important in science and chemistry, where the precision of meaning is usually prescribed (or, maybe, proscribed) by international bodies such as the International Union of Pure and Applied Chemistry [2]. Nevertheless, words and concepts can change with time and to understand the language of our discipline is to learn more about the discipline itself. The etymology of chemistry is a complex and rewarding subject which is discussed eloquently and in detail elsewhere [3–5]. One word which has had its meaning refined and modified to an extent that its original intent has been almost lost is radical, the topic of this special issue. This article has two origins: firstly and most importantly, on the occasion of his 80th birthday, it is an opportunity to express our gratitude and thanks for the friendship and assistance of Bernd Giese in our years together in Basel, and secondly to acknowledge a shared interest with Bernd in the history of our chosen discipline. 2. Modern Understanding It seems relevant to present the IUPAC definition of a radical in full at this point in the text as it both provides a precision for modern usage and also contains hints of the historical meaning: “A molecular entity such as CH , SnH , Cl possessing an unpaired electron. (In these formulae · 3 · 3 · the dot, symbolizing the unpaired electron, should be placed so as to indicate the atom of highest spin density, if this is possible.) Paramagnetic metal ions are not normally regarded as radicals. However, in the ‘isolobal analogy’, the similarity between certain paramagnetic metal ions and radicals becomes apparent. At least in the context of physical organic chemistry, it seems desirable to cease using the adjective ‘free’ in the general name of this type of chemical species and molecular entity, so that the term ‘free radical’ may in future be restricted to those radicals which do not form parts of radical pairs. Depending upon the core atom that possesses the unpaired electron, the radicals can be described as carbon-, oxygen-, nitrogen-, metal-centered radicals. If the unpaired electron occupies an orbital having Chemistry 2020, 2, 19; doi:10.3390/chemistry2020019 www.mdpi.com/journal/chemistry Chemistry 2020, 2 2 Chemistryradicals 2020can, 2be, 19 described as carbon-, oxygen-, nitrogen-, metal-centered radicals. If the unpaired1 of 11 electron occupies an orbital having considerable s or more or less pure p character, the respective considerableradicals are termed s or more σ- or or π-radicals. less pure In p character,the past, the the term respective ‘radical’ radicals was used are to termed designateσ- ora substituentπ-radicals. Ingroup the past,bound the to term a molecular ‘radical’ wasentity, used as toopposed designate to ‘free a substituent radical’, groupwhich boundnowadays to a molecularis simply entity,called asradical. opposed The to bound ‘free radical’, entities which may nowadaysbe called groups is simply or called substituents, radical. Thebut boundshould entities no longer may be be called groupsradicals” or [6]. substituents, but should no longer be called radicals” [6]. To summarize,summarize, inin acceptedaccepted modernmodern usage,usage, aa radicalradical possessespossesses anan unpairedunpaired electron.electron. 3. A Radical Birth 3.1. de Morveau’s Introduction The word radical was introduced by the French politician and chemist, Louis-Bernard Guyton, Baron dede Morveau Morveau (1737–1816, (1737–1816, prudently prudently identified identifi aftered theafter French the revolutionFrench revolution without the without aristocratic the rankaristocratic as Louis-Bernard rank as Louis-Bernard Guyton-Morveau, Guyton-Morveau, Figure1)[ Figure7]. In 1) 1782, [7]. In de 1782, Morveau de Morveau published published an article an entitledarticle entitledSur les Sur Dé nominationsles Dénominations Chymiques, Chymiques, La né Lacessit nécessitéé d’en d’ perfectioneren perfectioner le syst le systême,ême, et leset les règles règles pour pour y parveniry parvenirin in which which he he identified identified the the need need for for a a new new systematic systematic nomenclature nomenclature in in chemistrychemistry [[8].8]. InIn thisthis paper, hehe notnot only only formulated formulated his his five five principles principles of of nomenclature nomenclature which which later later became became embodied embodied in the in Mtheéthode Méthode de Nomenclature de Nomenclature Chimique Chimique[9,10], but[9,10], also but introduced also introduced the word