From Isotopes to the Stars

Total Page:16

File Type:pdf, Size:1020Kb

From Isotopes to the Stars COMMENT ENVIRONMENT The age of FILM Werner Herzog on POLICY Overhauling the COMMUNICATION Public mistrust cheap, abundant cave painting and the NIH will not fix the broken of Japanese officials is not water is ending p.27 brutality of nature p.30 US health pipeline p.31 irrational but sensible p.31 THE GUARDIAN D. TUFFS/ Hans Geiger (left) and Ernest Rutherford’s experimental work revealed the nucleus at the centre of atoms. From isotopes to the stars Creating more exotic isotopes will reveal the stellar formation of atoms — a fitting tribute to Ernest Rutherford, say Michael Thoennessen and Bradley Sherrill. hundred years have passed since standard model to describe these particles nuclides — atoms with a specific number of Ernest Rutherford published his and their interactions. This quest to find protons and neutrons in their nuclei. In 2010, discovery of the atomic nucleus nature’s ultimate building blocks is being led for the first time, more than 100 new unstable Ain May 1911 and started a journey to the by experiments at CERN, Europe’s particle- isotopes — nuclides with different numbers centre of the atomic world. In Rutherford’s physics laboratory near Geneva, Switzerland. of neutrons — were discovered in a single MANCHESTER UNIV. famous experiment, a stream of α-particles Despite this progress, some basic questions year (see ‘The nuclide trail’). We expect more was aimed at a very thin sheet of gold foil. remain unanswered. It is not known how than 1,000 new isotopes, including some of Some of the particles were deflected at angles Rutherford’s nucleus can result from quarks the most scientifically interesting to date, to that suggested they had collided with a small, and the strong force. It is not even known in be discovered over the next decade or so. dense atomic core. As Rutherford remarked: detail how the strong force binds quarks to Initially, the search for new isotopes was “It was almost as if you fired a 15-inch shell make neutrons and protons, or how it results driven by the quest for the unknown, to at a piece of tissue paper and it came back in the forces that hold together protons and make something nobody else had made and and hit you.” The experiment supported neutrons in the nucleus. Even simpler ques- the urge to understand the underlying forces. a planetary model of the atom — the idea tions, such as how many elements might But they have enormous practical applica- that most of the mass is concentrated in a be possible, or how many neutrons a given tions too: in nuclear energy, medical imaging nucleus, with even smaller electrons orbiting number of protons can bind, are currently and treatment, carbon dating and tracer it like planets around the Sun. unanswerable. elements. The international effort to create Over the century since, scientists have So, away from the high-profile, high- new isotopes will push our understanding of probed to sizes 1,000 times smaller than energy frontier, a small army of machines atom formation and nuclei to new levels, but Rutherford managed — to the level at which is quietly advancing understanding of the may also lead to applications. quarks are important — and developed the atomic nucleus by generating new and rare Even before Rutherford’s experiment, 5 MAY 2011 | VOL 473 | NATURE | 25 © 2011 Macmillan Publishers Limited. All rights reserved COMMENT THE NUCLIDE TRAIL Isotope-discovery technique Isotope discovery over the past 100 years (below) has jumped with each introduction of new technology. Some Light particle reactions Neutron reactions 2,700 radioactive isotopes have been discovered so far (below right), but about 3,000 more are predicted to exist. Fusion Fragmentation/spallation 120 120 2010: rst year in which Stable and naturally more than 100 isotopes 100 100 existing radioactive were discovered isotopes 80 80 Second World War 60 60 40 40 5-year Number of protons running Predicted, but as yet 20 average 20 unconrmed, isotopes Number of isotopes discovered 0 0 1900 1920 1940 1960 1980 2000 0 20 40 60 80 100 120 140 160 180 Year Number of neutrons radioactive-decay studies showed that a other fundamental astrophysics questions not be allowed to halt the machine builders. given element can exist in different forms. on where in the cosmos these isotopes are The facility in Germany still needs to secure The discovery of the neutron in 1932 revealed created, why stars explode, the nature of sufficient funding to start operations by the that the nucleus of an atom was composed of neutron stars and what the first stars in the end of the decade. Isotope discovery over protons and neutrons. Soon after, Irène Curie Universe were like. the past 100 years has been a worldwide and Frédéric Joliot used α-particles from effort, with more than 3,000 scientists in 125 polonium