Oxidative Stress and Radical-Induced Signalling John R

Total Page:16

File Type:pdf, Size:1020Kb

Oxidative Stress and Radical-Induced Signalling John R part 2. mechanisms of carcinogenesis chapter 15. Oxidative stress and radical-induced signalling John R. Bucher PART 2 CHAPTER 15 Throughout evolution, aerobic An imbalance between the normal Pierre et al., 2002). Peroxisomes are organisms have developed mul- production of oxygen radicals and a source of H2O2, through reactions tiple defence systems to protect their capture and disposal by pro- involving acyl-CoA oxidase (which themselves against oxygen radicals tective enzyme systems and antiox- is involved in oxidation of long-chain (Benzie, 2000). One-, two-, and idants results in oxidative stress, and fatty acids), d-amino acid oxidase, three-electron reductions of molecu- this condition has been proposed and other oxidases (Schrader and lar oxygen give rise to, respectively, to be the basis of many deleterious Fahimi, 2006). • − superoxide (O2 ), hydrogen peroxide chronic health conditions and dis- When stimulated, inflammatory (H2O2, a radical precursor), and the eases, including cancer. cells such as neutrophils, eosino- highly reactive hydroxyl radical (•OH) phils, and macrophages produce ox- or equivalent transition metal–oxy- Sources of oxygen radicals ygen radicals during the associated gen complexes (Miller et al., 1990). respiratory burst (the rapid release of Reactions of oxygen radicals with Mitochondrial oxidative phosphor- reactive oxygen species from cells) cellular components can deplete an- ylation is a major source of oxy- that involves nicotinamide adenine tioxidants, can cause direct oxidative gen radicals of endogenous origin. dinucleotide phosphate (NADPH) damage to lipids, proteins, RNA, and Mitochondrial complex I (reduced oxidase (Babior, 1999). This reac- DNA, and can result in the forma- nicotinamide adenine dinucleotide tion produces superoxide, which is tion of a variety of other reactants [NADH]:ubiquinone oxidoreductase) converted by superoxide dismut- with varying oxidative potentials, in- and complex III (ubiquinol:cy- ase to the more readily diffusible cluding carbon- or nitrogen-centred tochrome c oxidoreductase) are oxidant H2O2 and is involved in cell radicals (West and Marnett, 2006). sites of superoxide production, with killing functions. Inflammatory cells A growing body of literature presents as much as 1–2% of the electron such as macrophages are also ca- radicals as mediators of various cell flux shunted through one-electron pable of producing nitric oxide (•NO), signalling processes (Ma, 2010). reduction of molecular oxygen (St- through an inducible form of nitric Part 2 • Chapter 15. Oxidative stress and radical-induced signalling 153 oxide synthase (Hibbs et al., 1988). product 8-oxo-2′-deoxyguanosine is Oxygen radicals in cancer •NO is also involved in cell killing but often used as a marker of oxidative Hanahan and Weinberg (2011), in can also react with superoxide at DNA damage, although other bas- their landmark review “Hallmarks diffusion-limited rates to form per- es are also susceptible to oxidation. of cancer: the next generation”, oxynitrite, a potent oxidant with a DNA bases can be modified by lip- identified sustaining proliferative longer half-life and diffusion distance id peroxidation reaction products signalling, reprogramming of en- than the hydroxyl radical (Beckman, (trans-4-hydroxy-2-nonenal, 4-hy- ergy metabolism, evading growth 1996). droperoxy-2-nonenal, and malondi- suppressors and immune destruc- Exogenous agents are also impli- aldehyde) to form various pro-mu- tion, resisting cell death, enabling cated in the generation of reactive tagenic exocyclic adducts (Bartsch replicative immortality, inducing oxygen. Metals such as cadmium and Nair, 2006). angiogenesis, and activating inva- and arsenic can participate in reac- sion and metastasis as signal trans- tions that generate oxygen radicals Defence mechanisms duction pathways key to unravelling (Liu et al., 2008; Kojima et al., 2009). Cytosolic and mitochondrial forms the cancer phenotype. They also Miller et al. (1990) presented a list of of superoxide dismutase catalyse described how genomic instability endogenous and exogenous agents the reduction of