radicalthe wordto describe radical ato multiatomic describe a entity;multiatomic in his entity; own words in his own “Having words found “Having the adjectives found the arsenicaladjectives and arsenical acetic and consecrated acetic consecrated by usage, itby was usage, necessary it was tonecessary preserve to them preserve and formthem onlyand suchform closeonly such nouns close to the nouns radicals to the of radicals these terms of these that theyterms could that they be understood could be understood without explanation. without explan Arseniatesation. Arseniates and acetates and seemed acetates to seemed me to fulfil to me this to condition.”fulfil this condition.” He makes He no furthermakes no comment further on comment the term on in the this term paper, in whichthis paper, also includeswhich also a table includes which a liststable acids, which the lists generic acids, names the generic of salts names derived of salts from de theserived acids, from bases these or acids, substances bases or that substances bind to acids. that Thisbind tableto acids. also This confirms table thatalso heconfirms was still that a phlogistonist he was still a [ 11phlogistonist,12] in 1782, [11,12] as phlogiston in 1782, is as listed phlogiston amongst is thelisted bases amongst or substances the bases that or substances bind to acids. that The bind word to acids.radical Theitself word seems radical to derive itself seems from theto derive Latin wordfrom radixthe Latin (root). word radix (root). Figure 1. Louis-BernardLouis-Bernard Guyton, Baron Baron de de Morveau Morveau ( (1737–1816,1737–1816, subsequently subsequently Louis-Bernard Louis-Bernard Guyton- Guyton- Morveau) was a FrenchFrench chemistchemist andand politicianpolitician whowho introducedintroduced thethe wordword radicalradical inin 1782.1782. (Public(Public domain image. Source image.https:// en.wikipedia.orgSource/wiki /Louis-Bernard_Guyton_de_Morveau#https://en.wikipedia.org/wiki/Louis-/media/File: Louis-Bernard_Guyton_de_Morveau.jpgBernard_Guyton_de_Morveau#/media/File:L). ouis-Bernard_Guyton_de_Morveau.jpg). By the timetime ofof thethe publicationpublication of of the theM Méthodeéthode, the, the concept concept of of radicals radicals was was embedded embedded in in the the core core of theof the model model in in five five classes classes of of substances substances which which had had not not been been decomposed decomposed into into simplersimpler materialsmaterials (the second class includes all the acidifiableacidifiable bases or radicalradical principles of the acids) [[9,10].9,10]. In this work, the “radical“radical of of the the acid” acid” was preciselywas precisely defined defined as “the expressionas “the expression of acidifiable of base”.acidifiable The explanationsbase”. The givenexplanations in the textgiven are in di thefficult text for are the difficult modern for reader the modern to follow reader as the to conversionfollow as the of conversion the radical of (such the as nitrate or acetate) to the parent acid did not involve the addition of protons but rather oxygen. Chemistry 2020, 2, 19 2 of 11 Although the credit for the discovery of oxygen should be shared between William Scheele, Joseph Priestley and Antoine Laurent de Lavoisier [13,14], Lavoisier’s contribution included the name oxygène, from the Greek ὀξύ& (acid, sharp) and -γενή& (producer, begetter), on the basis of his belief that oxygen was a constituent of all acids. On this basis, the Méthode continues to clarify the nomenclature of radicals defining known acids as arising from the addition of oxygen to “pure charcoal, carbon or carbonic radical ::: Sulphur or sulphuric ::: radical and phosphorus or phosphoric radical”. The identification of oxygen as
Recommended publications
  • Jean-Baptiste Charles Joseph Bélanger (1790-1874), the Backwater Equation and the Bélanger Equation
