Material Safety Data Sheet HCS Risk Phrases HCS CLASS: Corrosive Liquid

Total Page:16

File Type:pdf, Size:1020Kb

Material Safety Data Sheet HCS Risk Phrases HCS CLASS: Corrosive Liquid Material Safety Data Sheet HCS Risk Phrases HCS CLASS: Corrosive liquid. HCS CLASS: Combustible liquid IIIA having a flash point between 60.0°C (140°F) and 93.3°C (200°F) Section I. Chemical Product and Company Identification Common Name/ Benzoyl Chloride In Case of Trade Name Emergency In the continental U.S.A. call CHEMTREC 800-424-9300 (24 hours) Outside the continental U.S.A. call CHEMTREC 703-527-3887 (24 hours) Supplier Velsicol Chemical Corporation Manufacturer Velsicol Chemical Corporation 10400 W. Higgins Road 10400 W. Higgins Road Rosemont, IL 60018 U.S.A. Rosemont, IL 60018 U.S.A. Phone: 847-298-9000 Phone: 847-298-9000 Fax: 847-298-9015 Fax: 847-298-9015 Synonym Benzenecarbonyl Chloride Material Uses Agricultural Industry: Chloramber Chemical Name Benzoyl Chloride (herbicide). Intermediate for pesticides. Chemical Family Acyl Halide Industrial Applications: Acylation. Chemical C7 H5 CL 0 Polymerization initiator of benzophenone. Formula Intermediate for stabilizers. Acetic anhydride production. Textile Industry: Cellulosic yarn treatment agent. Fastness improver. Other Non-Specified Industry: Organic analysis. Dyes. Perfumes. Section II. Composition and Information on Ingredients Name CAS# % by Weight TLV/PEL OSHA Hazardous Ingredients 1) Benzoyl Chloride 98-88-4 >99.5 STEL: 2.8 (mg/m3) from Yes ACGIH (TLV) 2) Benzotrichloride 98-07-7 <0.02 STEL: 0.1 ppm from Yes ACGIH; Skin designation. 3) Benzyl Alcohol 100-44-7 <0.01 TWA: 1 (ppm) from Yes ACGIH (TLV) Section III. Hazards Identification Emergency Overview Clear. Liquid. Pungent. Acrid odor. DANGER! CAUSES SEVERE EYE, SKIN AND RESPIRATORY TRACT BURNS. MAY CAUSE BLINDNESS. HARMFUL IF ABSORBED THROUGH SKIN. MAY BE HARMFUL IF INHALED. MAY BE HARMFUL IF SWALLOWED. COMBUSTIBLE LIQUID AND VAPOR. Potential Health Effects Inhalation and skin contact are expected to be the primary routes of occupational exposure to benzoyl chloride. Direct contact with liquid will cause eye, skin, respiratory and digestive tract burns. Vapors are irritating to the eyes, skin and respiratory tract. May cause a build up of fluids in the lungs (pulmonary edema) that may cause death. May cause central nervous system depression. Benzoyl chloride is considered, on the basis of single exposure (acute) animal tests, to be moderately toxic if absorbed through the skin and slightly toxic if swallowed. Section IV. First Aid Measures Eye Contact Immediately flush with plenty of water for at least 15 minutes. Get medical attention immediately. Skin Contact In case of contact, immediately flush skin with plenty of water for at least 15 minutes, while removing contaminated clothing and shoes. Contact a Poison Control Center. Get medical attention immediately. Wash clothing before reuse. Destroy contaminated shoes. Inhalation If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give [Benzoyl Chloride] Page 1 of 4 oxygen. Get medical attention immediately. Ingestion If swallowed, DO NOT induce vomiting. Give water to drink. Get medical attention immediately. NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON. Section V. Fire and Explosion Data Flammability of the Product Combustible. Auto-Ignition Temperature 85°C (185°F) Flash Points OPEN CUP: 72°C (161.6°F) Flammable Limits LOWER: 1.2% UPPER: 4.9% Fire and Explosion Hazards When heated to decomposition, this material emits toxic fumes. This material may be an environmental hazard. Contain run-off from fire. Notify authorities if water pollution occurs. If this material contacts water, it will react to form heat and hydrochloric acid. If material does come in contact with water, use large amounts of water to hold down vapors and flush away acid. Fire Fighting Media Extinguish fire using agent suitable for surrounding fire with dry chemicals or carbon and Instructions dioxide. DO NOT use water. Violent reaction may result. Carefully use water spray to keep fire-exposed containers cool. Firefighters and others who may be exposed to products of combustion should wear full firefighting turn out gear and self-contained breathing apparatus. Firefighting equipment should be thoroughly decontaminated after use. Section VI. Accidental Release