superoxide to H O , and tumour-promoting inflammation that are capable of reducing oxygen 2 2 and when coupled with catalase are principal drivers of these events. to superoxide or that “autoxidize”, within peroxisomes or with cytosolic Oxygen radicals clearly contribute to probably through reactions catalysed glutathione peroxidase, can further genomic instability, are produced by by transition metals. Metabolism of convert these reactive species to inflammation, and – along with oth- many exogenous agents through cy- water (Benzie, 2000). Sequestration er radical species – play key roles tochrome P450-mediated reactions in many of the processes identified can also result in the release of ox- of transition metals, principally iron above as necessary for conversion ygen radicals (Hrycay and Bandiera, and copper, in their oxidized forms of normal cells into cancer cells. 2015), as can exposure to ionizing through deposition in transport or Oxidative damage is considered radiation. In addition, several life- storage proteins, or as chelates to be a major factor in the generation style factors, such as obesity, tobac- that do not support redox reactions, of mutations, which are estimated to also limits radical reactions (Hatcher co smoking, and alcohol consump- occur at a frequency of 10 000 per et al., 2009). tion, as well as chronic inflammatory cell per day in humans (Lu et al., Dietary and endogenously pro- conditions and viral infections are 2001). More than 100 different oxi- duced antioxidants also contribute in thought to involve radical-induced dative DNA lesions (Klaunig et al., the defence against radical damage injury (Mena et al., 2009). 2011) and at least 24 base modifica- by serving as radical scavengers. tions (Wilson et al., 2003) have been Oxidative damage Theoretically any oxidizable sub- identified, along with DNA–protein strate can act as a radical scavenger; The hydroxyl radical or equivalent cross-links (Cadet et al., 1997), all ascorbic acid, tocopherols, uric acid, transition metal–oxygen complexes of which potentially lead to genomic (Bucher et al., 1983) are highly re- and sulfhydryl-containing amino ac- instability. RNA has also been shown active entities, capable of abstract- ids provide considerable scavenging to be susceptible to radical attack (Li ing electrons from lipids, proteins, capacity (Benzie, 2000). et al., 2006) but may be less chem- or DNA (Miller et al., 1990), and the Interestingly, high concentrations ically susceptible than DNA (Thorp, resulting target molecule radical of antioxidants in the presence of 2000). Oxidative damage to DNA can then combine with molecular transition metals can actually drive can lead to point mutations, dele- oxygen to participate in subsequent formation of oxygen radicals (Tien tions, insertions, or chromosomal radical reactions, such as propaga- et al., 1982). The importance of a translocations, which may cause tion of lipid peroxidation. Radical balance between pro- and antioxid- activation of oncogenes and inacti- reactions with DNA result in single- ant capacities is also emphasized vation of tumour suppressor genes and double-strand breaks (Toyokuni by an emerging understanding of and may lead to initiation of carcino- and Sagripanti, 1996), cross-links, the role of radical species in cellular genesis (reviewed by Bartsch and and modified bases. The oxidation signal transduction. Nair, 2006; Klaunig et al., 2011). 154 Clearly, high levels of oxygen rad- tions of glutathione peroxidases neonates of certain of these species icals can be fatal to the cell through along with thyroid peroxidase, to survive such exposures with little overt necrosis or the induction of and high levels of glutathione per- evidence of injury. The neonates of apoptosis, but lower levels may also oxidases can interfere with the species resistant to pulmonary injury contribute to the process of carcino- synthesis of thyroid hormones. are capable of increasing their levels genesis through stimulation of cellu- Immunostaining for 8-oxo-2′-deoxy- of antioxidant enzymes in response lar proliferation and alterations in oth- guanosine shows greater intensity in to hyperoxia, in contrast to the adults, er cellular functions. There appear to thyroid follicular cells near the lumen which are