    THE UNIVERSITY OF QUEENSLAND DIVISION OF CIVIL ENGINEERING REPORT CH69/08 JEAN-BAPTISTE CHARLES JOSEPH BÉLANGER (1790-1874), THE BACKWATER EQUATION AND THE BÉLANGER EQUATION AUTHOR: Hubert CHANSON HYDRAULIC MODEL REPORTS This report is published by the Division of Civil Engineering at the University of Queensland. Lists of recently-published titles of this series and of other publications are provided at the end of this report. Requests for copies of any of these documents should be addressed to the Civil Engineering Secretary. The interpretation and opinions expressed herein are solely those of the author(s). Considerable care has been taken to ensure accuracy of the material presented. Nevertheless, responsibility for the use of this material rests with the user. Division of Civil Engineering The University of Queensland Brisbane QLD 4072 AUSTRALIA Telephone: (61 7) 3365 3619 Fax: (61 7) 3365 4599 URL: http://www.eng.uq.edu.au/civil/ First published in 2008 by Division of Civil Engineering The University of Queensland, Brisbane QLD 4072, Australia © Chanson This book is copyright ISBN No. 9781864999211 The University of Queensland, St Lucia QLD JEAN-BAPTISTE CHARLES JOSEPH BÉLANGER (1790-1874), THE BACKWATER EQUATION AND THE BÉLANGER EQUATION by Hubert CHANSON Professor, Division of Civil Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072, Australia Ph.: (61 7) 3365 3619, Fax: (61 7) 3365 4599, Email: [email protected] Url: http://www.uq.edu.au/~e2hchans/ REPORT No. CH69/08 ISBN 9781864999211 Division of Civil Engineering, The University of Queensland August 2008 Jean-Baptiste BÉLANGER (1790-1874) (Courtesy of the Bibliothèque de l'Ecole Nationale Supérieure des Ponts et Chaussées) Abstract In an open channel, the transition from a high-velocity open channel flow to a fluvial motion is a flow singularity called a hydraulic jump.
    [Show full text]
  • Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides
    Proceedings of the Iowa Academy of Science Volume 61 Annual Issue Article 26 1954 Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides B. R. Bluestein Coe College Albert Hybl Coe College Yoshimi Al Nishioka Coe College Let us know how access to this document benefits ouy Copyright ©1954 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Bluestein, B. R.; Hybl, Albert; and Nishioka, Yoshimi Al (1954) "Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides," Proceedings of the Iowa Academy of Science, 61(1), 225-232. Available at: https://scholarworks.uni.edu/pias/vol61/iss1/26 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Bluestein et al.: Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlor Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides By B. R. BLUESTEIN, ALBERT HYBL* AND YosHIMI AL NISHIOKA INTRODUCTION The reaction kinetics of the alcoholysis of substituted benzoyl chlorides was studied. The mechanism of the alcoholysis reaction, which is most generally accepted ( 1), shows that the overall re­ action should be second-order and that the reaction should be first-order with respect to the acid chloride and first-order with respect to the alcohol. This rate study was carried out using a large excess of alcohol as the solvent, thus obtaining pseudo-first order rate constants, first-order with respect to the acid chloride only.
    [Show full text]
  • Sturm Und Dung: Justus Von Liebig and the Chemistry of Agriculture
    Sturm und Dung: Justus von Liebig and the Chemistry of Agriculture Pat Munday, Montana Tech, Butte, Montana 59701-8997, USA In August of 1990, I completed a PhD dissertadon titled "Sturm und Dung: Justus von Liebig and the Chemistry of Agriculture"1 as a graduate Student with the Program in the History and Philosophy of Science and Technology at Comell University. In this work, I tried to utilize the historical tools I had lear- ned from the members my doctoral committee, Chaired by Professor Dr. L. Pearce Williams; the other two members of my committee were Professor Dr. Isabel V. Hüll and Professor Dr. Margaret W. Rossiter. Briefly, these tools included: a thorough mastery of the secondary literature; utilizadon of primary and manuscript sources, especially manuscript sources neglected by previous historians; and "a radical cridque of central institudons and sacred cows" achieved, in part, through "focussing on eccentricity and contradiction. "2 As mentors for my life and models3 for my work, I thank Professors Williams, Hüll, and Rossiter, and apologize for my shortcomings as their Student. I have published a few articles cannibalized from my dissertadon.4 Since I now am fortunate enough to work with an insdtudon that emphasizes teaching over the publication of obscure books, I have never been pressured to publish my dissertadon as such. Based on my correspondence and rare attendance at Pro- fessional meetings, I thought my work on Liebig had been received lukewannly at best. It therefore came as a great surprise when, because of my dissertadon, I received one of the two 1994 Liebig-Wöhler-Freundschafts Preise sponsored by Wilhelm Lewicki and awarded by the Göttinger Chemische Gesellschaft.
