Grignard Reaction: Synthesis of Triphenylmethanol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 21 the Chemistry of Carboxylic Acid Derivatives
Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 21 The Chemistry of Carboxylic Acid Derivatives Solutions to In-Text Problems 21.1 (b) (d) (e) (h) 21.2 (a) butanenitrile (common: butyronitrile) (c) isopentyl 3-methylbutanoate (common: isoamyl isovalerate) The isoamyl group is the same as an isopentyl or 3-methylbutyl group: (d) N,N-dimethylbenzamide 21.3 The E and Z conformations of N-acetylproline: 21.5 As shown by the data above the problem, a carboxylic acid has a higher boiling point than an ester because it can both donate and accept hydrogen bonds within its liquid state; hydrogen bonding does not occur in the ester. Consequently, pentanoic acid (valeric acid) has a higher boiling point than methyl butanoate. Here are the actual data: INSTRUCTOR SUPPLEMENTAL SOLUTIONS TO PROBLEMS • CHAPTER 21 2 21.7 (a) The carbonyl absorption of the ester occurs at higher frequency, and only the carboxylic acid has the characteristic strong, broad O—H stretching absorption in 2400–3600 cm–1 region. (d) In N-methylpropanamide, the N-methyl group is a doublet at about d 3. N-Ethylacetamide has no doublet resonances. In N-methylpropanamide, the a-protons are a quartet near d 2.5. In N-ethylacetamide, the a- protons are a singlet at d 2. The NMR spectrum of N-methylpropanamide has no singlets. 21.9 (a) The first ester is more basic because its conjugate acid is stabilized not only by resonance interaction with the ester oxygen, but also by resonance interaction with the double bond; that is, the conjugate acid of the first ester has one more important resonance structure than the conjugate acid of the second. -
Chem 353: Grignard
GRIG.1 ORGANIC SYNTHESIS: BENZOIC ACID VIA A GRIGNARD REACTION TECHNIQUES REQUIRED : Reflux with addition apparatus, rotary evaporation OTHER DOCUMENTS Experimental procedure, product spectra INTRODUCTION In this experiment you will synthesise benzoic acid using bromobenzene to prepare a Grignard reagent, which is then reacted with carbon dioxide, worked-up and purified to give the acid. This sequence serves to illustrate some important concepts of practical synthetic organic chemistry : preparing and working with air and moisture sensitive reagents, the "work-up", extractions, apparatus set-up, etc. The synthesis utilises one of the most important type of reagents discussed in introductory organic chemistry, organometallic reagents. In this reaction, the Grignard reagent (an organomagnesium compound), phenylmagnesium bromide is prepared by reaction of bromobenzene with magnesium metal in diethyl ether (the solvent). The Grignard reagent will then be converted to benzoic acid via the reaction of the Grignard reagent with excess dry ice (solid CO2) followed by a "work-up" using dilute aqueous acid : The aryl (or alkyl) group of the Grignard reagent behaves as if it has the characteristics of a carbanion so it is a source of nucleophilic carbon. It is reasonable to represent the structure of the - + Grignard reagent as a partly ionic compound, R ....MgX. This partially-bonded carbanion is a very strong base and will react with acids (HA) to give an alkane: RH + MgAX RMgX + HA Any compound with suitably acidic hydrogens will readily donate a proton to destroy the reagent. Water, alcohols, terminal acetylenes, phenols and carboxylic acids are just some of the functional groups that are sufficiently acidic to bring about this reaction which is usually an unwanted side reaction that destroys the Grignard reagent. -
Surface Modifications of Poly(Ether Ether Ketone) Via Polymerization
materials Review Surface Modifications of Poly(Ether Ether Ketone) via Polymerization Methods—Current Status and Future Prospects Monika Flejszar and Paweł Chmielarz * Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powsta´nców Warszawy 6, 35-959 Rzeszów, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-17-865-1809 Received: 24 January 2020; Accepted: 20 February 2020; Published: 23 February 2020 Abstract: Surface modification of poly(ether ether ketone) (PEEK) aimed at applying it as a bone implant material aroused the unflagging interest of the research community. In view of the development of implantology and the growing demand for new biomaterials, increasing biocompatibility and improving osseointegration are becoming the primary goals of PEEK surface modifications. The main aim of this review is to summarize the use of polymerization methods and various monomers applied for surface modification of PEEK to increase its bioactivity, which is a critical factor for successful applications of biomedical materials. In addition, the future directions