Measures Small Spill Neutralize with lime, limestone, Portland cement or soda ash. Absorb with an inert material and put the spilled material in an appropriate waste disposal container. Large Spill Remove or shut off all sources of ignition. Stop leak if without risk. Absorb with dry earth, sand or other non-combustible material. Do not get water inside container. Do not touch spilled material. Prevent entry into sewers, basements or confined areas; dike if needed. Section VII. Handling and Storage Handling Do not taste or swallow. Do not get in eyes, on skin or on clothing. Do not breathe gas, fumes, vapor or spray. Keep container tightly closed. Use only in well ventilated areas. Wash thoroughly after handling. Storage Store in well ventilated area away from sources of ignition. Section VIII. Exposure Controls/Personal Protection Engineering Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of Controls vapors below their respective threshold limit value. Ensure that eyewash station and safety shower is near the work-station location. Personal Protection Splash goggles. Full Suit. Vapor respirator. Be sure to use a MSHA/NIOCH approved respirator or equivalent. Gloves (impervious). Boots. Personal Protection in Splash goggles. Full suit. Boots. Gloves. Vapor respirator or a self-contained breathing Case of a Large Spill apparatus. Suggested protective clothing might not be sufficient; consult a specialist before handling this product. Section IX. Physical and Chemical Properties Physical State / Appearance Liquid Color Clear Odor Pungent. Acrid odor. Boiling Point 197.5°C (387.5°F) Melting Point -1°C (30.2°F) Critical Temperature Not available. Specific Gravity 1.211 (Water = 1) Vapor Pressure 0.4 mm of Hg (@ 20°C). Vapor Density 4.88 (Air = 1) Volatility Not available. Odor Threshold Not available. Evaporation Rate Lower than 1. Viscosity 0.96 Centistokes @ 100°F Solubility Soluble in benzene. Decomposes in cold water, hot water and ethanol. pH (1% soln/water) Not applicable. Molecular Weight 140.57 [Benzoyl Chloride] Page 2 of 4 Section X. Stability and Reactivity Data Stability The product is stable. Instability Temperature Not available. Conditions of Instability No additional remark. Incompatibility with Reactive or incompatible with moisture, forms benzoic acid and hydrochloric acid. Various Substances Highly reactive with oxidizing agents, alkalis and alcohols. Slightly reactive with metals. When in contact with metals, this material may initiate a condensation reaction, which may result in a build up of pressure in closed vessels. Corrosivity Slowly corrodes metal. Hazardous Polymerization Will not occur. Hazardous Decomposition Hydrogen chloride, benzoic acid, phosgene. Products Section XI. Toxicological Information Toxicity to Animals Acute Oral toxicity (LD50): 1900 – 2618 mg/kg (Rat), Slightly toxic. Acute Dermal toxicity (LD50): 790 - >2000 mg/kg (Rabbit), Moderately to no more than slightly toxic. Acute toxicity of the mist (4-hr LC50): 72 >2000 mg/l (Rat); (2-hr LC50): 1870 mg/m3 (Rat) Eye Irritation – Corrosive (Rabbit) Skin Irritation – Moderately irritating, 3.8/8.0 (Rabbit) Skin and lung tumors were reported in mice after repeated skin contact with benzoyl chloride. These tumors were not considered statistically significant from the control. Irritation of the eyes, skin and respiratory tract and excitation were observed in mice after repeated skin contact. Central nervous system depression was reported in mice after repeated skin contact. No genetic changes were reported in standard tests using bacterial and yeast cells, both with and without mammalian metabolic activation. An equivocal response was reported in one standard test using bacterial cells without mammalian metabolic activation. Section XII. Ecological Information Ecotoxicology Bluegill sunfish 1-hr LC50: 500 ppm Goldfish 7-hr LC50: 200 ppm Fathead minnow 24-hr LC50: 43 mg/l, Slightly toxic. Fathead minnow 48-hr LC50: 35 mg/l, Slightly toxic. Fathead minnow 96-hr LC50: 35 mg/l, Slightly toxic. Grass shrimp 96-hr LC50: 180 ppm, Practically non-toxic. Chemical Fate BOD: 165% Benzoyl Chloride is not likely to persist in the environment in its free state, due to its reactivity. It hydrolyzes in water to form benzoic acid and hydrochloric acids. Benzoyl Chloride may be dangerous to the environment if released to open waterways. Not