Számítógépes Konfigurációk

Total Page:16

File Type:pdf, Size:1020Kb

Számítógépes Konfigurációk SZÁMÍTÓGÉPES KONFIGURÁCIÓK Antal Péter – Bóta László MÉDIAINFORMATIKAI KIADVÁNYOK SZÁMÍTÓGÉPES KONFIGURÁCIÓK Antal Péter – Bóta László Eger, 2011 Lektorálta: CleverBoard Interaktív Eszközöket és Megoldásokat Forgalmazó és Szolgáltató Kft. A könyvkereskedelem története című fejezetet írta: Makai János A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg. Felelős kiadó: dr. Kis-Tóth Lajos Készült: az Eszterházy Károly Főiskola nyomdájában, Egerben Vezető: Kérészy László Műszaki szerkesztő: Nagy Sándorné Kurzusmegosztás elvén (OCW) alapuló informatikai curriculum és SCORM kompatibilis tananyag- fejlesztés Informatikus könyvtáros BA, MA lineáris képzésszerkezetben TÁMOP-4.1.2-08/1/A-2009-0005 SZÁMÍTÓGÉPES KONFIGURÁCIÓK Számítógépes konfigurációk 1. Bevezetés ..................................................................................................................... 13 1.1 Célkitűzés ........................................................................................................ 13 1.2 A kurzus tartalma ............................................................................................ 13 1.3 A kurzus tömör kifejtése ................................................................................. 14 1.4 Kompetenciák és követelmények .................................................................... 14 1.5 Tanulási tanácsok, tudnivalók ......................................................................... 14 2. Számítógépek a mindennapokban ............................................................................ 15 2.1 Célkitűzés ........................................................................................................ 15 2.2 Tartalom .......................................................................................................... 15 2.3 Alapfogalmak .................................................................................................. 15 2.4 A számítógépek elvi működése ....................................................................... 16 2.4.1 Neumann elvek ................................................................................... 17 2.5 A számítógépek általános felépítése ............................................................... 18 2.5.1 Központi egység .................................................................................. 19 2.5.2 Perifériák ............................................................................................. 21 2.6 A számítógépek csoportosítása ....................................................................... 21 2.6.1 A nem hordozható személyi számítógépek megjelenése .................... 21 2.6.2 A hordozható személyi számítógép megjelenése ................................ 22 2.6.3 A kézben használható személyi számítógép megjelenése ................... 24 2.6.4 Szerver számítógépek ......................................................................... 24 2.7 Az asztali számítógépek házai......................................................................... 25 2.7.1 Az ATX szabvány alapján tervezett házak ......................................... 25 2.7.2 Az BTX szabvány alapján tervezett házak .......................................... 25 2.7.3 Elterjedt számítógépházak .................................................................. 26 2.7.4 Speciális házak .................................................................................... 26 2.8 Tápegység ....................................................................................................... 27 2.9 Összefoglalás................................................................................................... 28 2.10 Önellenőrző kérdések ...................................................................................... 28 3. Az alaplapok ............................................................................................................... 29 3.1 Célkitűzés ........................................................................................................ 29 3.2 Tartalom .......................................................................................................... 29 3.3 Elektronikus alkatrészek ................................................................................. 29 3.3.1 Tranzisztor .......................................................................................... 29 3.3.2 Integrált áramkör ................................................................................. 30 3.3.3 Nyomtatott áramkör ............................................................................ 30 3.4 Mi az alaplap? ................................................................................................. 31 3.5 Alaplap típusok a felhasználók igényei szerint ............................................... 33 3.5.1 Alaplap egy átlagos felhasználó számára ............................................ 