    [Show full text]
  • Charles Fréderic Gerhardt Jaime Wisniak
    PARA QUITARLE EL POLVO La química en la historia, para la enseñanza Charles Fréderic Gerhardt Jaime Wisniak Resumen Charles-Victor Lobstein (1809-1863). Samuel Ger- Charles Fréderic Gerhardt (1816-1856) fue uno de los hardt, born in Switzerland, came from a well-known químicos más importantes del siglo diecinueve, cu - family of brewers. At a young age he moved to yas investigaciones y teorías ejercieron una poderosa Strasbourg where he found employment in the influencia en el desarrollo de la química. Su teoría Turckheim bank and married. His skills led to a fast de los tipos fue significativa en impulsar hacia ade- career and thus to provide his family with a prosper- lante la clasificación orgánica, poniéndola en una ous and cultured home. forma más racional, y en destronar el enfoque dua - Between 1824 and 1831 Charles attended the lista. La teoría de los tipos evolucionó hacia la idea local Gymnase Protestant, an institution controlled by de valencia. Gerhardt generalizó el concepto de the Lutheran Augsburg Confession. According to homología y equivalentes. Fue asimismo responsa- Carneiro (1993) the Gymnasium had been founded ble de la síntesis de un gran número de compuestos in 1538 by Jean Sturm (1507-1589), a German Lu - orgánicos, entre ellos anhidridos y cloruros de ácido, theran reformed who advocated and practiced the derivados del ácido salicílico, anilidas, y fosfamidas. propagation of knowledge through teaching and publication. This institution was highly regarded in Abstract the educational circle; it had resisted several at- Charles Fréderic Gerhardt (1816-1856) was one of tempts by the Ministry of Instruction to integrate it the most important chemists of the nineteenth cen- into the official Lycée program, particularly after the tury and whose researches and theories exerted a anti clerical atmosphere that was prevalent after powerful influence in the development of chemistry.
    [Show full text]
  • Redalyc.Joseph Achille Le Bel. His Life and Works
    Revista CENIC. Ciencias Químicas ISSN: 1015-8553 [email protected] Centro Nacional de Investigaciones Científicas Cuba Wisniak, Jaime Joseph Achille Le Bel. His Life and Works Revista CENIC. Ciencias Químicas, vol. 33, núm. 1, enero-abril, 2002, pp. 35-43 Centro Nacional de Investigaciones Científicas La Habana, Cuba Available in: http://www.redalyc.org/articulo.oa?id=181625999008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista CENIC Ciencias Químicas, Vol. 33, No. 1, 2002. RESEÑA BIOGRAFICA Joseph Achille Le Bel. His Life and Works Jaime Wisniak Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105. [email protected]. Recibido: 26 de abril del 2001. Aceptado: 22 de mayo del 2001. Palabras clave: Le Bel, Química, estereoquímica, actividad óptica, cosmogonia Key words: Le Bel, Chemistry, stereoquímica, optical activity, cosmogony. RESUMEN. Joseph Achille Le Bel es un ejemplo de científicos como Réaumur The same year his father passed que investigaron muchÍsimos temas, pero solo son recordados por uno. Le Bel away and his two sisters, Marie and es un nombre bien conocido por los estudiantes de Química en general, y Emma, took charge of the family in- estereoquímica en particular. El nos dejo los principios básicos que determinan dustry and in this way allowed Le las condiciones geométricas que un compuesto de carbón debe satisfacer para Bel to continue chemical studies.