incapable of mounting a be a myriad of potential mechanisms where H2O2 is generated than in the similar response (Frank et al., 1978). for these effects, involving induction spleen, liver, or lung, suggesting a Several metals, metalloids, and of transcription factors for numer- high level of oxidative DNA damage fibres that contain metals or are fre- ous signalling pathways, particular- in the thyroid (Maier et al., 2006). quently contaminated with metals ly nuclear factor erythroid 2-related Environmental insults may aug- have been demonstrated to cause factor 2 (Nrf2), mitogen-activated ment oxidative DNA damage in the cancer of the lung in humans and protein kinase (MAPK)/AP1, nucle- thyroid. Thyroid uptake of iodine-131 experimental animals (IARC, 2012a). ar factor kappa-light-chain-enhanc- released during the accident with the These include certain forms of ar- er of activated B cells (NF-κB), and Chernobyl Nuclear Power Plant in senic, asbestos, beryllium, cadmi- hypoxia-inducible transcription fac- Ukraine is thought to be responsible um, chromium, and nickel. Although tor 1 alpha (HIF-1α) (reviewed by for the high
Recommended publications
  • Chloroplast-Derived Photo-Oxidative Stress Causes Changes in H2O2 And
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.212670; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Short title: 2 Transmission of ROS signals from chloroplasts 3 Corresponding authors: 4 Andreas J. Meyer 5 Institute of Crop Science and Resource Conservation (INRES), Chemical Signalling, 6 University of Bonn 7 Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany 8 Phone: +49 228 73 60353 9 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.212670; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 10 Chloroplast-derived photo-oxidative stress causes changes in H2O2 and 11 EGSH in other subcellular compartments 12 Authors: 13 José Manuel Ugalde1, Philippe Fuchs1,2, Thomas Nietzel2, Edoardo A. Cutolo4, Ute C. 14 Vothknecht4, Loreto Holuigue3, Markus Schwarzländer2, Stefanie J. Müller-Schüssele1, 15 Andreas J. Meyer1,* 16 1 Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 17 Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany 18 2 Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D- 19 48143 Münster, Germany 20 3 Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, 21 Pontificia Universidad Católica de Chile, Avda.
    [Show full text]
  • Amplification of Oxidative Stress by a Dual Stimuli-Responsive Hybrid Drug
    ARTICLE Received 11 Jul 2014 | Accepted 12 Mar 2015 | Published 20 Apr 2015 DOI: 10.1038/ncomms7907 Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death Joungyoun Noh1, Byeongsu Kwon2, Eunji Han2, Minhyung Park2, Wonseok Yang2, Wooram Cho2, Wooyoung Yoo2, Gilson Khang1,2 & Dongwon Lee1,2 Cancer cells, compared with normal cells, are under oxidative stress associated with the increased generation of reactive oxygen species (ROS) including H2O2 and are also susceptible to further ROS insults. Cancer cells adapt to oxidative stress by upregulating antioxidant systems such as glutathione to counteract the damaging effects of ROS. Therefore, the elevation of oxidative stress preferentially in cancer cells by depleting glutathione or generating ROS is a logical therapeutic strategy for the development of anticancer drugs. Here we report a dual stimuli-responsive hybrid anticancer drug QCA, which can be activated by H2O2 and acidic pH to release glutathione-scavenging quinone methide and ROS-generating cinnamaldehyde, respectively, in cancer cells. Quinone methide and cinnamaldehyde act in a synergistic manner to amplify oxidative stress, leading to preferential killing of cancer cells in vitro and in vivo. We therefore anticipate that QCA has promising potential as an anticancer therapeutic agent. 1 Department of Polymer Á Nano Science and Technology, Polymer Fusion Research Center, Chonbuk National University, Backje-daero 567, Jeonju 561-756, Korea. 2 Department of BIN Convergence Technology, Chonbuk National University, Backje-daero 567, Jeonju 561-756, Korea. Correspondence and requests for materials should be addressed to D.L. (email: [email protected]). NATURE COMMUNICATIONS | 6:6907 | DOI: 10.1038/ncomms7907 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited.