expected to cumulate or persist in mammals, based on an elimination study in rats. Benzoyl Chloride is not expected to absorb in soils, biodegrade, photolyze, volatilize or leach to ground water. Section XIII. Disposal Considerations Waste Disposal Recycle to process, if possible. Consult your local or regional authorities for disposal options. USEPA Hazardous Waste Numbers D0002 and D003. Section XIV. Transport Information DOT Proper Shipping Name Benzoyl Chloride, RQ if 1000 pounds or greater. DOT Hazard Class DOT CLASS 8: Corrosive liquid. UN Identification Number UN1736 Packing Group II Section XV. Other Regulatory Information and Pictograms Federal and State Regulations On TSCA Chemical Inventory. Other Classifications WHMIS (Canada) WHMIS CLASS B-3: Combustible liquid with a flash point between 37.8°C (100°F) and 93.3°C (200°F). WHMIS CLASS D-1B: Material causing immediate and serious toxic effects (TOXIC). WHMIS
Recommended publications
  • Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides
    Proceedings of the Iowa Academy of Science Volume 61 Annual Issue Article 26 1954 Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides B. R. Bluestein Coe College Albert Hybl Coe College Yoshimi Al Nishioka Coe College Let us know how access to this document benefits ouy Copyright ©1954 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Bluestein, B. R.; Hybl, Albert; and Nishioka, Yoshimi Al (1954) "Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides," Proceedings of the Iowa Academy of Science, 61(1), 225-232. Available at: https://scholarworks.uni.edu/pias/vol61/iss1/26 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Bluestein et al.: Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlor Reaction Kinetics of the Alcoholysis of Substituted Benzoyl Chlorides By B. R. BLUESTEIN, ALBERT HYBL* AND YosHIMI AL NISHIOKA INTRODUCTION The reaction kinetics of the alcoholysis of substituted benzoyl chlorides was studied. The mechanism of the alcoholysis reaction, which is most generally accepted ( 1), shows that the overall re­ action should be second-order and that the reaction should be first-order with respect to the acid chloride and first-order with respect to the alcohol. This rate study was carried out using a large excess of alcohol as the solvent, thus obtaining pseudo-first order rate constants, first-order with respect to the acid chloride only.
    [Show full text]
  • Surface Modifications of Poly(Ether Ether Ketone) Via Polymerization
    materials Review Surface Modifications of Poly(Ether Ether Ketone) via Polymerization Methods—Current Status and Future Prospects Monika Flejszar and Paweł Chmielarz * Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powsta´nców Warszawy 6, 35-959 Rzeszów, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-17-865-1809 Received: 24 January 2020; Accepted: 20 February 2020; Published: 23 February 2020 Abstract: Surface modification of poly(ether ether ketone) (PEEK) aimed at applying it as a bone implant material aroused the unflagging interest of the research community. In view of the development of implantology and the growing demand for new biomaterials, increasing biocompatibility and improving osseointegration are becoming the primary goals of PEEK surface modifications. The main aim of this review is to summarize the use of polymerization methods and various monomers applied for surface modification of PEEK to increase its bioactivity, which is a critical factor for successful applications of biomedical materials. In addition, the future directions of PEEK surface modifications are suggested, pointing to low-ppm surface-initiated atom transfer radical polymerization (SI-ATRP) as a method with unexplored capacity for flat surface modifications. Keywords: PEEK; surface modification; polymer brushes; ultraviolet (UV)-initiated graft polymerization; SI-ATRP 1. Introduction Currently, the production of bone implants is limited only to metal materials (stainless steel, cobalt–chromium, titanium). However, in the production of personalized bone implants, there is an alternative synthetic polymer named poly(ether ether ketone) (PEEK) [1–3]. The chemical structure of PEEK can be defined as an alternating combination of aryl rings through ketone and ether groups; therefore, it belongs to the family of polyaryletherketone polymers.
