<<

Chaparral Restoration Workshop, Angeles National Forest - Arcadia, June 17-21, 2013

Shrubland & woodland restoration in Spain and the Mediterranean

V. Ramón Vallejo & J.A. Alloza CLIMATE CHANGE PROJECTIONS:

fire hazard & restoration

• LONGER AND MORE SEVERE FIRE SEASON

• HEAT WAVES & DROUGHT

• LARGER EXPOSED AREAS

www.fumeproject.eu Changes in CDD interannual variability (standard deviation) in 20-year periods as compared to 1980-1999

IPCC SREX (SMP) 2012 CCD < 1mm SRES A2 17 GCMs

PLANTATIONS (1992) Post-fire, south-facing slopes, degraded soils

Pinus halepensis ssp ballota 100 100 90 90 80

80 70 70 60 60 50 50 % Survival % 40 40 30 30 20 20 10 10 0 0 108 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102

Age (Months) Age (Months)

Marls: Limestones:

CEAM POST-FIRE SEEDLING PLANTATION

Dry subhumid and semiarid areas 100

R2 = 0.673 80

Pinus halepensis 60 Quercus ilex ssp. ballota

40

20 % 1st year seedling mortality seedling % year 1st

0 20 40 60 80 100 120 140 160

Length of the largest drought period since planting (days)

(from Alloza & Vallejo, 1999)

Drought is the main cause of seedling mortality both for recruitment and in afforestation

CEAM CEAM

% Mortality the 1st post-plantation year 1 2 4 6 8 0

0 0 0 0 0 0

N

=

1 Consecutive days without any rainfall > 5 mm. *** Significant *** mm. Consecutive0.05any withoutrainfall5 differences days < > p at 4 < 60 8

Length of the maximun dry period (days) period dry maximun theof Length 1 2 60 -

2 90 4 8 90 -

120 1 1 1 > 120

6

Bedrock MARLS LIMESTONES

SMALL CHANGES IN SOIL MOISTURE (approx. - 10%) …. can produce increased seedling mortality and reduced growth

110 + compost -W - compost -W C C 100 W1 W1 W2 W2 90

Pinus pinaster 80 Survival(%)

70

60

100

90

Quercus ilex 80

Survival(%) -W -W C 70 C W1 W1 + compost - compost W2 W2 60

feb/07 abr/07 jun/07 ago/07 oct/07 dic/07 feb/08mar/07 may/07 jul/07 sep/07 nov/07 ene/08

CEAM TRANSPLANT SHOCK: ROOT GROWTH AFTER TRANSPLANTING

Soil moisture (%)

0 2 4 6 8 0

-2

-4

PWP (-MPa) 3 months LNR: length of new roots in the planting hole -6 6 months 12 months 1200 -8 1000

800

600 LRN (cm) LRN

400 LNR (cm)

200

0 Plot: Crevillente (Alicante). 3 6 12 Climate: Thermo-mediterranean semiarid Time after planting (months) Species: P. lentiscus, J. oxycedrus, Q. coccifera Fonseca 1999 CEAM TECHNICAL OPTIONS TO REDUCE WATER STRESS IN PLANTATIONS

Table 11.2 Mediterranean restoration techniques concerned with water Objective Technique Selection of drought-tolerant species and ecotypes Increase water-use efficiency Seedling preconditioning Improve below-ground performance Improve nutritional status Soil preparation and amendment Increase water supply Irrigation Microsite selection shelters Mulching Reduce water losses Microsite selection Control of competing species

Vallejo et al 2012

CEAM Species survival four years after outplanting Albatera project , P 280 mm

100

80

60

40 Survival(%)

20

0 Oq Qc Ph Rl Ch Pl Cs Taf Ta Sg Jo Oe Ef No So Ls St

Abbreviations: Qc: Quercus coccifera, Cs: Ceratonia siliqua, Pl: lentiscus, Ta: Tetraclinis articulata, Ef: Ephedra fragilis, Rl: lycioides, Oe: Olea europaea sylvestris, Ph Pinus halepensis, Oq: Osyris quadripartita, Jo: Juniperus oxycedrus, Sg: Salsola genistoides, No: Nerium oleander, Taf: Tamarix africana, Ch : humilis, So: Salsola oppositifolia, Ls: Lygeum spartum, St: Stipa tenacissima. CEAM SPECIES SELECTION Water-use strategiesSPECIES and SELECTION response to drought Water-use strategies and response to drought