    [Show full text]
  • Oxygen Is Instrumental for Biological Signaling: an Overview
    Review Oxygen Is Instrumental for Biological Signaling: An Overview John T. Hancock Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; [email protected]; Tel.: +44-(0)117-328-2475 Abstract: Control of cellular function is extremely complex, being reliant on a wide range of compo- nents. Several of these are small oxygen-based molecules. Although reactive compounds containing oxygen are usually harmful to cells when accumulated to relatively high concentrations, they are also instrumental in the control of the activity of a myriad of proteins, and control both the upregulation and downregulation of gene expression. The formation of one oxygen-based molecule, such as the superoxide anion, can lead to a cascade of downstream generation of others, such as hydrogen · peroxide (H2O2) and the hydroxyl radical ( OH), each with their own reactivity and effect. Nitrogen- based signaling molecules also contain oxygen, and include nitric oxide (NO) and peroxynitrite, both instrumental among the suite of cell signaling components. These molecules do not act alone, but form part of a complex interplay of reactions, including with several sulfur-based compounds, such as glutathione and hydrogen sulfide (H2S). Overaccumulation of oxygen-based reactive compounds may alter the redox status of the cell and lead to programmed cell death, in processes referred to as oxidative stress, or nitrosative stress (for nitrogen-based molecules). Here, an overview of the main oxygen-based molecules involved, and the ramifications of their production, is given. Keywords: carbon monoxide; hydrogen peroxide; hydroxyl radicals; hydrogen sulfide; NADPH oxidase; nitric oxide; peroxynitrite; redox; superoxide Citation: Hancock, J.T.
    [Show full text]
  • Oxidative Stress and Antioxidant Mechanisms in Human Body
    Journal of Applied Biotechnology & Bioengineering Review Article Open Access Oxidative stress and antioxidant mechanisms in human body Abstract Volume 6 Issue 1 - 2019 The present review aims to high light on the oxidative stress, and prevention by Almokhtar A Adwas,1 Ata Sedik Ibrahim internal antioxidants and external antioxidants by some natural products possessing Elsayed,2 Azab Elsayed Azab,3 Fawzia antioxidant properties. Oxidative stress occurs when the balance between reactive 4 oxygen species (ROS) formation and detoxification favors an increase in ROS levels, Amhimmid Quwaydir 1 leading to disturbed cellular function. ROS causes damage to cellular macromolecules Department of Pharmacology, Faculty of Medicine, Sabratha University, Libya causing lipid peroxidation, nucleic acid, and protein alterations. Their formation is 2Department of Basic Medical Sciences, Inaya Medical College, considered as a pathobiochemical mechanism involved in the initiation or progression Saudi Arabia phase of various diseases such as atherosclerosis, ischemic heart diseases, diabetes, 3Department of Physiology, Faculty of Medicine, Sabratha and initiation of carcinogenesis or liver diseases. In order to maintain proper cell University, Libya signaling, it is likely that a number of radical scavenging enzymes maintain a 4Department of Zoology, Faculty of Science, Sabratha University, threshold level of ROS inside the cell. However, when the level of ROS exceeds this Libya threshold, an increase in ROS production may lead to excessive signals to the cell, in addition to direct damage to key components in signaling pathways. ROS can also Correspondence: Azab Elsayed Azab, Head of Physiology irreversibly damage essential macromolecules. Protein-bound thiol and non-protein- Department, Faculty of Medicine, Sabratha University, Sabratha, thiol are the major cytosolic low molecular weight sulfhydryl compound that acts Libya, Email as a cellular reducing and a protective reagent against numerous toxic substances including most inorganic pollutants, through the –SH group.
    [Show full text]
  • Chem 51B Chapter 15 Notes
    Lecture Notes Chem 51B S. King Chapter 15 Radical Reactions I. Introduction A radical is a highly reactive intermediate with an unpaired electron. Radicals are involved in oxidation reactions, combustion reactions, and biological reactions. Structure: compare with: compare with: Stability: Free radicals and carbocations are both electron deficient and they follow a similar order of stability: R R H H , > R C > R C > R C > H C R H H H • like carbocations, radicals can be stabilized by resonance. H H H H C C C C H C CH3 H C CH3 H H • unlike carbocations, no rearrangements are observed in free radical reactions. Q. How are free radicals formed? A. Free radicals are formed when bonds break homolytically: 103 Look @ the arrow pushing: Notice the fishhook arrow! It shows movement of a single electron: Compare with heterolytic bond cleavage: A double-headed arrow shows movement of a pair of electrons: Nomenclature: bromide ion bromine atom Bromine (molecule) II. General Features of Radical Reactions Radicals are formed from covalent bonds by adding energy in the form of heat or light (hν). Some radical reactions are carried out in the presence of radical initiators, which contain weak bonds that readily undergo homolysis. The most common radical initiators are peroxides (ROOR), which contain the weak O−O bond. A. Common Reactions of Radicals: Radicals undergo two common reactions: they react with σ-bonds and they add to π-bonds. 1. Reaction of a Radical X• with a C−H bond A radical X• abstracts a H atom from a C−H bond to form H−X and a carbon radical: 104 2.