    [Show full text]
  • Grignard Reaction: Synthesis of Triphenylmethanol
    *NOTE: Grignard reactions are very moisture sensitive, so all the glassware in the reaction (excluding the work-up) should be dried in an oven with a temperature of > 100oC overnight. The following items require oven drying. They should be placed in a 150mL beaker, all labeled with a permanent marker. 1. 5mL conical vial (AKA: Distillation receiver). 2. Magnetic spin vane. 3. Claisen head. 4. Three Pasteur pipettes. 5. Two 1-dram vials (Caps EXCLUDED). 6. One 2-dram vial (Caps EXCLUDED). 7. Glass stirring rod 8. Adaptor (19/22.14/20) Grignard Reaction: Synthesis of Triphenylmethanol Pre-Lab: In the “equations” section, besides the main equations, also: 1) draw the equation for the production of the byproduct, Biphenyl. 2) what other byproduct might occur in the reaction? Why? In the “observation” section, draw data tables in the corresponding places, each with 2 columns -- one for “prediction” (by answering the following questions) and one for actual drops or observation. 1) How many drops of bromobenzene should you add? 2) How many drops of ether will you add to flask 2? 3) 100 µL is approximately how many drops? 4) What are the four signs of a chemical reaction? (Think back to Chem. 110) 5) How do the signs of a chemical reaction apply to this lab? The Grignard reaction is a useful synthetic procedure for forming new carbon- carbon bonds. This organometallic chemical reaction involves alkyl- or aryl-magnesium halides, known as Grignard 1 reagents. Grignard reagents are formed via the action of an alkyl or aryl halide on magnesium metal.
    [Show full text]
  • 13C NMR Study of Co-Contamination of Clays with Carbon Tetrachloride
    Environ. Sci. Technol. 1998, 32, 350-357 13 sometimes make it the equal of solid acids like zeolites or C NMR Study of Co-Contamination silica-aluminas. Benesi (7-9) measured the Hammett acidity of Clays with Carbon Tetrachloride function H0 for a number of clays; these H0 values range from +1.5 to -8.2 (in comparison to H0 )-12 for 100% ) and Benzene sulfuric acid and H0 5 for pure acetic acid). Therefore, one can expect that certain chemical transformations might occur in/on clays that are similar to what are observed in zeolite TING TAO AND GARY E. MACIEL* systems. Thus, it is of interest to examine what happens Department of Chemistry, Colorado State University, when carbon tetrachloride and benzene are ªco-contami- Fort Collins, Colorado 80523 nantsº in a clay. This kind of information would be useful in a long-term view for understanding chemical transforma- tions of contaminants in soil at contaminated sites. Data on 13 these phenomena could also be useful for designing predic- Both solid-sample and liquid-sample C NMR experiments tive models and/or effective pollution remediation strategies. have been carried out to identify the species produced by Solid-state NMR results, based on 13C detection and line the reaction between carbon tetrachloride and benzene narrowing by magic angle spinning (MAS) and high-power when adsorbed on clays, kaolinite, and montmorillonite. Liquid- 1H decoupling (10), have been reported on a variety of organic sample 13C and 1H NMR spectra of perdeuteriobenzene soil components such as humic samples (11-13). Appar- extracts confirm the identities determined by solid-sample ently, there have been few NMR studies concerned directly 13C NMR and provide quantitative measures of the amounts with elucidating the interactions of organic compounds with of the products identifiedsbenzoic acid, benzophenone, and soil or its major components.