At field capacity water deficit at turgor loss (1-RWC, %) Cistus albidus 0 5 10 15 20 25 30 35 Lavandula latifolia Quercus coccifera Cistus monspeliensis Rhamnus alaternus Cistus clusii Phyllirea angustifolia Rosmarinus officinalis Quercus ilex Quercus ilex Olea europaea Ceratonia siliqua Lavandula latifolia Rhamnus lycioides Myrtus communis Genista scorpius Pistacia lentiscus Cistus clusii Olea europaea Ceratonia siliqua Pinus halepensis Arbutus unedo Quercus coccifera Pinus halepensis Anthyllis cytisoides Rhamnus lycioides Myrtus communis Pinus nigra Arbutus unedo Cistus albidus Rhamnus alaternus Rosmarinus officinalis Phyllirea angustifolia Pistacia terebinthus Pistacia terebinthus Cistus monspeliensis 0 50 100 150 200 250 300 350 400 Stomatal conductance (mmol-1 m-2 s-1) obligate resprouter obligate seeder Vilagrosa et al., 2009; Hernández, 2010

CEAM Dynamics of total standing dead fuel after fire

obligate seeders

obligate resprouters

Baeza et al. 2011

CEAM EXPLORING PROVENANCES …

Quercus ilex: Risk of xylem cavitation among populations

b 8 ab 7.5 ab

7 ab ab a a (-MPa) 6.5 50

PLC 6

5.5

5 Veneto Lazio Cazorla Gerona Soria Sardinia Ciudad Real

Gil & Vilagrosa, unpublished

CEAM Quercus suber: Effect provenance and family/mother

8

NS Fprovenance=0,93 6

Ffamily =1,96 * ) b -1

) a -1 6 a 4 Fprovenance=4,87 *** mol mmol mol mol mmol mol µ

µ 4 2 WUE ( WUE ( 2 0

0 Espadá Toledo 3 12 16 23 66 81 Calderona 651 652 653 654 2941 2942 2943 2944 2945

Calderona Espadá Toledo

Morcillo 2006, unpublised

CEAM SPECIES DIVERSIFICATION

Planting woody resprouters

CEAM WOODY RESPROUERS RECOVER FASTER AFTER BURNING & ARE LESS FLAMMABLE DIVERSIFYINGSPECIES NATIVE DIVERSIFICATIONSPECIES IN AFFORESTATION Pistacia lentiscus Arbutus unedo Rhamnus alaternus

CEAM CONSTRAINTS FOR LAND RESTORATION IN DRY MEDITERRANEAN CONDITIONS

CLIMATE • PREDICTIBLE: SUMMER DROUGHT • LESS PREDICTIBLE: OUT-OF-SEASON DROUGHTS

SOIL • SHALLOW/STONY/DISCONTINUOUS • POOR STRUCTURE (PRONE TO SURFACE CRUSTING: SILTY SOILS) • POOR BIOLOGICAL FERTILITY AND SOM • LOW NUTRIENT CONTENT

DISTURBANCE REGIME • FIRE (RECURRENT) • GRAZING (FIRE-GRAZING CYCLES) • EXTREME CLIMATIC EVENTS

CEAM TRYING TO IMPROVE SEEDLING PERFORMANCE IN THE FIELD

Overcoming transplanting shock

CEAM SEEDLING QUALITY Biomass (g) -10 CEAM  seedlings with higher R:S ratio. 10 -5 0 5 Nursery

DP(drought preconditioning)produced smaller

- F

CW + F + Drought preconditioning - F DP Quercus suber Fine roots Fine root Tap Stem + F +

Control

preconditioned Drought- Drought preconditioning Quercus suber

Field 100 Root colonization 0,25 80 DP: drought preconditioned 0,20 DP CW: control watering

60 0,15

0,10

Seedlings survival Seedlings (%) 40

Control 0,05

20 0 5 10 15 20 25 30 35 0,00 Time outplanting (months) Biomassext. roots / Leaf+stem biomass DP - F DP + F CW - F CW + F

 DP showed a tendency to improve survival.

 DP increased the root colonization in the field, deeper in the soil and with greater root biomass.