    [Show full text]
  • 4.01 Ozone, Hydroxyl Radical, and Oxidative Capacity
    4.01 Ozone, Hydroxyl Radical,and OxidativeCapacity R.G.Prinn Massachusetts InstituteofTechnology,Cambridge, MA, USA 4.01.1 INTRODUCTION 1 4.01.2 EVOLUTIONOFOXIDIZING CAPABILITY 3 4.01.2.1 Prebiotic Atmosphere 4 4.01.2.2 Pre-industrialAtmosphere 5 4.01.3 FUNDAMENTAL REACTIONS 5 4.01.3.1 Troposphere 5 4.01.3.2 Stratosphere 7 4.01.4METEOROLOGICAL INFLUENCES 8 4.01.5HUMAN INFLUENCES 9 4.01.5.1 IndustrialRevolution 9 4.01.5.2 FutureProjections 10 4.01.6 MEASURING OXIDATION RATES 11 4.01.6.1 DirectMeasurement 11 4.01.6.2 IndirectMeasurement 13 4.01.7 ATMOSPHERIC MODELS AND OBSERVATIONS 16 4.01.8CONCLUSIONS 16 REFERENCES 17 4.01.1 INTRODUCTION overall rateofthisprocess asthe “oxidation capacity” ofthe atmosphere.Without thiseffi- The atmosphereisachemically complexand cient cleansingprocess,the levels ofmany dynamic systeminteractinginsignificant ways emitted gasescouldriseso high thattheywould withthe oceans,land, andlivingorganisms. A radicallychange the chemicalnatureofour keyprocess proceedinginthe atmosphereis atmosphereandbiosphereand, through the oxidation ofawidevariety ofrelatively reduced greenhouseeffect,our climate. chemicalcompoundsproduced largely bythe Oxidation becameanimportant atmospheric biosphere.Thesecompoundsinclude hydrocar- reaction on Earthonce molecularoxygen(O 2 ) bons(RH),carbon monoxide (CO),sulfur dioxide from photosynthesishad reached sufficiently (SO2 ),nitrogenoxides(NOx ),andammonia high levels.ThisO 2 couldthenphotodissociate (NH3 )amongothers. Theyalso include gases inthe atmosphereto giveoxygenatoms,which associated
    [Show full text]
  • Garlic and Gaseous Mediators
    TIPS 1521 No. of Pages 11 Review Garlic and Gaseous Mediators Peter Rose,1,2,* Philip Keith Moore,3 and Yi-Zhun Zhu2 Garlic (Allium sativum) and allied plant species are rich sources of sulfur Highlights compounds. Major roles for garlic and its sulfur constituents include the Garlic has been used for centuries to regulation of vascular homeostasis and the control of metabolic systems linked treat human diseases. to nutrient metabolism. Recent studies have indicated that some of these sulfur Sulfur compounds present in the compounds, such as diallyl trisulfide (DATS), alter the levels of gaseous sig- edible parts of garlic can alter the levels of gaseous signalling molecules like nalling molecules including nitric oxide (NO), hydrogen sulfide (H2S), and per- NO, CO, and H2S in mammalian cells haps carbon monoxide (CO) in mammalian tissues. These gases are important and tissues. in cellular processes associated with the cardiovascular system, inflammation, Some of garlic’s sulfur compounds and neurological functions. Importantly, these studies build on the known have been found to act as natural biological effects of garlic and associated sulfur constituents. This review H2S donor molecules. highlights our current understanding of the health benefits attributed to edible plants like garlic. Garlic and Its Many Roles Garlic (Allium sativum) has been used in the treatment and prevention of a wide variety of ailments for centuries [1]. The best known of these are the use of garlic as a ‘blood-thinning’ agent in China and India [2], as a treatment for asthma, for bacterial infections such as leprosy, and for heart disorders by the Egyptians [3].