and targets of boron, magnesium MARCH OF MACHINES laboratories in 27 countries contributing. It and aluminium to create the first radioactive The first particle accelerators, developed will be a shame if the German facility — an isotopes in the laboratory. The new isotopes in the early 1930s, revealed many new international collaboration from its outset — of nitrogen, aluminium and phosphorus had isotopes. The Second World War delayed does not move forward expeditiously. one neutron fewer than the normal stable progress but, afterwards, neutron-capture Pushing science to the limits produces nuclides of these elements. and neutron-fission reactions in nuclear surprises. We have already learned that rare Since then, researchers have been reactors continued the exploration. The next nuclei with extreme proton-to-neutron ratios searching for the limits of nuclear existence, advance was the development of heavy-ion don’t always follow the textbook behaviour of to discover what element may have the most accelerators in the 1960s, which produced known stable isotopes. For example, the size protons and what are the largest (and small- heavy neutron-deficient isotopes in fusion of stable nuclei is proportional to their mass est) number of neutrons for a given element. evaporation reactions. — it scales as A1/3 (where A is the mass num- Even today, the limit to the number of With higher-energy accelerators in the ber of neutrons and protons). However, this neutrons that an element can bind is known 1990s, scientists could create more neutron- simple relationship ignores any differences only for the lightest elements, from hydro- rich nuclei during in-flight fission or projec- between neutrons and protons. Some rare gen to oxygen. That is one very small corner tile fragmentation of high-energy heavy ions. nuclei that exist only fleetingly have proved of the possible nuclear landscape (see ‘The This has been the most productive route to to be significantly larger. nuclide trail’). isotope discovery in recent times. But in the Other surprises may be in store. Hope- There are almost 300 stable nuclides on past decade, the rate of discovery dropped fully, the next-generation facilities will Earth and another 2,700 radioactive isotopes to levels not seen since the 1940s. It became create more than 1,000 new isotopes, and have been identified so far. This represents obvious that dedicated rare-isotope accelera- the limit of nuclear existence will be pushed perhaps only half of all predicted isotopes. tors were needed to make further progress. towards heavier elements, up to zirconium Around 3,000 have yet to be discovered (it The first of these facilities, the Rare Isotope (40 protons) but still some way from gold might be as many as 5,000 or as few as 2,000). Beam Factory, came online in 2007 in Wako, (79 protons). Fundamental phenomena Although the different masses of isotopes do Japan. In 2010, it reported the discovery of are waiting to be discovered, and increased not influence their chemistry much, the pro- 45 new neutron-rich isotopes. production of rare isotopes will bring new duction and study of rare isotopes is crucial To ensure that this is the beginning of a applications in medicine and other fields. We to understanding the process of nature that new era rather than just a discovery spike, are confident that in the next 10–15 years, makes atoms in their birthplace. it is crucial to continue efforts worldwide. most of the isotopes needed to answer the Most of the elements in nature are created Centres are under development, such as the question ‘What is the origin of elements in in stars and stellar explosions, and the iso- Facility for Antiproton and Ions Research the cosmos?’ will be created in the lab for the topes involved are often at the very limits of in Darmstadt, Germany, SPIRAL2 in Caen, first time. A fitting tribute to Rutherford. ■ stability. The next generation of rare-isotope France, and the Facility for Rare Isotope accelerators will create, for the first time on Beams at Michigan State University in East Michael Thoennessen and Bradley Earth, most of the isotopes that are formed Lansing. Scientists in the United States have Sherrill are at the National Superconducting in stellar environments. Where physicists been trying to build a rare-isotope accel- Cyclotron Laboratory and the Department currently have to rely on theoretical mod- erator for almost 20 years. Funding for an of Physics and Astronomy at Michigan State els based on extrapolations, they will soon earlier facility was halted during a previous University, East Lansing, Michigan 48824, USA. measure the properties of most of these period of austerity. e-mails: [email protected]; isotopes directly. It could help to answer Today’s difficult financial conditions must [email protected] 26 | NATURE | VOL 473 | 5 MAY 2011 © 2011 Macmillan Publishers Limited.