CEAM Quercus spp USE OF DEEP CONTAINER FOR Quercus

18 cm 30 cm

CEAM ACCLIMATING ROOT SYSTEMS TO CC:

Use of deep container to improve New root biomass (g) A root colonization of seedlings 0,00 0,20 0,40 0,60 0,80 1,00 3 month

Quercus ilex -10 -20 -30 -40 ** -50 ** -60 Depth (cm) -70 -80 -90

Chirino et al., 2009

CCS -18 cm CCL -30 New root biomass (g) cm B 0,0 0,5 1,0 1,5 2,0 18 month

-10 -20 * -30 ** -40 * -50 ** -60 *

Depth (cm) Depth -70 -80 -90 -100 CEAM Water manipulation of growing medium: addition of hydrogel and clay in the substrate

HYDROGELS

CEAM IMPROVING NURSERY SUBSTRATE: Use of hydrogel in seedlings of Quercus suber (cork oak)

100

90 p = 0.049

80 p = 0.010

70

60 p = 0.040 Survival(%)

50% survival 50 CS ASG-10 40 HS-0.7 HS-1.5 12 months Drougth period 30 0 5 10 15 20 Time after outplanting (months)

Increase seedling survival in the field Chirino et al., 2010 (Q. suber; S. Espadán)

CEAM THE USE OF TREE-SHELTER

CEAM ↓ PREDATION ↓ PAR ↓ WIND ↓ TRANSP ↑ % RH ↑ TEMPERATURE

Olea europaea 2005, 2 year

Growth dynamics of Quercus ilex ssp ballota seedlings and acorns in relation to some field and nursery treatments

1997 1998 1999 2000 2001 2002 2003 40 a a a 35 a 30 a a b b b 25 a a b b b 20 b b c 15

Shoot height (cm) c 10 Hydrogel 5 Control Treeshelter (TS) 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Months since February 1997 CEAM Tree-shelters limitations • Inside the tube, temperature increases a few ºC with respect to ambient • for temperature > 40-45ºC PSII (Fv/Fm) efficiency decreases ⇒ stress in the photosynthetic system

• Slightly decreases R:S ratio

• In moist conditions, excessive stem elongation (etiolation) and weakening CEAM SOIL PREPARATION

Mechanical hole with backhoe Spider TECHNIQUES TO IMPROVE WATER AVAILABILITY TO SEEDLING Increase Runoff

Enhance Infiltration Reduce Evaporation

CEAM water harvesting Mortality

60 Hole Water harvesting 50

40

30

% mortality 20

10

0 Quercus ilex spp. Ballota Pinus halepensis Species

CEAM Improved Microcatchment (IM)

Control

Dry well

Clay pot

Microcatchment (M) Dry well

CEAM IMPROVED MICROCATCHMENT RAIN WATER CAPTURE EFFICIENCY 7 6 F=1.97 P=0.147 5 4 3 2 Collected runoff (L) Collected 1 0 Control M IM Treatment Rain events < 10 mm

Low intensity (1-3 mm h-1) High intensity (7-8 mm h-1) 7 14 6 F=7.07 12 F=6.50 5 P=0.003 10 P=0.005 4 8 3 6 YData 2 4

Collected(L) runoff 1 2 0 0 Control M IM Control M IM Treatment Treatment CEAM EFFECT ON PLANTED SEEDLINGS

Crevillente Albatera

100 - C + C * 80

60

Survival (%) Survival 40

20

0 Control Control Clay Pot Clay Pot Clay Watering Watering DryWells DryWells Stone Mulch Stone Mulch Stone PlasticMulch PlasticMulch Microcatchment Microcatchment Improved Microcachment Improved Microcachment Improved

Survival of Olea europaea seedlings 2 years after planting in two experimental semiarid stations

CEAM Dry wells

Enhanced accumulation of roots, organic matter faunal activity Preferential water flow Soil amendments: Biosolids

Pinus halepensis (20 months after planting)

100 Control Composted Biosolid 80 Dehydrated Biosolid

60

40 Seedling Survival (%) Survival Seedling

20

0 0 15 30 45 60

Application Dose (Mg ha-1)

Fuentes et al 2010

CEAM Soil amendments: Biosolids

Pinus halepensis Pinus halepensis (20 months after planting) (20 months after planting) 25 7 Control Control Composted Biosolid Composted Biosolid Dehydrated Biosolid ) 6 Dehydrated Biosolid 20

5

15 4

3 10

2 Seedling Height (cm) Seedling Height

5 Seedling Basal Diameter (mm SeedlingBasal Diameter 1

0 0 0 15 30 45 60 0 15 30 45 60 Application Dose (Mg ha-1) Application Dose (Mg ha-1)