    [Show full text]
  • Biography: Justus Von Liebig
    Biography: Justus von Liebig Justus von Liebig (1803 – 1873) was a German chemist. He taught chemistry at the University of Giessen and the University of Munich. The University of Giessen currently bears his name. Liebig is called the father of fertilizers. He confirmed the hypothesis concerning the mineral nutrition of plants, which became the basis for the development of modern agricultural chemistry. Liebig’s research is considered a precursor to the study of the impact of environmental factors on organisms. He formulated the law of the minimum, which states that the scarcest resource is what limits a given organism. He also developed a process for producing meat extract and founded the company Liebig Extract of Meat Company whose trademark was the beef bouillon cube, which he invented. Justus von Liebig was born into a middle class In 1824, at the age of 21, Liebig became a family from Darmstadt on May 12, 1803. As a professor at the University of Giessen. While in child, he was already fascinated by chemistry. Germany, he founded and edited the magazine When he was 13 years old, most of the crops in the Annalen der Chemie, which became the leading Northern Hemisphere were destroyed by a journal of chemistry in Germany. volcanic winter. Germans were among the most In 1837, he was elected a member of the Royal affected. It is said that this experience influenced Swedish Academy of Sciences, and in 1845, started the subsequent work of Liebig and the working at the University of Munich, where he establishment of his company. remained until his death.
    [Show full text]
  • Early Russian Organic Chemists and Their Legacy
    SpringerBriefs in Molecular Science Early Russian Organic Chemists and Their Legacy Bearbeitet von David Lewis 1. Auflage 2012. Taschenbuch. xii, 136 S. Paperback ISBN 978 3 642 28218 8 Format (B x L): 15,5 x 23,5 cm Gewicht: 237 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Chemie Allgemein > Geschichte der Chemie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Beginnings 2.1 Introduction At the start of the twentieth century, organic chemistry was not yet 75 years old as a separate and legitimate sub-discipline of the science. Considerable progress had been made in these first seven decades, and the stage was set for the dramatic advances in the science to come in the following century. Most practicing organic chemists are familiar with many of the great German, French and English organic chemists whose work helped the fledgling discipline grow, but few are familiar with the role that Russian organic chemists of the nineteenth and early twentieth century played in the development of the science. And this is in spite of the fact that many of the named rules and reactions that one studies in the first course in organic chemistry are, in fact, of Russian origin. It is the intent of this book to help rectify that deficiency.
    [Show full text]
  • Oxidative Stress and Radical-Induced Signalling John R
    part 2. mechanisms of carcinogenesis chapter 15. Oxidative stress and radical-induced signalling John R. Bucher PART 2 CHAPTER 15 Throughout evolution, aerobic An imbalance between the normal Pierre et al., 2002). Peroxisomes are organisms have developed mul- production of oxygen radicals and a source of H2O2, through reactions tiple defence systems to protect their capture and disposal by pro- involving acyl-CoA oxidase (which themselves against oxygen radicals tective enzyme systems and antiox- is involved in oxidation of long-chain (Benzie, 2000). One-, two-, and idants results in oxidative stress, and fatty acids), d-amino acid oxidase, three-electron reductions of molecu- this condition has been proposed and other oxidases (Schrader and lar oxygen give rise to, respectively, to be the basis of many deleterious Fahimi, 2006). • − superoxide (O2 ), hydrogen peroxide chronic health conditions and dis- When stimulated, inflammatory (H2O2, a radical precursor), and the eases, including cancer. cells such as neutrophils, eosino- highly reactive hydroxyl radical (•OH) phils, and macrophages produce ox- or equivalent transition metal–oxy- Sources of oxygen radicals ygen radicals during the associated gen complexes (Miller et al., 1990). respiratory burst (the rapid release of Reactions of oxygen radicals with Mitochondrial oxidative phosphor- reactive oxygen species from cells) cellular components can deplete an- ylation is a major source of oxy- that involves nicotinamide adenine tioxidants, can cause direct oxidative gen radicals of endogenous