Recommended publications
  • James Chadwick: Ahead of His Time
    July 15, 2020 James Chadwick: ahead of his time Gerhard Ecker University of Vienna, Faculty of Physics Boltzmanngasse 5, A-1090 Wien, Austria Abstract James Chadwick is known for his discovery of the neutron. Many of his earlier findings and ideas in the context of weak and strong nuclear forces are much less known. This biographical sketch attempts to highlight the achievements of a scientist who paved the way for contemporary subatomic physics. arXiv:2007.06926v1 [physics.hist-ph] 14 Jul 2020 1 Early years James Chadwick was born on Oct. 20, 1891 in Bollington, Cheshire in the northwest of England, as the eldest son of John Joseph Chadwick and his wife Anne Mary. His father was a cotton spinner while his mother worked as a domestic servant. In 1895 the parents left Bollington to seek a better life in Manchester. James was left behind in the care of his grandparents, a parallel with his famous predecessor Isaac Newton who also grew up with his grandmother. It might be an interesting topic for sociologists of science to find out whether there is a correlation between children educated by their grandmothers and future scientific geniuses. James attended Bollington Cross School. He was very attached to his grandmother, much less to his parents. Nevertheless, he joined his parents in Manchester around 1902 but found it difficult to adjust to the new environment. The family felt they could not afford to send James to Manchester Grammar School although he had been offered a scholarship. Instead, he attended the less prestigious Central Grammar School where the teaching was actually very good, as Chadwick later emphasised.
    [Show full text]
  • Hetc-3Step Calculations of Proton Induced Nuclide Production Cross Sections at Incident Energies Between 20 Mev and 5 Gev
    JAERI-Research 96-040 JAERI-Research—96-040 JP9609132 JP9609132 HETC-3STEP CALCULATIONS OF PROTON INDUCED NUCLIDE PRODUCTION CROSS SECTIONS AT INCIDENT ENERGIES BETWEEN 20 MEV AND 5 GEV August 1996 Hiroshi TAKADA, Nobuaki YOSHIZAWA* and Kenji ISHIBASHI* Japan Atomic Energy Research Institute 2 G 1 0 1 (T319-11 l This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, 319-11, Japan. © Japan Atomic Energy Research Institute, 1996 JAERI-Research 96-040 HETC-3STEP Calculations of Proton Induced Nuclide Production Cross Sections at Incident Energies between 20 MeV and 5 GeV Hiroshi TAKADA, Nobuaki YOSHIZAWA* and Kenji ISHIBASHP* Department of Reactor Engineering Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken (Received July 1, 1996) For the OECD/NEA code intercomparison, nuclide production cross sections of l60, 27A1, nalFe, 59Co, natZr and 197Au for the proton incidence with energies of 20 MeV to 5 GeV are calculated with the HETC-3STEP code based on the intranuclear cascade evaporation model including the preequilibrium and high energy fission processes. In the code, the level density parameter derived by Ignatyuk, the atomic mass table of Audi and Wapstra and the mass formula derived by Tachibana et al. are newly employed in the evaporation calculation part. The calculated results are compared with the experimental ones. It is confirmed that HETC-3STEP reproduces the production of the nuclides having the mass number close to that of the target nucleus with an accuracy of a factor of two to three at incident proton energies above 100 MeV for natZr and 197Au.