of PEEK surface modifications are suggested, pointing to low-ppm surface-initiated atom transfer radical polymerization (SI-ATRP) as a method with unexplored capacity for flat surface modifications. Keywords: PEEK; surface modification; polymer brushes; ultraviolet (UV)-initiated graft polymerization; SI-ATRP 1. Introduction Currently, the production of bone implants is limited only to metal materials (stainless steel, cobalt–chromium, titanium). However, in the production of personalized bone implants, there is an alternative synthetic polymer named poly(ether ether ketone) (PEEK) [1–3]. The chemical structure of PEEK can be defined as an alternating combination of aryl rings through ketone and ether groups; therefore, it belongs to the family of polyaryletherketone polymers. -
Addition of a Grignard Reagent to an Ester: Formation of a Tertiary Alcohol
Addition of a Grignard Reagent to an Ester: Formation of a Tertiary Alcohol Introduction: Grignard reagents are important and versatile reagents in organic chemistry. In this experiment, you will prepare a Grignard reagent and react it with an ester to prepare a tertiary alcohol. Specifically, in this reaction you will prepare phenyl magnesium bromide from bromobenzene and magnesium metal and then react it with methyl benzoate to prepare triphenylmethanol (Figure 1). In this reaction, two equivalents of phenylmagnesium bromide add to methyl benzoate. Note: Grignard reagents are sensitive to water. ALL glassware must be completely clean and dry. Reagents have been stored over molecular sieves to keep them dry in storage, but you should also keep containers closed as much as possible. Finally, water in the air can also react with the Grignard reagents over time. To successfully prepare triphenylmethanol in this experiment, you will need to be well organized and not take too much time between steps. Figure 1. O 1) Me O OH Br Mg MgBr THF + 2) H3O triphenylmethanol Mechanism: The formation of Grignard reagents from aryl halides is a complex mechanism, which takes place on the surface of the magnesium metal. You do not need to concern yourself with the details of this step of the mechanism. Figure 2. MgBr O Bu MgBr Bu MgBr O + OH O Bu MgBr O H3O Me OEt Bu Me OEt Me Bu Me Bu Me –EtOMgBr Bu Bu The mechanism of the reaction of a Grignard reagent with an ester is shown in Figure 2 (using methyl propionate and butylmagnesium bromide). -
Exam 1 (February 23, 2004) ID# ______
Chemistry 211 Name ___________________________ Exam 1 (February 23, 2004) ID# ___________________________ 10 1. You desire to synthesize 3-ethyl-3-pentanol starting with an ester. (i) What would be the name of the ester, and what is the name for the Grignard reagent (e.g., methyl magnesium bromide)? (ii) For the carbons shown in the product, show plausible hydrocarbons that you could start with to produce the ester and the Grignard reagent (as in a retrosynthesis). 12 2. (i) Show the step-by-step process required to produce propyllithium, which requires a free radical reaction mechanism, . (ii) Show the complete reaction mechanism for reaction between propyllithium and the correct ketone to produce 3-propyl-3-pentanol. (iii) Propose a possible reaction mechanism by which dipropyl cuprate (Cu+ with two propyl groups attached) could react with ethyl bromide to produce a new hydrocarbon. (This is a thinking exercise! So, think! () 8 3. As mentioned in the text, diethyl ether, pentane, and 1-butanol have similar molar masses, but different physical properties. Boiling points are 35oC, 36oC, and 117oC, respectively. Their respective solubilities in water are 7.5g/100mL, insoluble, and 9g/100mL. (i) Draw structures for each of these compounds. (ii) Justify the observed boiling points and their solubilities. 16 4. Draw structures of the following compounds 2,3-heptanediol isopropyllithium benzylmagnesium bromide benzoic acid benzaldehylde dimethyl sulfide t-butyl methanoate dibutyl ketone 12 5. Alcohols can be oxidized to produce other compounds, and can be produced by reduction. For the reactions shown below, show the structure for the expected product (if reaction does not occur, state: No Reaction) when treated with the indicated oxidizing or reducing agents. -
WO 2015/025175 Al 26 February 2015 (26.02.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/025175 Al 26 February 2015 (26.02.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C09K 5/06 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/GB2014/052580 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 22 August 2014 (22.08.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13 15098.2 23 August 2013 (23.08.2013) GB (84) Designated States (unless otherwise indicated, for every (71) Applicant: SUNAMP LIMITED [GB/GB]; Unit 1, Satel kind of regional protection available): ARIPO (BW, GH, lite Place, Macmerry, Edinburgh EH33 1RY (GB). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (72) Inventors: BISSELL, Andrew John; C/o SunAmp, Unit TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 1, Satellite Place, Macmerry, Edinburgh EH33 1RY (GB). -