    [Show full text]
  • United States Patent Office 3,321,512 Patiented May 23, 1967 2 3,321,512 Peroxide Can Be Prepared in Any Convenient Manner
    United States Patent Office 3,321,512 Patiented May 23, 1967 2 3,321,512 peroxide can be prepared in any convenient manner. It MANUFACTURE OF PERBENZOIC ACDS is preferred, however, to produce the suspension by dis David James Cooper and Tony Nicholas Gibson, both of tributing the corresponding benzoyl chloride in finely di Whitley Bay, Northumberiand, England, assignors to vided form in an aqueous alkaline solution of hydrogen Thecorporation Procter of & OhioGamble Company, Cincinnati, Cilio, a peroxide having a pH of not less than 10. The benzoyl No Drawing. Fified Jan. 22, 1964, Ser. No. 339,323 chloride reacts with the hydrogen peroxide solution pro Ciains priority, application (Great Britaia, Jan. 31, 1963, ducing the benzoyl peroxide which is obtained in the form 4,012/63 of a fine suspension. This can be achieved by introducing 2. Ciaisas. (C. 260-502) the benzoyl chloride at the periphery of a high speed agi IO tator (for example, an agitator of at least 2 inches in This invention relates to an improved process for the diameter rotating at 1500 to 2000 rp.m.) which is located manufacture of perbenzoic acids. in the solution. Alternatively, the benzoyl chloride can The conventional method of preparing aromatic percar be introduced into the throat of a Venturi mixer through boxylic acids is a two stage process in which the diacyl which the aqueous alkaline solution is passing. peroxide is prepared by reacting the aromatic acyl chlo 15 As stated above, the alkaline solution of hydrogen per ride (e.g., benzoyl chloride) with alkaline hydrogen per oxide must have a pH of at least 10.
    [Show full text]
  • The Legacy of Henri Victor Regnault in the Arts and Sciences
    International Journal of Arts & Sciences, CD-ROM. ISSN: 1944-6934 :: 4(13):377–400 (2011) Copyright c 2011 by InternationalJournal.org THE LEGACY OF HENRI VICTOR REGNAULT IN THE ARTS AND SCIENCES Sébastien Poncet Laboratoire M2P2, France Laurie Dahlberg Bard College Annandale, USA The 21 st of July 2010 marked the bicentennial of the birth of Henri Victor Regnault, a famous French chemist and physicist and a pioneer of paper photography. During his lifetime, he received many honours and distinctions for his invaluable scientific contributions, especially to experimental thermodynamics. Colleague of the celebrated chemist Louis-Joseph Gay- Lussac (1778-1850) at the École des Mines and mentor of William Thomson (1824-1907) at the École Polytechnique, he is nowadays conspicuously absent from all the textbooks and reviews (Hertz, 2004) dealing with thermodynamics. This paper is thus the opportunity to recall his major contributions to the field of experimental thermodynamics but also to the nascent field, in those days, of organic chemistry. Avid amateur of photography, he devoted more than twenty years of his life to his second passion. Having initially taken up photography in the 1840s as a potential tool for scientific research, he ultimately made many more photographs for artistic and self-expressive purposes than scientific ones. He was a founding member of the Société Héliographique in 1851 and of the Société Française de Photographie in 1854. Like his scientific work, his photography was quickly forgotten upon his death, but has begun to attract new respect and recognition. Keywords: Henri Victor Regnault, Organic chemistry, Thermodynamics, Paper photography. INTRODUCTION Henri Victor Regnault (1810–1878) (see Figures 1a & 1b) was undoubtedly one of the great figures of thermodynamics of all time.