    [Show full text]
  • An Octad for Darmstadtium and Excitement for Copernicium
    SYNOPSIS An Octad for Darmstadtium and Excitement for Copernicium The discovery that copernicium can decay into a new isotope of darmstadtium and the observation of a previously unseen excited state of copernicium provide clues to the location of the “island of stability.” By Katherine Wright holy grail of nuclear physics is to understand the stability uncover its position. of the periodic table’s heaviest elements. The problem Ais, these elements only exist in the lab and are hard to The team made their discoveries while studying the decay of make. In an experiment at the GSI Helmholtz Center for Heavy isotopes of flerovium, which they created by hitting a plutonium Ion Research in Germany, researchers have now observed a target with calcium ions. In their experiments, flerovium-288 previously unseen isotope of the heavy element darmstadtium (Z = 114, N = 174) decayed first into copernicium-284 and measured the decay of an excited state of an isotope of (Z = 112, N = 172) and then into darmstadtium-280 (Z = 110, another heavy element, copernicium [1]. The results could N = 170), a previously unseen isotope. They also measured an provide “anchor points” for theories that predict the stability of excited state of copernicium-282, another isotope of these heavy elements, says Anton Såmark-Roth, of Lund copernicium. Copernicium-282 is interesting because it University in Sweden, who helped conduct the experiments. contains an even number of protons and neutrons, and researchers had not previously measured an excited state of a A nuclide’s stability depends on how many protons (Z) and superheavy even-even nucleus, Såmark-Roth says.
    [Show full text]
  • Models of the Atomic Nucleus
    Models of the Atomic Nucleus Second Edition Norman D. Cook Models of the Atomic Nucleus Unification Through a Lattice of Nucleons Second Edition 123 Prof. Norman D. Cook Kansai University Dept. Informatics 569 Takatsuki, Osaka Japan [email protected] Additional material to this book can be downloaded from http://extras.springer.com. ISBN 978-3-642-14736-4 e-ISBN 978-3-642-14737-1 DOI 10.1007/978-3-642-14737-1 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2010936431 © Springer-Verlag Berlin Heidelberg 2006, 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface to the Second Edition Already by the 1970s, some theorists had declared that nuclear structure physics was a “closed chapter” in science, but since then it has repeatedly been found necessary to re-open this closed chapter to address old problems and to explain new phenom- ena.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • Heavy Element Nucleosynthesis
    Heavy Element Nucleosynthesis A summary of the nucleosynthesis of light elements is as follows 4He Hydrogen burning 3He Incomplete PP chain (H burning) 2H, Li, Be, B Non-thermal processes (spallation) 14N, 13C, 15N, 17O CNO processing 12C, 16O Helium burning 18O, 22Ne α captures on 14N (He burning) 20Ne, Na, Mg, Al, 28Si Partly from carbon burning Mg, Al, Si, P, S Partly from oxygen burning Ar, Ca, Ti, Cr, Fe, Ni Partly from silicon burning Isotopes heavier than iron (as well as some intermediate weight iso- topes) are made through neutron captures. Recall that the prob- ability for a non-resonant reaction contained two components: an exponential reflective of the quantum tunneling needed to overcome electrostatic repulsion, and an inverse energy dependence arising from the de Broglie wavelength of the particles. For neutron cap- tures, there is no electrostatic repulsion, and, in complex nuclei, virtually all particle encounters involve resonances. As a result, neutron capture cross-sections are large, and are very nearly inde- pendent of energy. To appreciate how heavy elements can be built up, we must first consider the lifetime of an isotope against neutron capture. If the cross-section for neutron capture is independent of energy, then the lifetime of the species will be ( )1=2 1 1 1 µn τn = ≈ = Nnhσvi NnhσivT Nnhσi 2kT For a typical neutron cross-section of hσi ∼ 10−25 cm2 and a tem- 8 9 perature of 5 × 10 K, τn ∼ 10 =Nn years. Next consider the stability of a neutron rich isotope. If the ratio of of neutrons to protons in an atomic nucleus becomes too large, the nucleus becomes unstable to beta-decay, and a neutron is changed into a proton via − (Z; A+1) −! (Z+1;A+1) + e +ν ¯e (27:1) The timescale for this decay is typically on the order of hours, or ∼ 10−3 years (with a factor of ∼ 103 scatter).