Cross-Coupling Reaction of Allylic Ethers with Aryl Grignard Reagents Catalyzed by a Nickel Pincer Complex
molecules Article Cross-Coupling Reaction of Allylic Ethers with Aryl Grignard Reagents Catalyzed by a Nickel Pincer Complex Toru Hashimoto * , Kei Funatsu, Atsufumi Ohtani, Erika Asano and Yoshitaka Yamaguchi * Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; [email protected] (K.F.); [email protected] (A.O.); [email protected] (E.A.) * Correspondence: [email protected] (T.H.); [email protected] (Y.Y.); Tel.: +81-45-339-3940 (T.H.); +81-45-339-3932 (Y.Y.) Academic Editor: Kouki Matsubara Received: 30 May 2019; Accepted: 18 June 2019; Published: 21 June 2019 Abstract: A cross-coupling reaction of allylic aryl ethers with arylmagnesium reagents was investigated using β-aminoketonato- and β-diketiminato-based pincer-type nickel(II) complexes as catalysts. An β-aminoketonato nickel(II) complex bearing a diphenylphosphino group as a third donor effectively catalyzed the reaction to afford the target cross-coupled products, allylbenzene derivatives, in high yield. The regioselective reaction of a variety of substituted cinnamyl ethers proceeded to give the corresponding linear products. In contrast, α- and γ-alkyl substituted allylic ethers afforded a mixture of the linear and branched products. These results indicated that the coupling reaction proceeded via a π-allyl nickel intermediate. Keywords: pincer-type nickel(II) complex; cross-coupling; allylic ether 1. Introduction Transition metal-catalyzed cross-coupling reactions are efficient and widely utilized synthetic protocols for constructing carbon–carbon bonds [1]. The reactions of allylic electrophiles with aryl metal reagents provide promising methodologies for the formation of C(sp3)–C(sp2) bonds. -
Of Grignard Reagent Formation. the Surface Nature of the Reaction
286 Ace. Chem. Res. 1990,23, 286-293 Mechanism of Grignard Reagent Formation. The Surface Nature of the Reaction H. M. WALBORSKY Dittmer Laboratory of Chemistry, Florida State University, Tallahassee, Florida 32306 Received February 23, 1990 (Revised Manuscript Received May 7, 1990) The reaction of organic halides (Br, C1, I) with mag- Scheme I nesium metal to yield what is referred to today as a Kharasch-Reinmuth Mechanism for Grignard Reagent Grignard reagent has been known since the turn of the Formation century,' The name derives from its discoverer, Nobel (1)(Mg0)AMg*)2y + RX 4 [(M~'~(MQ')~~-,('MQX)+ R.] + laureate Victor Grignard. How this reagent is formed, (Mgo)x-2(MQ')2~MgX)(MgR) that is, how a magnesium atom is inserted into a car- bon-halogen bond, is the subject of this Account. ('4 (Ms0),-*(M9')2~MgX)(MgR) + + (Mg0)x-dMg*)2y+2 + 2RMgX RX + Mg - RMgX Kharasch and Reinmuth,, persuaded by the work of late under the same conditions gave Itl = 6.2 X s-l. Another system that meets the above criterion is the Gomberg and Bachmad as well as by product analyses of many Grignard formation reactions that existed in vinyl system. The lack of reactivity of vinyl halides toward SN1reactions is well-known and is exemplified the literature prior to 1954,speculated that the reaction involved radicals and that the radical reactions might by the low solvolysis rate of 2-propenyl triflate5 in 80% involve "surface adherent radicals, at least in part". The ethanol at 25 OC, kl being 9.8 X s-l. -
The Ozonolysis of Phenyl Grignard Reagent
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1971 The ozonolysis of phenyl Grignard reagent Gale Manning Sherrodd The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Sherrodd, Gale Manning, "The ozonolysis of phenyl Grignard reagent" (1971). Graduate Student Theses, Dissertations, & Professional Papers. 8297. https://scholarworks.umt.edu/etd/8297 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE OZONOLYSIS OF PHENYL GRIGNARD REAGENT By Gale M. Sherrodd B.S., Rocky Mountain College, I969 Presented in partial fulfillment of the requirements for the degree of Master of Arts for Teachers UNIVERSITY OF MONTANA 1971 Approved by: Chairman, Board of Examiners De^ , Graduate *School / n ? / Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP39098 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT DiMMtstion PuWiahing UMI EP39098 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. -
Organic Chemistry Laboratory II Preparation of Triphenylmethanol (Grignard Reaction) Experiment Procedure (Printable Pdf Format)
