High Performance Multilayer Substrate Integrated Waveguide (SIW) Technics for Low-Cost Millimeter-Wave Circuits Frederic Parment

Total Page:16

File Type:pdf, Size:1020Kb

High Performance Multilayer Substrate Integrated Waveguide (SIW) Technics for Low-Cost Millimeter-Wave Circuits Frederic Parment High performance multilayer Substrate Integrated Waveguide (SIW) technics for low-cost millimeter-wave circuits Frederic Parment To cite this version: Frederic Parment. High performance multilayer Substrate Integrated Waveguide (SIW) technics for low-cost millimeter-wave circuits. Optics / Photonic. Université Grenoble Alpes, 2016. English. NNT : 2016GREAT077. tel-01505416 HAL Id: tel-01505416 https://tel.archives-ouvertes.fr/tel-01505416 Submitted on 11 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTE UNIVERSITE GRENOBLE ALPES Spécialité : OPTIQUE ET RADIOFREQUENCES Arrêté ministériel : 25 Mai 2016 Présentée par Frédéric PARMENT Thèse dirigée par Pr Tan Phu VUONG, Codirigée par Pr Ke WU Co-encadrée par M Anthony GHIOTTO Co-encadrée par M Jean-Marc DUCHAMP préparée au sein du Laboratoire IMEP-LaHC de l’Institut National Polytechnique de Grenoble, dans l'École Doctorale Electronique, Electrotechnique, Automatique, et Traitement du Signal. Guides d’onde Intégrés au Substrat (SIW) multicouches à haute performance pour des circuits millimétriques à faible coût Thèse soutenue publiquement le 04 Novembre 2016, devant le jury composé de : Monsieur Eric RIUS Professeur à l’Université de Bretagne Occidentale, Président Monsieur Hervé AUBERT Professeur à l’Institut National Polytechnique de Toulouse, Rapporteur Monsieur Jean-Louis CAZAUX Responsable Innovation à Thales Alenia Space de Toulouse, Rapporteur Monsieur Maurizio BOZZI Professeur à l’Université de Pavie, Membre Monsieur Ke WU Professeur à l’Ecole Polytechnique de Montréal, Membre Monsieur Anthony GHIOTTO Maître de conférences à l’Institut Polytechnique de Bordeaux, Membre Monsieur Jean-Marc DUCHAMP Maître de conférences à l’Université Joseph Fourier, Membre Monsieur Tan Phu VUONG Professeur à l’Institut Polytechnique de Grenoble, Membre Monsieur Ludovic CARPENTIER Ingénieur de recherche au CNES de Toulouse, Membre Invité Monsieur Pierre MONTEIL Responsable Business Unit à COBHAM de Bordeaux, Membre Invité Monsieur Laurent PETIT Responsable Projet Recherche et Technologie à Radiall Voreppe, Membre Invité 2 La théorie, c'est quand on sait tout et que rien ne fonctionne. La pratique, c'est quand tout fonctionne et que personne ne sait pourquoi. Ici, nous avons réuni théorie et pratique : Rien ne fonctionne... et personne ne sait pourquoi ! Albert Einstein A ma famille et mes proches… 3 4 ACKNOWLEDGEMENT I would like to express my sincere gratitude to my supervisor, Pr Tan Phu VUONG, and my co-supervisors Pr Ke WU, Mr Anthony GHIOTTO and Mr Jean-Marc DUCHAMP for their help, guidelines and support, that contributed to the excellent research work presented in this thesis manuscript. I would like to particularly thank Anthony for his unwavering support, valuable advices, and unfailing commitment in my research project and beyond. I would like to also express my thanks to the engineers and technicians that offered a strong support, together with valuable assistance and advices, during my experimental