    [Show full text]
  • A Guide to Naturally Occurring Radioactive Materials (NORM)
    ABOUT NORM SOME NORM NUCLIDES OF SPECIAL INTEREST A Guide to Naturally There are three types of NORM: Occurring Radioactive • Cosmogenic – NORM produced by cosmic rays interacting with the Earth’s Materials (NORM) Beryllium 7 atmosphere; the most important Developed by the 3 7 14 examples are H (tritium), Be, and C. 7Be is being continuously formed in the DHS Secondary Reachback Program • Primordial – Sufficiently long-lived atmosphere by cosmic rays. Jet engines can March 2010 NORM for some to have survived from accumulate enough 7Be to set off before the formation of the Earth; there radiological alarms when being cleaned. are 20 primordial NORM nuclides with As defined by the International Atomic the most important being 40K, 232Th, Energy Agency (IAEA), Naturally 235U, and 238U. Polonium 210 Occurring Radioactive Materials • Daughters – When 232Th, 235U and 238U In the 238U decay chain 210Po is a distant (NORM) include all natural radioactive decay 42 different radioactive nuclides daughter of 226Ra. 210Po gained notoriety in materials where human activities have are formed (see below) with the most the 1960s as a radioactive trace component increased the potential for exposure in important being 222Rn, 226Ra, 228Ra and in cigarette smoke. Heavy use of phosphate comparison with the unaltered natural 228 Ac. fertilizers (which have trace amounts of out here. fold Next situation. If processing has increased 226Ra) can triple the amount of 210Po found the concentrations of radionuclides in a When 232Th, 235U and 238U decay a in tobacco. material then it is Technologically radioactive “daughter” nuclide is formed, Enhanced NORM (TE-NORM).
    [Show full text]
  • Appendix: Key Concepts and Vocabulary for Nuclear Energy
    Appendix: Key Concepts and Vocabulary for Nuclear Energy The likelihood of fission depends on, among other Power Plant things, the energy of the incoming neutron. Some In most power plants around the world, heat, usually nuclei can undergo fission even when hit by a low- produced in the form of steam, is converted to energy neutron. Such elements are called fissile. electricity. The heat could come through the burning The most important fissile nuclides are the uranium of coal or natural gas, in the case of fossil-fueled isotopes, uranium-235 and uranium-233, and the power plants, or the fission of uranium or plutonium plutonium isotope, plutonium-239. Isotopes are nuclei. The rate of electrical power production in variants of the same chemical element that have these power plants is usually measured in megawatts the same number of protons and electrons, but or millions of watts, and a typical large coal or nuclear differ in the number of neutrons. Of these, only power plant today produces electricity at a rate of uranium-235 is found in nature, and it is found about 1,000 megawatts. A much smaller physical only in very low concentrations. Uranium in nature unit, the kilowatt, is a thousand watts, and large contains 0.7 percent uranium-235 and 99.3 percent household appliances use electricity at a rate of a few uranium-238. This more abundant variety is an kilowatts when they are running. The reader will have important example of a nucleus that can be split only heard about the “kilowatt-hour,” which is the amount by a high-energy neutron.
    [Show full text]
  • Production and Properties Towards the Island of Stability
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Leino, Matti Title: Production and properties towards the island of stability Year: 2016 Version: Please cite the original version: Leino, M. (2016). Production and properties towards the island of stability. In D. Rudolph (Ed.), Nobel Symposium NS 160 - Chemistry and Physics of Heavy and Superheavy Elements (Article 01002). EDP Sciences. EPJ Web of Conferences, 131. https://doi.org/10.1051/epjconf/201613101002 All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. EPJ Web of Conferences 131, 01002 (2016) DOI: 10.1051/epjconf/201613101002 Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements Production and properties towards the island of stability Matti Leino Department of Physics, University of Jyväskylä, PO Box 35, 40014 University of Jyväskylä, Finland Abstract. The structure of the nuclei of the heaviest elements is discussed with emphasis on single-particle properties as determined by decay and in- beam spectroscopy. The basic features of production of these nuclei using fusion evaporation reactions will also be discussed. 1. Introduction In this short review, some examples of nuclear structure physics and experimental methods relevant for the study of the heaviest elements will be presented.