grigdes http://www.organicchem.org/oc2web/lab/exp/grig/grigdesbenzophenone... Organic Chemistry II | Lecture | Laboratory Organic Chemistry Laboratory II Preparation of Triphenylmethanol (Grignard Reaction) Experiment Procedure (Printable pdf format) Introduction In this two-week experiment, triphenylmethanol will be synthesized through a Grignard reaction. Students will work individually to prepare the Grignard reagent by reacting bromobenzene with solid magnesium in diethylether. The prepared Grignard reagent, phenylmagnesium bromide, will then be combined with bezophenone to form the desired triphenylmethanol product. Procedure NOTE: All glassware must be extremely dry! Place glassware in the drying oven for at least 10 minutes before beginning the reaction. Preparation of the Grignard Reagent Add ~0.5g of magnesium turnings and a magnetic stir bar to a dry 100 ml round-bottomed flask, and place the flask in the drying oven for 30 minutes. Remove the flask from the oven, clamp it to a ring stand, insert a reflux condenser, fit the flask into a heating mantle and immediately attach a drying tube to the top of the reflux condenser. Position the flask in the heating mantle on a stirrer/hotplate. Set the reaction up on the side of the hood near to the faucet labeled for distillation. Allow the reaction flask to cool to room temperature completely before proceeding. While the flask is cooling, place a 150ml beaker into the drying oven. While the flask is cooling, add 3.5 g of dry bromobenzene to a dry 50 mL Erlenmeyer flask and dissolve it in 5.0 mL of anhydrous diethyl ether. Use a glass powder funnel to dispense the bromobenze and ether to the Erlenmyer flask. -
Grignard Reagents and Silanes
GRIGNARD REAGENTS AND SILANES By B. Arkles REPRINTED FROM HANDBOOK OF GRIGNARD REAGENTS by G. Silverman and P. Rakita Pages 667-675 Marcel Dekker, 1996 Gelest, Inc. 612 William Leigh Drive Tullytown, Pa. 19007-6308 Phone: [215] 547-1015 Fax: [215] 547-2484 Grignard Reagents and Silanes 32 Grignard Reagents and Silanes BARRY ARKLES Gelest Inc., Tullytown, Pennsylvania I. INTRODUCTION This review considers two aspects of the interaction of Grignards with silanes. First, focusing on technologies that are still viable within the context of current organosilane and silicone technology, guidelines are provided for silicon-carbon bond formation using Grignard chemistry. Second, the use of silane-blocking agents and their stability in the presence of Grignard reagents employed in organic synthesis is discussed. II. FORMATION OF THE SILICON-CARBON BOND A. Background The genesis of current silane and silicone technology traces back to the Grignard reaction. The first practical synthesis of organosilanes was accomplished by F. Stanley Kipping in 1904 by the Grignard reaction for the formation of the silicon-carbon bond [1]. In an effort totaling 57 papers, he created the basis of modern organosilane chemistry. The development of silicones by Frank Hyde at Corning was based on the hydrolysis of Grignard-derived organosilanes [2]. Dow Corning, the largest manufacturer of silanes and silicones, was formed as a joint venture between Corning Glass, which had silicone product technology, and Dow, which had magnesium and Grignard technology, during World War II. In excess of 10,000 silicon compounds have been synthesized by Grignard reactions. Ironically, despite the versatility of Grignard chemistry for the formation of silicon-carbon bonds, its use in current silane and silicone technology has been supplanted by more efficient and selective processes for the formation of the silicon-carbon bond, notably by the direct process and hydrosilylation reactions. -
University of Oklahoma Graduate College
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE SYNTHESIS OF NITROGEN HETEROCYCLES VIA TRANSITION METAL CATALYZED REDUCTIVE CYCLIZATIONS OF NITROAROMATICS A Dissertation SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY By David K. O Dell Norman, Oklahoma 2003 UMI Number: 3109054 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3109054 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Copyright DAVID K. O DELL 2003 Ail Rights Reserved SYNTHESIS OF NITROGEN HETEROCYCLES VIA TRANSITION METAL CATALYZED REDUCTIVE CYCLIZATIONS OF NITROAROMATICS A Dissertation APPROVED FOR THE DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY BY Kenneth M. Nicholas, chair Ronald L. Halterman I/- Vadim A. Soloshonok Richm-d W. Taylor I Michael H. Engel ACKNOWLEDGEMENTS I would like to thank my wife Sijy for her unwavering support and affection. I would also like to thank my parents John O'Dell and Marlene Steele, my deceased step parents Jim Steele and Laurie O'Dell, all for never discouraging my curiosity as a child.