validations, including Mr Nicolas CORRAO from the IMEP-LaHC research center, Ms Magali DE MATOS and Ms Isabelle FAVRE from the IMS research center, and Mr Traian ANTONESCU, Mr Jules GAUTHIER, Mr Steeve DUBE, Mr Jean-Sebastien DECARIE and Mr Maxime THIBAULT from the POLY-GRAMES research center. I would like to express my recognition to the administrative staff, inluding Isabelle, Joëlle, Valérie, Annaïck, Brigitte, Dahlila, Fabienne from Grenoble, and Rachel from the POLY-GRAMES for their support. They have helped me a lot during my PhD on the different admisnitrative aspects. I would like to thank my colleges and friends, including Zyad, Matthieu, Aline, Hamza, Ayssar, Isaac, Vipin, Furat, An-Thu, Vladimir, Vlad, and others from the IMEP-LaHC, Jaber and Kuangda from the POLY-GRAMES, and Tifenn, Alexandre, and others from the IMS. I would also like to thank my supportive friends, Alexis and Alexandre. Finally, I would like to express a deep sense of gratitude to my parents, Michèle and Jean-Michel, and my brother, Nicolas. You helped me all along my studies. You have supported me so that I could give my best. The last but not least, I would like to take the opportunity to express my love to my girlfriend, Lucile, who supported me the most, during the good and the bad days. 5 6 TABLE OF CONTENTS ACKNOWLEDGEMENT 5 TABLE OF CONTENTS 7 LIST OF ACRONYMS AND ABBREVIATIONS 9 SYNTHESE EN FRANÇAIS 11 CHAPTER I: INTRODUCTION 19 CHAPTER II: STATE-OF-THE-ART ON ELECTROMAGNETIC TRANSMISSION LINES 25 CHAPTER III: THE AIR-FILLED SIW TECHNOLOGY 65 CHAPTER IV: AIR-FILLED SIW FEEDING NETWORK ELEMENTS 101 CHAPTER V: AIR-FILLED SIW FILTERS AND ANTENNAS 147 CHAPTER VI: CONCLUSION AND PERSPECTIVES 183 ANNEX 1: COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND 187 ANNEX 2: CALCULATION TO OBTAIN EQUATION (1.2) OF THE CHAPTER III 189 LIST OF PUBLICATIONS, AWARDS AND PUBLICATIONS 191 ABSTRACT 195 RESUME 195 7 8 LIST OF ACRONYMS AND ABBREVIATIONS AFSIW Air-Filled Substrate Integrated Waveguide ALTSA Antipodal Linear Tapered Slot Antenna APHC Average Power Handling Capability (W or dBm) 퐵⃗ Magnetic induction (T) BW Bandwidth (GHz) c Light velocity (m/s) CBCPW Conductor-Backed Coplanar Waveguide CMOS Complementary Metal Oxide Semi-conductor CPW Coplanar Waveguide 퐷⃗⃗ Electric induction (C/m²) DFSIW Dielectric-Filled Substrate Integrated Waveguide DUT Device Under Test 퐸⃗ Electric field (V/m) E0 Dielectric strength (MV/m) EBG Electromagnetic BandGap EM Electromagnetic f Frequency (Hz) fc Cut-off frequency (Hz) FR-4 Flame Resistant 4 h Height of the structure (m) 퐻⃗⃗ Magnetic field (A/m) HPBW Half Power Beamwidth (°) IoT Internet Of Thing 푗 Current density (A/m2) k Wave number (rad/m) k0 Free-space Wave number (rad/m) Kc Cut-off wave number (rad/m) LTCC Low Temperature Co-fired Ceramics MHMIC Miniature Hybrid Microwave Integrated Circuit PCB Printed Circuit Board PIM Passive InterModulation PPHC Peak Power Handling Capability (W or dBm) q Electronic charge (C) RADAR RAdio Detection And Ranging RMS Root Mean Square RWG Rectangular Waveguide SIC Substrate Integrated Circuit SINRD Substrate Integrated Non-Radiating Dielectric Waveguide SIS Substrate Integrated System SISW Substrate Integrated Slab Waveguide SIW Substrate Integrated Waveguide tanδ Loss tangent TE Transverse Electric