    [Show full text]
  • United States Patent Office 3,321,512 Patiented May 23, 1967 2 3,321,512 Peroxide Can Be Prepared in Any Convenient Manner
    United States Patent Office 3,321,512 Patiented May 23, 1967 2 3,321,512 peroxide can be prepared in any convenient manner. It MANUFACTURE OF PERBENZOIC ACDS is preferred, however, to produce the suspension by dis David James Cooper and Tony Nicholas Gibson, both of tributing the corresponding benzoyl chloride in finely di Whitley Bay, Northumberiand, England, assignors to vided form in an aqueous alkaline solution of hydrogen Thecorporation Procter of & OhioGamble Company, Cincinnati, Cilio, a peroxide having a pH of not less than 10. The benzoyl No Drawing. Fified Jan. 22, 1964, Ser. No. 339,323 chloride reacts with the hydrogen peroxide solution pro Ciains priority, application (Great Britaia, Jan. 31, 1963, ducing the benzoyl peroxide which is obtained in the form 4,012/63 of a fine suspension. This can be achieved by introducing 2. Ciaisas. (C. 260-502) the benzoyl chloride at the periphery of a high speed agi IO tator (for example, an agitator of at least 2 inches in This invention relates to an improved process for the diameter rotating at 1500 to 2000 rp.m.) which is located manufacture of perbenzoic acids. in the solution. Alternatively, the benzoyl chloride can The conventional method of preparing aromatic percar be introduced into the throat of a Venturi mixer through boxylic acids is a two stage process in which the diacyl which the aqueous alkaline solution is passing. peroxide is prepared by reacting the aromatic acyl chlo 15 As stated above, the alkaline solution of hydrogen per ride (e.g., benzoyl chloride) with alkaline hydrogen per oxide must have a pH of at least 10.
    [Show full text]
  • On the Limits of Benzophenone As Cross-Linker for Surface-Attached Polymer Hydrogels
    polymers Article On the Limits of Benzophenone as Cross-Linker for Surface-Attached Polymer Hydrogels Esther K. Riga †, Julia S. Saar †, Roman Erath, Michelle Hechenbichler and Karen Lienkamp * ID Freiburg Center für Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany; [email protected] (E.K.R.); [email protected] (J.S.S.) * Correspondence: [email protected]; Tel.: +49-761-203-95090 † These authors contributed equally to this work. Received: 17 November 2017; Accepted: 4 December 2017; Published: 7 December 2017 Abstract: The synthesis of different photo-reactive poly(alkenyl norbornenes) and poly(oxonorbornenes) containing benzophenone (BP) via ring-opening metatheses polymerization (ROMP) is described. These polymers are UV irradiated to form well-defined surface-attached polymer networks and hydrogels. The relative propensity of the polymers to cross-link is evaluated by studying their gel content and its dependency on BP content, irradiation wavelength (254 or 365 nm) and energy dose applied (up to 11 J·cm−2). Analysis of the UV spectra of the polymer networks demonstrates that the poly(oxonorbornenes) show the expected BP-induced crosslinking behavior at 365 nm, although high irradiation energy doses and BP content are needed. However, these polymers undergo chain scission at 254 nm. The poly(alkenyl norbornenes), on the other hand, do not cross-link at 365 nm, whereas moderate to good cross-linking is observed at 254 nm. UV spectra demonstrate that the cross-linking at 254 nm is due to BP cross-linking combined with a [2 + 2] cylcoaddition of the alkenyl double bonds.
    [Show full text]
  • Benzoyl Peroxide
    BENZOYL PEROXIDE Prepared at the 63rd JECFA (2004), published in FNP 52 Add 12 (2004) superseding specifications prepared at the 55th JECFA (2000) and published in FNP 52 Add 8 (2000). Treatment of whey with benzoyl peroxide at a maximum concentration of 100 mg/kg does not pose a safety concern (63rd JECFA, 2004). SYNONYMS Benzoyl superoxide, INS No. 928 DEFINITION Benzoyl peroxide is manufactured by the reaction of benzoyl chloride, sodium hydroxide and hydrogen peroxide. Chemical name Dibenzoyl peroxide C.A.S. number 94-36-0 Chemical formula C14H10O4 Structural formula Formula weight 242.23 Assay Not less than 96.0% DESCRIPTION Colourless, crystalline solid having a faint odour of benzaldehyde. Caution: Benzoyl peroxide, especially in the dry form, is a dangerous, highly reactive, oxidizing material and has been known to explode spontaneously FUNCTIONAL USES Bleaching agent CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Insoluble in water, slightly soluble in ethanol and soluble in ether. Melting range (Vol. 4) 103 - 106° with decomposition Decomposition to benzoic To 0.5 g of the sample add 50 ml of 0.5 N ethanolic potassium hydroxide, heat acid gradually to boiling and continue boiling for 15 min. Cool and dilute with 200 ml of water. Add sufficient 0.5 N hydrochloric acid to make strongly acidic and extract with ether. Dry the ether solution over anhydrous sodium sulfate, and then evaporate to dryness on a steam bath. The benzoic acid so obtained melts between 121° and 123°. PURITY Lead (Vol. 4) Not more than 2 mg/kg Determine using an atomic absorption technique appropriate to the specified level.