    [Show full text]
  • Atomic Engery Education Volume Four.Pdf
    ~ t a t e of ~ ofua 1952 SCIENTIFIC AND SOCIAL ASPECTS OF ATOMIC ENERGY (A Source Book /or General Use in Colleges) Volume IV The Iowa Plan for Atomic Energy Education Issu ed by the D epartment of Public Instruction J essie M. Parker Superintendent Des Moines, Iowa Published by the State .of Iowa ''The release of atomic energy on a large scale is practical. It is reasonable to anticipate that this new source of energy will cause profound changes in our present way of life." - Quoted from the Copyright 1952 Atomic Energy Act of 1946. by The State of Iowa "Unless the people have the essential facts about atonuc energy, they cannot act wisely nor can they act democratically."-. -David I Lilienthal, formerly chairman of the Atomic Energy Com.mission. IOWA PLAN FOR ATOMIC ENERGY EDUCATION FOREWORD Central Planning Committee About five years ago the Iowa State Department of Public Instruction became impressed with the need for promoting Atomic Energy Education throughout the state. Following a series of Glenn Hohnes, Iowa State Col1ege, Ames, General Chairman conferences, in which responsible educators and laymen shared their views on this problem, Emil C. Miller, Luther College, Decorah plans were made to develop material for use at the elementary, high school, college, and Barton Morgan, Iowa State College, Ames adult education levels. This volume is a resource hook for use with and by college students. M. J. Nelson, Iowa State Teachers College, Cedar Falls Actually, many of the materials in this volume have their origin in the Atomic Energy Day Hew Roberts, State University of Iowa, Iowa City programs which were sponsored by Cornell College and Luther College two or three years L.
    [Show full text]
  • Module01 Nuclear Physics and Reactor Theory
    Module I Nuclear physics and reactor theory International Atomic Energy Agency, May 2015 v1.0 Background In 1991, the General Conference (GC) in its resolution RES/552 requested the Director General to prepare 'a comprehensive proposal for education and training in both radiation protection and in nuclear safety' for consideration by the following GC in 1992. In 1992, the proposal was made by the Secretariat and after considering this proposal the General Conference requested the Director General to prepare a report on a possible programme of activities on education and training in radiological protection and nuclear safety in its resolution RES1584. In response to this request and as a first step, the Secretariat prepared a Standard Syllabus for the Post- graduate Educational Course in Radiation Protection. Subsequently, planning of specialised training courses and workshops in different areas of Standard Syllabus were also made. A similar approach was taken to develop basic professional training in nuclear safety. In January 1997, Programme Performance Assessment System (PPAS) recommended the preparation of a standard syllabus for nuclear safety based on Agency Safely Standard Series Documents and any other internationally accepted practices. A draft Standard Syllabus for Basic Professional Training Course in Nuclear Safety (BPTC) was prepared by a group of consultants in November 1997 and the syllabus was finalised in July 1998 in the second consultants meeting. The Basic Professional Training Course on Nuclear Safety was offered for the first time at the end of 1999, in English, in Saclay, France, in cooperation with Institut National des Sciences et Techniques Nucleaires/Commissariat a l'Energie Atomique (INSTN/CEA).
    [Show full text]
  • Chapter 8. the Atomic Nucleus
    Chapter 8. The Atomic Nucleus Notes: • Most of the material in this chapter is taken from Thornton and Rex, Chapters 12 and 13. 8.1 Nuclear Properties Atomic nuclei are composed of protons and neutrons, which are referred to as nucleons. Although both types of particles are not fundamental or elementary, they can still be considered as basic constituents for the purpose of understanding the atomic nucleus. Protons and neutrons have many characteristics in common. For example, their masses are very similar with 1.0072765 u (938.272 MeV) for the proton and 1.0086649 u (939.566 MeV) for the neutron. The symbol ‘u’ stands for the atomic mass unit defined has one twelfth of the mass of the main isotope of carbon (i.e., 12 C ), which is known to contain six protons and six neutrons in its nucleus. We thus have that 1 u = 1.66054 ×10−27 kg (8.1) = 931.49 MeV/c2 . Protons and neutrons also both have the same intrinsic spin, but different magnetic moments (see below). Their main difference, however, pertains to their electrical charges: the proton, as we know, has a charge of +e , while the neutron has none, as its name implies. Atomic nuclei are designated using the symbol A Z XN , (8.2) with Z, N and A the number of protons (atomic element number), the number of neutrons, and the atomic mass number ( A = Z + N ), respectively, while X is the chemical element symbol. It is often the case that Z and N are omitted, when there is no chance of confusion.
    [Show full text]