TEM Tranverse Electric Magnetic 9 TM Transverse Magnetic TRL Thru-Reflect-Line VNA Vector Network Analyzer W Width of the structure (m) WR Waveguide, Rectangular αg Losses constant (Np/m) βg Phase constant (rad/m) 훤 Propagation constant (m-1) δ Skin depth (m) ε Permittivity (F/m) ε0 Vacuum permittivity (F/m) εr Relative permittivity η Wave impedance (Ω) λ Wavelength (m) μ Permeability (H/m) μ0 Vacuum permeability (H/m) μr Relative permeability ρ Volume density charge (C/m3) σ Conductivity (S/m) ω Angular frequency (rad/s) 10 SYNTHESE EN FRANÇAIS L’émergence de nouvelles applications qui requièrent le développement de nouvelles technologies opérant aux fréquences millimétriques et au-delà, entre 30 et 300 GHz, est principalement due à l’augmentation ininterrompue des données et à l’accroissement insatiable de la demande en bande-passante. Le manque de canal libre dans les bandes radiofréquences et micro-ondes y contribue et force l’industrie à développer de nouveaux systèmes opérant en plus haute fréquence. Parmi ces nouvelles applications, l’Internet-des- Objets, les radars pour des systèmes types avioniques ou automobiles, les constellations de pico- et nanosatellites [1], l’imagerie médicale et sécuritaire, etc… sont un des nombreux marchés ciblés [2]. Les ondes millimétriques peuvent fournir beaucoup d’avantages pour ces futurs systèmes parmi lesquels de larges bandes passantes, une pénétration accrue dans la fumée ou le brouillard, un vaste spectre peu utilisé et bien d’autres. Un autre point qui est tout aussi important pour l’industrie est la densité d’intégration. En effet, une haute densité d’intégration permet de réduire les coûts par la production de masse, avec un emballage petit et léger facilitant l’adoption des produits. C’est dans le début des années 1950 que la première ligne de transmission planaire, appelée microruban, a été développée. Aujourd’hui, cette même ligne est devenue la ligne de transmission la plus populaire et utilisée jusqu’à 30 GHz. Elle combine une structure simple, bien décrite théoriquement avec des modèles implémentés dans la plupart des logiciels de conception, et elle peut être produite à prix bon marché par l’utilisation de procédés de fabrication issus des circuits imprimés. Cependant, au-delà de 30 GHz, les lignes de transmission en guides d’onde coplanaires sont préférées aux lignes microrubans, car à ces fréquences, ces dernières ont besoin de substrat fin pour éviter l’excitation de mode d’ordre supérieur, pour éviter aussi de subir des courants de fuite, qui augmentent les pertes par radiation, et elles deviennent aussi plus difficiles à fabriquer du fait dela réduction de la longueur d’onde qui requièrent une 11 tolérance de fabrication accrue, notamment sur les vias par exemple. Néanmoins, la contribution sur les performances induites par la rugosité de surfaces et celle de l’effet de peaux de la ligne conductrice augmente avec la fréquence. Par conséquent, ces circonstances, prises dans leur ensemble, génèrent une haute densité de courants s’écoulant au travers d’une fine région sous la surface métallique du conducteur, et les pertes s’en retrouvent d’autant augmentées [3]-[4]. Ce problème devient bien plus important dès lors que la forme des bords de la ligne conductrice n’est plus rectangulaire.