Fuentes et al. 2010

CEAM THE COST OF PLANTATION QUALITY IMPROVEMENT SEEDLING SURVIVAL VS DROUGHT DURATION 1st PLANTATION YEAR

2000s

x2$

1990s

Vallejo et al., 2012 CEAM MEDIUM-TERM EFFECTS OF PLANTATIONS

ALBATERA SITE (SE SPAIN) P ≈ 280 mm ALBATERA: Functional analysis Six years after afforestation

80 c 70

60 b a 50

40 Plant cover (%) cover Plant 30

20

10

0 Control Afforested Reference

CEAM ALBATERA: Functional analysis Six years after afforestation

40

30

20

10

Species (number) richness 0 0 20 40 60 80 100 120

Surface area (m2) Control spot Restored spot

CEAM The role of extant vegetation: facilitation or competition?

CEAM Gómez-Aparicio et al 2004 Quercus suber, post-summer survival. S. Espadà (Castelló, Spain)

Pérez-Devesa et al. (2008). For. Ecol. Manage. 255: 374-386. PLANT-PLANT INTERACTIONS. ALPHA GRASS STEPPES Alpha grass steppe restoration

We carried out a PC manipulative experiment to evaluate the importance of PM competition by pines, OC competition by the herbaceous understorey, and all other factors pooled

PH

PC: pine control; OC: open control; PM: dead pine; PH: herbicide for grasses Alpha grass steppe restoration

P. lentiscus

Inv Pri Ver Oto Inv Pinus halepensis 100 90 80 b +

70 60 Brachypodium retusum 50 a 40 PH survival 30 PC -

Supervivencia (%) Supervivencia 20 PM c 10 OC Pistacia lentiscus 0 0 50 100 150 200 250 300 350 400 DaysDías trasafter la plantaciónplantation Competition by grasses seems to be the most limiting Maestre et al., 2004 factor for the establishment of woody resprouters PLANT-PLANT INTERACTIONS. ALPHA GRASS STEPPES

Which are the main drivers of alpha grass facilitation? Alpha grass steppe restoration

Alpha grass has a consistent positive effect on the establishment of woody seedlings

0

-1

-2

-3

-4

-5

-6 Tussock

Predawn water potential (MPa) Open June -7 M. a. Q. c. P. l.

Maestre et al., 2001 Alpha grass steppe restoration Tussock control (ECO) Tussock no shadow (ESO)

P. lentiscus ECM 100

10

ECO

Tussock no runoff (ECH) Open control (BCO) 1 BCH

ESO

survival 0.1 Supervivencia (%) Inv Pri Ver Oto Inv 0.01 0 50 100 150 200 250 300 350 400 Tussock nocompetition (ECM) Open no runoff (BCH) DaysDías after tras la plantation plantación Esparto control Esparto con exclusión de sombra Esparto con exclusión de competencia Esparto con exclusión de escorrentía

Shadow is the main control of facilitation Maestre et al., 2003 Field plantations 2011

La Hunde site (Ayora, Valencia, Spain)

Secondary pine woodlands. Stand densities: low, medium and high. Three replicates (zones): 9 plots and 60 seedlings/plot

TREATMENTS HIGH DENSITY (HD) MEDIUM DENSITY (MD) LOW DENSTITY (LD) Stand density: 600-900 Stand density: 500-700 Stand density:100-300 /ha trees/ha trees/ha GSF = 0.38 GSF = 0.44 GSF = 0.75

REINTRODUCING RESPROUTERS UNDER PINE CANOPY

A. unedo F. ornus A. granatense

Species Life form Leaf habit Arbutus unedo Evergreen Rhamnus alaternus Shrub Evergreen Quercus ilex Tree Evergreen Quercus faginea Tree Fraxinus ornus Tree Deciduous Acer granatense Tree Deciduous

Q. ilex R. alaternus Q. faginea Results. Survival and RGR per treatment

SURVIVAL (%) post-transplanting shock HD MD LD 97.7 96.4 99.0

0,8 0,6

a ) ) a -1 a -1 a 0,5 a 0,6 0,4 b

0,4 0,3

0,2 0,2 0,1 RGR_Height(.year RGR_Diameter (.year RGR_Diameter 0,0 0,0 HD MD LD HD MD LD Treatment Treatment p = 0.805 ns p = 0.003 CONCLUSIONS

• Available ecological restoration technology allows for reintroducing native and recovery critical ecosystem functions for many Mediterranean lands • Higher inputs are required for highly degraded ecosystems, higher stress conditions

…but

• We need understanding the thresholds for cost- effective restoration, both in biophysical and socieconomic terms

CEAM