33 3.5.2 Irodai felhasználásra szánt alaplap ...................................................... 33 3.5.3 A HTPC alaplapja ............................................................................... 33 3.5.4 Alaplap a számítógépes játékokhoz .................................................... 33 5 SZÁMÍTÓGÉPES KONFIGURÁCIÓK 3.6 Form factor ...................................................................................................... 34 3.6.1 A PC/XT szabvány .............................................................................. 34 3.6.2 A Baby AT szabvány .......................................................................... 35 3.6.3 Az AT szabvány .................................................................................. 35 3.6.4 Az LPX és mini LPX szabvány .......................................................... 35 3.6.5 ATX szabvány ..................................................................................... 36 3.6.6 A Micro ATX szabvány ...................................................................... 38 3.6.7 A Flex ATX szabvány ......................................................................... 38 3.6.8 A Mini ITX szabvány ......................................................................... 38 3.6.9 Az NLX szabvány ............................................................................... 38 3.6.10 A BTX szabvány ................................................................................. 38 3.6.11 A WTX szabvány ................................................................................ 38 3.7 Az alaplap legfontosabb részei ........................................................................ 40 3.7.1 A csipkészlet ....................................................................................... 40 3.7.2 A BIOS ................................................................................................ 40 3.8 Az alaplapok belső csatlakozói ....................................................................... 42 3.9 Buszrendszerek ............................................................................................... 43 3.9.1 A PCI busz .......................................................................................... 43 3.9.2 Az AGP busz ....................................................................................... 44 3.9.3 A PCI express...................................................................................... 45 3.10 Összefoglalás................................................................................................... 45 3.11 Önellenőrző kérdések ...................................................................................... 45 4. A mikroprocesszor ..................................................................................................... 46 4.1 Célkitűzés ........................................................................................................ 46 4.2 Tartalom .......................................................................................................... 46 4.3 A mikroprocesszor fogalma ............................................................................ 46 4.4 A mikroprocesszor részei ................................................................................ 47 4.4.1 Vezérlőegység ..................................................................................... 47 4.4.2 Az aritmetikai és logikai egység ......................................................... 47 4.4.3 A regiszterek ....................................................................................... 47 4.4.4 A gyorsító tárak ................................................................................... 48 4.4.5 A Társprocesszor ................................................................................. 48 4.5 A CPU működése ............................................................................................ 49 4.5.1 A Neumann-architektúra ..................................................................... 49 4.5.2 Harvard-architektúra ........................................................................... 50 4.5.3 Utasításkészlet architektúrák ............................................................... 50 4.6 Gyorsító utasításkészletek, technológiák ........................................................ 51 4.6.1 MM ..................................................................................................... 51 4.6.2 3DNOW! ............................................................................................. 51
Recommended publications
  • The Intel X86 Microarchitectures Map Version 2.0
    The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
    [Show full text]
  • Prozessorenliste