Recommended publications
  • Ec6503 - Transmission Lines and Waveguides Transmission Lines and Waveguides Unit I - Transmission Line Theory 1
    EC6503 - TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES UNIT I - TRANSMISSION LINE THEORY 1. Define – Characteristic Impedance [M/J–2006, N/D–2006] Characteristic impedance is defined as the impedance of a transmission line measured at the sending end. It is given by 푍 푍0 = √ ⁄푌 where Z = R + jωL is the series impedance Y = G + jωC is the shunt admittance 2. State the line parameters of a transmission line. The line parameters of a transmission line are resistance, inductance, capacitance and conductance. Resistance (R) is defined as the loop resistance per unit length of the transmission line. Its unit is ohms/km. Inductance (L) is defined as the loop inductance per unit length of the transmission line. Its unit is Henries/km. Capacitance (C) is defined as the shunt capacitance per unit length between the two transmission lines. Its unit is Farad/km. Conductance (G) is defined as the shunt conductance per unit length between the two transmission lines. Its unit is mhos/km. 3. What are the secondary constants of a line? The secondary constants of a line are 푍 i. Characteristic impedance, 푍0 = √ ⁄푌 ii. Propagation constant, γ = α + jβ 4. Why the line parameters are called distributed elements? The line parameters R, L, C and G are distributed over the entire length of the transmission line. Hence they are called distributed parameters. They are also called primary constants. The infinite line, wavelength, velocity, propagation & Distortion line, the telephone cable 5. What is an infinite line? [M/J–2012, A/M–2004] An infinite line is a line where length is infinite.
    [Show full text]
  • Waveguides Waveguides, Like Transmission Lines, Are Structures Used to Guide Electromagnetic Waves from Point to Point. However
    Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves (modes) are quite different. The differences in these modes result from the basic differences in geometry for a transmission line and a waveguide. Waveguides can be generally classified as either metal waveguides or dielectric waveguides. Metal waveguides normally take the form of an enclosed conducting metal pipe. The waves propagating inside the metal waveguide may be characterized by reflections from the conducting walls. The dielectric waveguide consists of dielectrics only and employs reflections from dielectric interfaces to propagate the electromagnetic wave along the waveguide. Metal Waveguides Dielectric Waveguides Comparison of Waveguide and Transmission Line Characteristics Transmission line Waveguide • Two or more conductors CMetal waveguides are typically separated by some insulating one enclosed conductor filled medium (two-wire, coaxial, with an insulating medium microstrip, etc.). (rectangular, circular) while a dielectric waveguide consists of multiple dielectrics. • Normal operating mode is the COperating modes are TE or TM TEM or quasi-TEM mode (can modes (cannot support a TEM support TE and TM modes but mode). these modes are typically undesirable). • No cutoff frequency for the TEM CMust operate the waveguide at a mode. Transmission lines can frequency above the respective transmit signals from DC up to TE or TM mode cutoff frequency high frequency. for that mode to propagate. • Significant signal attenuation at CLower signal attenuation at high high frequencies due to frequencies than transmission conductor and dielectric losses. lines. • Small cross-section transmission CMetal waveguides can transmit lines (like coaxial cables) can high power levels.
    [Show full text]
  • Wave Guides Summary and Problems
    ECE 144 Electromagnetic Fields and Waves Bob York General Waveguide Theory Basic Equations (ωt γz) Consider wave propagation along the z-axis, with fields varying in time and distance according to e − . The propagation constant γ gives us much information about the character of the waves. We will assume that the fields propagating in a waveguide along the z-axis have no other variation with z,thatis,the transverse fields do not change shape (other than in magnitude and phase) as the wave propagates. Maxwell’s curl equations in a source-free region (ρ =0andJ = 0) can be combined to give the wave equations, or in terms of phasors, the Helmholtz equations: 2E + k2E =0 2H + k2H =0 ∇ ∇ where k = ω√µ. In rectangular or cylindrical coordinates, the vector Laplacian can be broken into two parts ∂2E 2E = 2E + ∇ ∇t ∂z2 γz so that with the assumed e− dependence we get the wave equations 2E +(γ2 + k2)E =0 2H +(γ2 + k2)H =0 ∇t ∇t (ωt γz) Substituting the e − into Maxwell’s curl equations separately gives (for rectangular coordinates) E = ωµH H = ωE ∇ × − ∇ × ∂Ez ∂Hz + γEy = ωµHx + γHy = ωEx ∂y − ∂y ∂Ez ∂Hz γEx = ωµHy γHx = ωEy − − ∂x − − − ∂x ∂Ey ∂Ex ∂Hy ∂Hx = ωµHz = ωEz ∂x − ∂y − ∂x − ∂y These can be rearranged to express all of the transverse fieldcomponentsintermsofEz and Hz,giving 1 ∂Ez ∂Hz 1 ∂Ez ∂Hz Ex = γ + ωµ Hx = ω γ −γ2 + k2 ∂x ∂y γ2 + k2 ∂y − ∂x w W w W 1 ∂Ez ∂Hz 1 ∂Ez ∂Hz Ey = γ + ωµ Hy = ω + γ γ2 + k2 − ∂y ∂x −γ2 + k2 ∂x ∂y w W w W For propagating waves, γ = β,whereβ is a real number provided there is no loss.