    [Show full text]
  • Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases
    International Journal of Molecular Sciences Review Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases Fabrice Collin Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France; [email protected] Received: 26 April 2019; Accepted: 13 May 2019; Published: 15 May 2019 Abstract: Increasing numbers of individuals suffer from neurodegenerative diseases, which are characterized by progressive loss of neurons. Oxidative stress, in particular, the overproduction of Reactive Oxygen Species (ROS), play an important role in the development of these diseases, as evidenced by the detection of products of lipid, protein and DNA oxidation in vivo. Even if they participate in cell signaling and metabolism regulation, ROS are also formidable weapons against most of the biological materials because of their intrinsic nature. By nature too, neurons are particularly sensitive to oxidation because of their high polyunsaturated fatty acid content, weak antioxidant defense and high oxygen consumption. Thus, the overproduction of ROS in neurons appears as particularly deleterious and the mechanisms involved in oxidative degradation of biomolecules are numerous and complexes. This review highlights the production and regulation of ROS, their chemical properties, both from kinetic and thermodynamic points of view, the links between them, and their implication in neurodegenerative diseases. Keywords: reactive oxygen species; superoxide anion; hydroxyl radical; hydrogen peroxide; hydroperoxides; neurodegenerative diseases; NADPH oxidase; superoxide dismutase 1. Introduction Reactive Oxygen Species (ROS) are radical or molecular species whose physical-chemical properties are well-known both on thermodynamic and kinetic points of view.
    [Show full text]
  • Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms Cite This: RSC Adv.,2015,5, 27986 Satish Balasaheb Nimse*A and Dilipkumar Palb
    RSC Advances REVIEW View Article Online View Journal | View Issue Free radicals, natural antioxidants, and their reaction mechanisms Cite this: RSC Adv.,2015,5, 27986 Satish Balasaheb Nimse*a and Dilipkumar Palb The normal biochemical reactions in our body, increased exposure to the environment, and higher levels of dietary xenobiotic's result in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ROS and RNS create oxidative stress in different pathophysiological conditions. The reported chemical evidence suggests that dietary antioxidants help in disease prevention. The antioxidant compounds react in one-electron reactions with free radicals in vivo/in vitro and prevent oxidative damage. Therefore, it is very important to understand the reaction mechanism of antioxidants with the free radicals. This review elaborates the mechanism of action of the natural antioxidant compounds and Received 28th October 2014 assays for the evaluation of their antioxidant activities. The reaction mechanisms of the antioxidant Accepted 12th March 2015 assays are briefly discussed (165 references). Practical applications: understanding the reaction DOI: 10.1039/c4ra13315c mechanisms can help in evaluating the antioxidant activity of various antioxidant compounds as well as Creative Commons Attribution 3.0 Unported Licence. www.rsc.org/advances in the development of novel antioxidants. 1. Introduction and background enzymes convert dangerous oxidative products to hydrogen peroxide (H2O2) and then to water, in a multi-step process in Antioxidants are molecules that inhibit or quench free radical presence of cofactors such as copper, zinc, manganese, and reactions and delay or inhibit cellular damage.1 Though the iron. Non-enzymatic antioxidants work by interrupting free antioxidant defenses are different from species to species, the radical chain reactions.
    [Show full text]
  • Conjugated, Carbon-Centered Radicals
    molecules Review Synthesis, Physical Properties, and Reactivity of Stable, π-Conjugated, Carbon-Centered Radicals Takashi Kubo Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; [email protected] Received: 26 January 2019; Accepted: 11 February 2019; Published: 13 February 2019 Abstract: Recently, long-lived, organic radical species have attracted much attention from chemists and material scientists because of their unique electronic properties derived from their magnetic spin and singly occupied molecular orbitals. Most stable and persistent organic radicals are heteroatom-centered radicals, whereas carbon-centered radicals are generally very reactive and therefore have had limited applications. Because the physical properties of carbon-centered radicals depend predominantly on the topology of the π-electron array, the development of new carbon-centered radicals is key to new basic molecular skeletons that promise novel and diverse applications of spin materials. This account summarizes our recent studies on the development of novel carbon-centered radicals, including phenalenyl, fluorenyl, and triarylmethyl radicals. Keywords: π-conjugated radicals; hydrocarbon radicals; persistent; anthryl; phenalenyl; fluorenyl 1. Introduction Organic radical species are generally recognized as highly reactive, intermediate species. However, recently, functional materials taking advantage of the feature of open-shell electronic structure have attracted much attention from chemists and material scientists; therefore, the development of novel, long-lived, organic, radical species becomes more important [1–7]. Nitronyl nitroxides, galvinoxyl, and DPPH are well known as stable, organic, radical species, which are commercially available chemicals. These stable radical species are “heteroatom-centered radicals”, in which unpaired electrons are mainly distributed on heteroatoms.