    [Show full text]
  • Friedel and Crafts' Reaction-The Preparation of Orthobenzoyl-Benzoic Acid and Benzophenone
    732 C. R. RUBIDGE AND N. C. QUA. two and five-tenths grams of cyanimidocaxbonic ethyl ester, prepared from bromocyanogen, potassium cyanide, and alcohol1 were added to the suspended alcoholate. Heat was developed, the solution became yellow, and sodium cyanide was precipitated. The reaction mixture was heated for two hours in a flask connected with a reflux condenser, and enough water was added to dissolve the sodium cyanide. After the water solution had been extracted with ether several times, the ether was dried with calcium chloride. Thus, 32 g. of a light yellow oil, possessing a strong basic odor, were obtained when the ether was evaporated. Even at a pressure of 25 mm. the compound could not be distilled without consid- erable decomposition. Therefore, no analysis of the substance was at- tempted. Its identity was established by converting it into the corre- sponding oximido derivative. Preqaration of Oximidocarbonic Ethyl Isoamyl Ester, CZHS@-C~C~HII,- II NOH Eight and four-tenths grams of hydroxylamine, dissolved in a small amount of water, were added to 20 g. of the imido ester dissolved'in 20 cc. of ether. The mixture was shaken thirty minutes, the water layer was drawn off, extracted several times with ether, and the ether dried with sodium sulfate. Twenty grams of a reddish yellow oil were obtained when the ether evaporated. When cooled to -15', white crystals ap- peared which melted when they were spread out on a cold clay plate. 0.1754 g. gave 12.8 cc. Nz at 24.5' and 742 mm. Calc. for CsH1703N: N, 7.99.
    [Show full text]
  • Ether Ether Ketone): Monitoring the Meta-Fluorine Displacement in 3,5,4’- Trifluorobenzophenone
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2017 Toward The Synthesis of Functionalized Poly (Ether Ether Ketone): Monitoring the meta-Fluorine Displacement in 3,5,4’- trifluorobenzophenone Giovanni Covarrubias Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Chemistry Commons Repository Citation Covarrubias, Giovanni, "Toward The Synthesis of Functionalized Poly (Ether Ether Ketone): Monitoring the meta-Fluorine Displacement in 3,5,4’-trifluorobenzophenone" (2017). Browse all Theses and Dissertations. 1725. https://corescholar.libraries.wright.edu/etd_all/1725 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. TOWARD THE SYNTHESIS OF FUNCTIONALIZED, SEMI-CRYSTALLINE POLY (ETHER ETHER KETONE): MONITORING THE META-FLUORINE DISPLACEMENT IN 3,5,4’-TRIFLUOROBENZOPHENONE A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By: GIOVANNI COVARRUBIAS B.S. Loras College, 2013 2017 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL May 18th, 2017 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Giovanni Covarrubias ENTITLED Toward The Synthesis of Functionalized Poly (Ether Ether Ketone)s: Monitoring the meta-Fluorine Displacement in 3,5,4’-trifluorobenzophenone BE ACCEPTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. ____________________________ Eric Fossum, Ph. D. Thesis Advisor ____________________________ David Grossie, Ph. D. Chair, Department of Chemistry Committee on Final Examination _____________________________ Eric Fossum, Ph.