    [Show full text]
  • Uniform Plane Waves
    38 2. Uniform Plane Waves Because also ∂zEz = 0, it follows that Ez must be a constant, independent of z, t. Excluding static solutions, we may take this constant to be zero. Similarly, we have 2 = Hz 0. Thus, the fields have components only along the x, y directions: E(z, t) = xˆ Ex(z, t)+yˆ Ey(z, t) Uniform Plane Waves (transverse fields) (2.1.2) H(z, t) = xˆ Hx(z, t)+yˆ Hy(z, t) These fields must satisfy Faraday’s and Amp`ere’s laws in Eqs. (2.1.1). We rewrite these equations in a more convenient form by replacing and μ by: 1 η 1 μ = ,μ= , where c = √ ,η= (2.1.3) ηc c μ Thus, c, η are the speed of light and characteristic impedance of the propagation medium. Then, the first two of Eqs. (2.1.1) may be written in the equivalent forms: ∂E 1 ∂H ˆz × =− η 2.1 Uniform Plane Waves in Lossless Media ∂z c ∂t (2.1.4) ∂H 1 ∂E The simplest electromagnetic waves are uniform plane waves propagating along some η ˆz × = ∂z c ∂t fixed direction, say the z-direction, in a lossless medium {, μ}. The assumption of uniformity means that the fields have no dependence on the The first may be solved for ∂zE by crossing it with ˆz. Using the BAC-CAB rule, and transverse coordinates x, y and are functions only of z, t. Thus, we look for solutions noting that E has no z-component, we have: of Maxwell’s equations of the form: E(x, y, z, t)= E(z, t) and H(x, y, z, t)= H(z, t).
    [Show full text]
  • Microstrip Solutions for Innovative Microwave Feed Systems
    Examensarbete LiTH-ITN-ED-EX--2001/05--SE Microstrip Solutions for Innovative Microwave Feed Systems Magnus Petersson 2001-10-24 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings Universitet SE-601 74 Norrköping, Sweden 601 74 Norrköping LiTH-ITN-ED-EX--2001/05--SE Microstrip Solutions for Innovative Microwave Feed Systems Examensarbete utfört i Mikrovågsteknik / RF-elektronik vid Tekniska Högskolan i Linköping, Campus Norrköping Magnus Petersson Handledare: Ulf Nordh Per Törngren Examinator: Håkan Träff Norrköping den 24 oktober, 2001 'DWXP $YGHOQLQJ,QVWLWXWLRQ Date Division, Department Institutionen för teknik och naturvetenskap 2001-10-24 Ã Department of Science and Technology 6SUnN 5DSSRUWW\S ,6%1 Language Report category BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Svenska/Swedish Licentiatavhandling X Engelska/English X Examensarbete ISRN LiTH-ITN-ED-EX--2001/05--SE C-uppsats 6HULHWLWHOÃRFKÃVHULHQXPPHUÃÃÃÃÃÃÃÃÃÃÃÃ,661 D-uppsats Title of series, numbering ___________________________________ _ ________________ Övrig rapport _ ________________ 85/I|UHOHNWURQLVNYHUVLRQ www.ep.liu.se/exjobb/itn/2001/ed/005/ 7LWHO Microstrip Solutions for Innovative Microwave Feed Systems Title )|UIDWWDUH Magnus Petersson Author 6DPPDQIDWWQLQJ Abstract This report is introduced with a presentation of fundamental electromagnetic theories, which have helped a lot in the achievement of methods for calculation and design of microstrip transmission lines and circulators. The used software for the work is also based on these theories. General considerations when designing microstrip solutions, such as different types of transmission lines and circulators, are then presented. Especially the design steps for microstrip lines, which have been used in this project, are described. Discontinuities, like bends of microstrip lines, are treated and simulated.