    [Show full text]
  • A TRANSNATIONAL NETWORK of CHEMICAL KNOWLEDGE: the PREPARADORES at the LISBON POLYTECHNIC SCHOOL in the 1860S and 1870S
    26 Bull. Hist. Chem., VOLUME 39, Number 1 (2014) A TRANSNATIONAL NETWORK OF CHEMICAL KNOWLEDGE: THE PREPARADORES AT THE LISBON POLYTECHNIC SCHOOL IN THE 1860s AND 1870s Bernardo Jerosch Herold, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, PT-1049-001 Lisboa, Portugal, [email protected] and Wolfram Bayer, Institut für Corpuslinguistik und Texttechnologie, Österreichische Akademie der Wissenschaften, Sonnenfelsgasse 19/8, A-1010 Vienna, Austria, [email protected] Antonio Augusto de Aguiar (1838-1887) was the graduated. Another co-author was Alexander Georg main author of the most important research in organic Bayer (1849-1928) of Bielitz in former Austrian Silesia, chemistry carried out in Portugal during the 19th century. who arrived in Lisbon four years after Lautemann, and Despite not attending any research school in Germany, has until recently evaded almost completely the attention France or Great Britain, Aguiar’s most important research of chemistry historians, in spite of his interesting profes- papers, on work carried out at the Chemical Laboratory sional career, patronized by his elder and more famous of the Lisbon Polytechnic School, were published in brother, Karl Joseph Bayer (1847-1904). The Lisbon Berichte der deutschen chemischen Gesellschaft between Polytechnic School employed Lautemann in 1864-65 and 1870 and 1874. Alexander Bayer from 1868 to 1872 as demonstrators in chemistry (preparadores), but between 1864 and 1876, How then did he acquire the knowledge, the in- three other chemists trained in Germany also worked spiration, and the experimental skills necessary for his as demonstrators at the Lisbon Polytechnic. Bayer and the other three chemists had in common that they were Vicente Lourenço (1822-1893), an élève of Adolphe recruited from the teaching laboratory of Carl Remigius Fresenius (1818-1897) in Wiesbaden.
    [Show full text]
  • Benzoyl Peroxide
    BENZOYL PEROXIDE Prepared at the 63rd JECFA (2004), published in FNP 52 Add 12 (2004) superseding specifications prepared at the 55th JECFA (2000) and published in FNP 52 Add 8 (2000). Treatment of whey with benzoyl peroxide at a maximum concentration of 100 mg/kg does not pose a safety concern (63rd JECFA, 2004). SYNONYMS Benzoyl superoxide, INS No. 928 DEFINITION Benzoyl peroxide is manufactured by the reaction of benzoyl chloride, sodium hydroxide and hydrogen peroxide. Chemical name Dibenzoyl peroxide C.A.S. number 94-36-0 Chemical formula C14H10O4 Structural formula Formula weight 242.23 Assay Not less than 96.0% DESCRIPTION Colourless, crystalline solid having a faint odour of benzaldehyde. Caution: Benzoyl peroxide, especially in the dry form, is a dangerous, highly reactive, oxidizing material and has been known to explode spontaneously FUNCTIONAL USES Bleaching agent CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Insoluble in water, slightly soluble in ethanol and soluble in ether. Melting range (Vol. 4) 103 - 106° with decomposition Decomposition to benzoic To 0.5 g of the sample add 50 ml of 0.5 N ethanolic potassium hydroxide, heat acid gradually to boiling and continue boiling for 15 min. Cool and dilute with 200 ml of water. Add sufficient 0.5 N hydrochloric acid to make strongly acidic and extract with ether. Dry the ether solution over anhydrous sodium sulfate, and then evaporate to dryness on a steam bath. The benzoic acid so obtained melts between 121° and 123°. PURITY Lead (Vol. 4) Not more than 2 mg/kg Determine using an atomic absorption technique appropriate to the specified level.
    [Show full text]