    [Show full text]
  • Antioxidants and Free Radicals a Math and Science Lesson with a Nutri2on Component
    Antioxidants and Free Radicals A math and science lesson with a nutri2on component with the help of the Super Crew® and the California Raisin Marketing Board ® Developed in in Partnership with the California Raisin Marke7ng Board (www.LoveYourRaisins.com ) and SuperKids Nutri7on Inc (www.superkidsnutri7on.com) 1 The Super Crew® know that eating a wide variety of colorful healthy foods helps grow a healthy body! “We each have a favorite color food that fuels our super powers! What’s your favorite healthy food? Learn about antioxidants with us so you can be super healthy too!” - the Super Crew © SuperKids Nutri7on Inc 2 Meet the Super Crew® - We love every color of healthy food! Kira can camouflage with Marcus can heal and produce nature and levitate. “I like heat. “I love yellow foods, like brown foods like cinnamon, star fruit, spaghetti squash walnuts, kidney beans and and pineapple.” whole grains!” Abigail has X-ray vision, Jessie can change the form of super-smarts and can fly. “I objects. “Green foods rock! like every color food, but Avocado, green grapes and blue foods, like blueberries home made kale chips are foods and blue corn are I eat whenever I can!” my favorite! Penny moves at super speed. Baby Tom-Tom can move and “Purple and black foods, like shape water. “Red foods like raisins, black beans and watermelon and beets taste the purple potatoes are the greatest! My favorite best ever!” drink is H20!” Carlos can create clouds and Andy is super strong. “Orange stink bombs. “Healthy white foods like mango, pumpkin and and beige foods, like garlic sweet potato give me energy and Cannellini beans are and keep me fueled right!” topnotch for me!” 3 © SuperKids Nutri7on Inc PART 1 What “ is an antioxidant?” -Penny © SuperKids Nutri7on Inc – Developed exclusively for the California Raisin Marke7ng Board (www.LoveYourRaisins.com ) 4 What is an antioxidant? with Super Crew kid, Penny • An7oxidants are like "superheroes" who fight off "bad guys” (free radicals) that try to make you sick.
    [Show full text]
  • The Effects of Oxidative Stress on Inducing Senescence in Human Fibroblasts Shivani Chowdhary
    Undergraduate Research Article The Effects of Oxidative Stress on Inducing Senescence in Human Fibroblasts Shivani Chowdhary South Carolina Governor's School for Science and Mathematics Oxidative stress, specifically from hydrogen peroxide exposure, was performed to determine if it induced senescence in cell lines such as Hela cells and primary human fibroblasts. The purpose of this experiment was to find the optimal stage, concentration, and time of exposure to induce the greatest number of senescent cells. After dividing cultures of both the Hela and human fibroblasts cells in order to reduce confluency, the cells were placed in a six well plate and exposed to hydrogen peroxide for two hours at various concentrations. The plates were checked at twenty-four-hour intervals, and then fixed with senescence associated beta-galactosidase as a biomarker to observe the senescent cells in culture. It was hypothesized that hydrogen peroxide exposure would increase the number of senescent cells due to the accumulation of reactive oxygen species. The data indicated that, there was an increase in the number of senescent cells following 48 hours of treatment. The number of senescent cells peaked following 72 hours of treatment and did not change significantly as result of 96 hours of treatment supporting our hypothesis. Introduction There are many theories as to why aging occurs, but they ultimately fall under two categories. The first category is that aging is programmed, and the second considers the environmental effects and assaults to organisms that cause the damage which results in aging. The accumulation of biological waste that cannot be removed, dysregulation of regulatory pathways, telomere shortening, and reactive oxygen species, which play a role in the functioning of the mitochondria, are just a few of the many hypotheses that fall under the two major classifications (Sergiev, 2015).
    [Show full text]