    [Show full text]
  • EMC Fundamentals
    ITU Training on Conformance and Interoperability for ARB Region CERT, 2-6 April 2013, EMC fundamentals Presented by: Karim Loukil & Kaïs Siala [email protected] [email protected] 1 Basics of electromagnetics 2 Electromagnetic waves A wave is a moving vibration λ Antenna V λ (m) = c(m/s) / F(Hz) 3 Definitions • The wavelength is the distance traveled by a wave in an oscillation cycle • Frequency is measured by the number of cycles per second and the unit is Hz . One cycle per second is one Hertz. 4 Electromagnetic waves (2) • An electromagnetic wave consists of: an electric field E (produced by the force of electric charges) a magnetic field H (produced by the movement of electric charges) • The fields E and H are orthogonal and are m oving at the speed of light 8 c = 3. 10 m/s 5 Electromagnetic waves (3) 6 E and H fields Electric field The field amplitude is l expressed in (V/m). E(V/m) Magnetic field The field amplitude is expressed in (A/m). d H(A /m) Power density Radiated power is perpendicular to a surface, divided by the area of ​​the surface. The power density is expressed as S (W / m²), or (mW /cm ²) , or (µW / cm ²). 7 E and H fields • Near a whip, the dominant field is the E field. The impedance in this area is Zc > 377 ohms. • Near a loop, the dominant field is the H field. The impedance in this area is Z c <377 ohms. 8 Plane wave 9 The EMC way of thinking Electrical domain Electromagnetic domain Voltage V (Volt) Electric Field E (V/m) Current I (Amp) Magnetic field H (A/m) Impedance Z (Ohm) Characteristic
    [Show full text]
  • Substrate Integrated Waveguide (SIW) Is a Very Promising Technique in That We Can Make Use of the Advantages of Both Waveguides and Planar Transmission Lines
    UNIVERSITÉ DE MONTRÉAL TUNABLE FERRITE PHASE SHIFTERS USING SUBSTRATE INTEGRATED WAVEGUIDE TECHNIQUE YONG JU BAN DÉPARTEMENT DE GÉNIE ÉLECTRIQUE ÉCOLE POLYTECHNIQUE DE MONTRÉAL MÉMOIRE PRÉSENTÉ EN VUE DE L‟OBTENTION DU DIPLÔ ME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES (GÉNIE ÉLECTRIQUE) DÉCEMBRE 2010 © Yong Ju Ban, 2010. UNIVERSITÉ DE MONTRÉAL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Ce mémoire intitulé: TUNABLE FERRITE PHASE SHIFTERS USING SUBSTRATE INTEGRATED WAVEGUIDE TECHNIQUE présenté par : BAN, YONG JU en vue de l‟obtention du diplôme de : Maîtrise ès sciences appliquées a été dûment accepté par le jury d‟examen constitué de : M. CARDINAL, Christian, Ph. D., président M. WU, Ke, Ph. D., membre et directeur de recherche M. DESLANDES, Dominic, Ph. D., membre iii DEDICATION To my lovely wife Jeong Min And my two sons Jione & Junone iv ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my supervisor, Prof. Ke Wu, for having accepted me and given me the opportunity to pursue my master study in such a challenging and exciting research field, and for his invaluable guidance and encouragement throughout the work involved in this thesis. I would like to thank Mr. Jules Gauthier, Mr. Jean-Sebastien Décarie and other staffs of Poly-Grames Research Center for their skillful technical supports during my study and experiments. I thank Zhenyu Zhang, Fanfan He and Anthony Ghiotto for their helpful discussions. And many thanks should be extended to Sulav Adhikari for his invaluable supports for my study and thesis. I also appreciate my colleagues Xiaoma Jiang, Nikolay Volobouev, Adrey Taikov, Marie Chantal, Parmeet Chawala, Jawad Abdulnour and Shyam Gupta in SDP for their understanding and endurance for my study.