    [Show full text]
  • Bringing Order to Organic Chemistry
    Radicals and Types: Bringing Order to Organic Chemistry Organic Chemistry can now make you completely mad. It seems like a primeval forest in a tropical country where we hate to venture, full of the most peculiar things, an enormous thicket with no end and no way out. Friedrich Wöhler to Jakob Berzelius, January 28, 1835 Monday, October 4, 2010 Transformation of Organic Chemistry, 1820-1850 Reasons for this transformation: • Recognition of isomerism. • Explanation of isomerism by “arrangement.” • The rapid adoption of Berzelian notation as “paper tools” • Justus Liebig’s invention of the Kaliapparat for organic analysis Monday, October 4, 2010 Justus von Liebig (1803-1873) Friedrich Wöhler (1800-1882) Monday, October 4, 2010 Compounds with Identical Molecular Formulas • Liebig: Silver fulminate: 77.53% AgO, 22.47% cyanic acid • Wöhler: Silver cyanate: 77.23% AgO, 22.77% cyanic acid • Wöhler, 1828: • Cyanic acid + ammonia –––> ammonium cyanate –––> urea • Berzelius: • Isomers: compounds with different properties, but identical elemental composition. Monday, October 4, 2010 Liebig, Wöhler and the Oil of Bitter Almonds (1834) • C14H12O2 + oxidant --> C14H12O4 (benzoic acid) • C14H12O2 + chlorine --> C14H12O2Cl2 • C14H12O2 + bromine --> C14H12O2Br2 • (Many other reactions with iodine, ammonia, etc.) • Benzoyl Hydrogen: C14H10O2 • H2 • Benzoyl chloride: C14H10O2 • Cl2 • Benzoyl iodide: C14H10O2 • I2 • Benzoic acid: C14H10O2 • OH2 • Constant set of atoms: C14H12O2 Benzoyl radical Monday, October 4, 2010 Liebig, Wöhler and the Oil of Bitter Almonds (1834) Role of Berzelian formulas in creating the concept of the benzoyl radical • Elemental analysis results must be converted into integral numbers of “atoms” (C14H10O2 • H2 for oil of bitter almonds) • Formulas represent the benzoyl radical, but are also the means of “discovering” it, by manipulating symbols on paper.
    [Show full text]
  • Paper Crystal Engineering, Solid State Spectroscopy and Time-Resolved
    Crystal engineering, solid state spectroscopy and time-resolved diffraction{ Philip Coppens,* Baoqing Ma, Oxana Gerlits, Yuegang Zhang and Pankaj Kulshrestha Paper Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, Highlight USA. E-mail: [email protected] Received 12th April 2002, Accepted 29th April 2002 Published on the Web 17th July 2002 The use of calixarene-based supramolecular solids in spectroscopy and time-resolved crystallography is discussed. A series of solids with, as guests, benzophenone, benzil, decamethylruthenocene and a binuclear Rh cationic complex have been synthesized and analyzed. The excited state lifetimes that have been measured show a pronounced dependence on the molecular environment. 1 Introduction also includes the characteristics of the guest molecules embedded in the solids. The supramolecular frameworks that One of the prime attractions of the field of crystal engineering is the possibility to tailor-make solids with desirable physical or {Based on the presentation given at CrystEngComm Discussion, 29th chemical properties. This is not limited to bulk properties but June–1st July 2002, Bristol, UK. Philip Coppens received his Ph.D. from the University interest is in time-resolved photocrystallographic temperature superconductors. He then obtained his of Amsterdam and has since been employed at the studies and supramolecular chemistry. He has over Ph.D. under the supervision of Professor Philip Weizmann Institute of Science, Brookhaven National 50 scientific publications. Coppens at the State University of New York at Laboratory and the State University of New York at Buffalo in 2001, working on engineering crystals for Buffalo, where he is currently Distinguished Professor excited state X-ray diffraction studies.
    [Show full text]
  • Benzoyl Peroxide
    criteria for a recommended standard. OCCUPATIONAL EXPOSURE TO BENZOYL PEROXIDE U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health Ju n e 1977 For sate by the Superintendent of Documents,Government U.S. Printing Office, Washington, D.C. 20402 DHEW (NIOSH) Publication No. 77-166 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and safety of workers exposed to an ever-increasing number of potential hazards at their workplace. The National Institute for Occupational Safety and Health has projected a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the health effects of exposure. The Secretary of Labor will weigh these recommendations along with other considerations such as feasibility and means of implementation in developing regulatory standards. It is intended to present successive reports as research and epidemiologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of the worker. I am pleased to acknowledge the contributions to this report on benzoyl peroxide by members of the NIOSH staff, by the Review Consultants on Benzoyl Peroxide, by the ad hoc committees of the American Medical Association and the American Conference of Governmental Industrial Hygienists, and by Robert B. O'Connor, M.D., NIOSH consultant in occupational medicine.
    [Show full text]