    [Show full text]
  • CHAPTER-I MICROWAVE TRANSMISSION LINES the Electromagnetic Spectrum Is the Range of All Possible Frequencies of Electromagnetic
    CHAPTER-I MICROWAVE TRANSMISSION LINES The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation emitted or absolved. The electromagnetic spectrum extends from below the low frequencies used for modern radio communication to gamma radiation at the short-wavelength (high-frequency) end, thereby covering wavelengths from thousands of kilometers down to a fraction of the size of an atom as shown in Fig 1.1. The limit for long wavelengths is beyond one‟s imagination. One theory existing depicts that the short wavelength limit is in the vicinity of the Planck length. A few scientists do believe that the spectrum is infinite and continuous. Microwaves region forms a small part of the entire electromagnetic spectrum as shown in Fig 1.1. Microwaves are electromagnetic waves generally in the frequency range of 1 G Hz to 300 GHz. However with the advent of technology usage of higher end of the frequencies became possible and now the range is extended almost to 1000 G Hz. Fig:1.1: Electromagnetic Spectrum 1 Brief history of Microwaves • Modern electromagnetic theory was formulated in 1873 by James Clerk Maxwell, a German scientist solely from mathematical considerations. • Maxwell‟s formulation was cast in its modern form by Oliver Heaviside, during the period 1885 to 1887. • Heinrich Hertz, a German professor of physics carried out a set of experiments during 1887-1891 that completely validated Maxwell‟s theory of electromagnetic waves. • It was only in the 1940‟s (World War II) that microwave theory received substantial interest that led to radar development. • Communication systems using microwave technology began to develop soon after the birth of radar.
    [Show full text]
  • A Highly Symmetric Two-Handed Metamaterial Spontaneously Matching the Wave Impedance
    A highly symmetric two-handed metamaterial spontaneously matching the wave impedance Yi- Ju Chiang1 and Ta-Jen Yen1,2† 1 Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C. 2 Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, R.O.C. † E-mail: [email protected]; Tel: 886-3-5742174; Fax: 886-3-5722366 Abstract: We demonstrate a two-handed metamaterial (THM), composed of highly symmetric three-layered structures operated at normal incidence. Not only does the THM exhibit two distinct allowed bands with right- handed and left-handed electromagnetic responses, but posses a further advantage of being independent to the polarizations of external excitations. In addition, the THM automatically matches the wave impedance in free space, leading to maximum transmittances about 0.8 dB in the left-handed band and almost 0 dB in the right-handed band, respectively. Such a THM can be employed for diverse electromagnetic devices including dual-band bandpass filters, ultra-wide bandpass filters and superlenses. ©2008 Optical Society of America OCIS codes: (160.3918) Metamaterials; (350.3618) Left-handed materials; (260.5740) Resonance; (350.4010) Microwaves. References and links 1. J. D. Watson, and F. H. C. Crick, "Molecular Structure of Nucleic Acids," Nature 171, 737-738 (1953). 2. A. H. J. Wang, G. J. Quigley, F. J. Kolpak, J. L. Crawford, J. H. Vanboom, G. Van der Marel, and A. Rich, "Molecular structure of a left-handed double helical DNA fragment at atomic resolution," Nature 282, 680- 686 (1979).
    [Show full text]
  • Transmission Lines TEM Waves
    Tele 2060 Transmission Lines • Transverse Electromagnetic (TEM) Waves • Structure of Transmission Lines • Lossless Transmission Lines Martin B.H. Weiss Transmission of Electromagnetic Energy - 1 University of Pittsburgh Tele 2060 TEM Waves • Definition: A Wave in which the Electric Field, the Magnetic Field, and the Propogation Direction are Orthogonal Use the “Right Hand Rule” to Determine Relative Orientation Thumb of Right Hand Indicates Direction of Propagation Curved Fingers of Right Hand Indicates the Direction of the Magnetic Field The Electric Field is Orthogonal ω β • Electric Field: e(t,x) = Emaxsin( t- x) V/m ω β • Magnetic Field: h(t,x) = Hmaxsin( t- x) A/m β=2π/λ ω=2πf=2π/T x is Distance Martin B.H. Weiss Transmission of Electromagnetic Energy - 2 University of Pittsburgh Tele 2060 TEM Waves λ • Note that =vp/f Same as Distance = (Speed * Time) in Physics vp is the Phase Velocity In Free Space, vp=c, the Speed of Light ==E µε • Wave Impedance: Z0 H = 1 • Phase Velocity: vp µε Martin B.H. Weiss Transmission of Electromagnetic Energy - 3 University of Pittsburgh Tele 2060 Transmission Constants • Electric Permittivity of the Transmission Medium (ε) ε = ε ε r 0 Where ε is r The Relative Permittivity Also the Dielectric Constant Typically Between 1 and 5 -12 ε = 8.85*10 (Farads/meter) 0 • Magnetic Permeability of the Transmission Medium (µ) µ=µ µ r 0 Where µ is the Relative Permeability r -7 µ = 4 *10 Henry/meter 0 Martin B.H. Weiss Transmission of Electromagnetic Energy - 4 University of Pittsburgh Tele 2060 Model of a Transmission Line L∆xR∆x ii-∆i ∆i v C∆xG∆xv-∆v ∆x Martin B.H.
    [Show full text]
  • The Design and Analysis of a Microstrip Line Which Utilizes
    THE DESIGN AND ANALYSIS OF A MICROSTRIP LINE WHICH UTILIZES CAPACITIVE GAPS AND MAGNETIC RESPONSIVE PARTICLES TO VARY THE REACTANCE OF THE SURFACE IMPEDANCE A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Jerika Dawn Cleveland In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Electrical and Computer Engineering April 2019 Fargo, North Dakota North Dakota State University Graduate School Title THE DESIGN AND ANALYSIS OF A MICROSTRIP LINE WHICH UTILIZES CAPACITIVE GAPS AND MAGNETIC RESPONSIVE PARTICLES TO VARY THE REACTANCE OF THE SURFACE IMPEDANCE By Jerika Dawn Cleveland The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Benjamin D. Braaten Chair Dr. Daniel L. Ewert Dr. Jeffery Allen Approved: April 26, 2019 Dr. Benjamin D. Braaten Date Department Chair ABSTRACT This thesis presents the work of using magnetic responsive particles as a method to manipulate the surface impedance reactance of a microstrip line containing uniform capacitive gaps and cavities containing the particles. In order to determine the transmission line’s surface impedances created by each gap and particle containing cavities, a sub-unit cell that centers the gap and cavities was used. Shown in simulation, the magnetic responsive particles can then be manipulated to increase or decrease the reactance of the surface impedance based on the strength of the magnetic field present. The sub-unit cell with the greatest reactance change was then implemented into a unit cell, which is a cascade of sub-unit cells.
    [Show full text]
  • Fields, Waves and Transmission Lines Fields, Waves and Transmission Lines
    Fields, Waves and Transmission Lines Fields, Waves and Transmission Lines F. A. Benson Emeritus Professor Formerly Head of Department Electronic and Electrical Engineering University of Sheffield and T. M. Benson Senior Lecturer Electrical and Electronic Engineering University of Nottingham IUI11 SPRINGER-SCIENCE+BUSINESS MEDIA, B. V. First edition 1991 © 1991 F. A. Benson and T. M. Benson Originally published by Chapman & Hali in 1991 0412 363704 o 442 31470 1 (USA) Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers at the London address printed on this page. The publisher makes no representation, express or implied, with regard to the accuracy of the informaton contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication data Benson, F. A. (Frank Atkinson), 1921- Fields, waves, and transmission lines/F. A. Benson and T.
    [Show full text]