    Fach Bezeichnung Stepping Taktfrequenz Anmerkung 1A Intel C4001 7347 0,74 MHz ROM Intel P4002-1 0488D RAM Intel D4002-2 X1191128 RAM Intel P4003 F8956 Shift Register Intel P4004 5199W Prozessor Intel P1101A 7485 MOS SRAM 1B Intel D8008 I1220098 Intel P4040 5869W 1C Intel D3001 I3320035 Intel D3002 I3370036 1D Intel P8259A-2 L8360894 10 MHz PIC Intel P8254-2 L0421586 10 MHz PIT 1E Intel P8080A 2194B 2 MHz Intel P8086-2 L4151756B 5 MHz 1F Intel P8088 L5500345 5 MHz Intel C8087 L5380043 Math. CP 1G Intel P8031 L61100346 12 MHz Intel P8085 L5500055 3 MHz 1H Intel 8237A L0311554 5 MHz DMA Contr. Intel P8274 L7440107 MPSC Intel D8742 U2420277 12 MHz 8 Bit SMC 2A AMD N80186, N80186 91939DFE7 10 MHz, 12 MHz 335BCWD AMD 80286, Intel 80188 918KPSC L5322539 2B Intel 80286, 80286 L8500401 6, 12 MHz L9080860 2C Intel 80287 L9190444 10 MHz Math. CP 2D Intel 80286 L2140286 6 MHz Harris 80286 F3360 16MHz 2E Intel NG80386SX L1121576 16 MHz 2F Intel A82596SX SZ649 20 MHz 2G Intel 80486SX SX676 25 MHz 2H Intel A80501 SX835 60 MHz FDIV Bug 3A Intel Pentium II SL357 400 MHz Deschutes 3B Intel 80386DX SX366 33 MHz IIT 3C87 KY9220 40 MHz Math. CP 3C IT´s ST 80486DX4 100 MHz 3D UMC GREEN CPU U5S 9439K 33 MHz Not for US Sale 3E Intel 80386DX/DXL SX218 25 MHz IIT 3C87 ID9143.8 33MHz Math. CP 3F M27128AFI 88723S EPROM 3G Intel Pentium 4 SL79L 3,0 GHz Prescott Intel Pentium 4 SL6RZ 2,4 GHz Nortwood 3H Intel Celeron SL2WM 300 MHz Mendocino 4A Intel Pentium II SL357 400 MHz Deschutes 4B Intel i80960 L8373305B0 33 MHz RISC 4C Intel i80860XR SX438 40 MHz RISC 4D Intel
    [Show full text]
  • 8Th Generation Intel® Core™ Processor Datasheet, Vol. 1
    8th and 9th Generation Intel® Core™ Processor Families and Intel® Xeon® E Processor Family Datasheet, Volume 1 of 2 Supporting 8th Generation Intel® Core™ Processor Families, Intel® Pentium® Processors, Intel® Celeron® Processors for U/H/S Platforms, formerly known as Coffee Lake. Supporting 9th Generation Intel® Core™ Processor Families, Processors for S Platforms, formerly known as Coffee Lake Refresh For Datasheet Volume 2, Refer to Doc ID: 337345 October 2018 Revision 002 Document Number: 337344-002 Legal Lines and Disclaimers You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com. Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
    [Show full text]
  • Intel® Architecture Instruction Set Extensions and Future Features
    Intel® Architecture Instruction Set Extensions and Future Features Programming Reference May 2021 319433-044 Intel technologies may require enabled hardware, software or service activation. No product or component can be absolutely secure. Your costs and results may vary. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. All product plans and roadmaps are subject to change without notice. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not “commercial” names and not intended to function as trademarks. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be ob- tained by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm. Copyright © 2021, Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
    [Show full text]
  • Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems∗
    Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems∗ Arvind Seshadri Mark Luk Elaine Shi CMU/CyLab CMU/CyLab CMU/CyLab Adrian Perrig Leendert van Doorn Pradeep Khosla CMU/CyLab IBM CMU/CyLab ABSTRACT dispatcher communicates with the untrusted platform over a com- munication link, such as a network connection. After a successful We propose a primitive, called Pioneer, as a first step towards ver- invocation of Pioneer, the dispatcher obtains assurance that: 1) an ifiable code execution on untrusted legacy hosts. Pioneer does not arbitrary piece of code, called the executable, on the untrusted plat- require any hardware support such as secure co-processors or CPU- form is unmodified; 2) the unmodified executable is invoked for architecture extensions. We implement Pioneer on an Intel Pentium execution on the untrusted platform; and 3) the executable is ex- IV Xeon processor. Pioneer can be used as a basic building block ecuted untampered, despite the presence of malicious software on to build security systems. We demonstrate this by building a kernel the untrusted platform. rootkit detector. To provide these properties, we assume that the dispatcher knows Categories and Subject Descriptors: Software, Operating Sys- the hardware configuration of the untrusted platform, and that the tems, Security and Protection, Verification. untrusted platform cannot collude with other devices during verifi- General Terms: Security. cation. We also assume that the communication channel between Keywords: Verifiable Code Execution, Software-based Code At- the dispatcher and the untrusted platform provides the property of testation, Dynamic Root of Trust, Rootkit Detection, Self-check- message-origin authentication, i.e., the communication channel is summing Code.
    [Show full text]
  • MICROPROCESSOR EVALUATIONS for SAFETY-CRITICAL, REAL-TIME February 2009 APPLICATIONS: AUTHORITY for EXPENDITURE NO
    DOT/FAA/AR-08/55 Microprocessor Evaluations for Air Traffic Organization Operations Planning Safety-Critical, Real-Time Office of Aviation Research and Development Applications: Authority for Washington, DC 20591 Expenditure No. 43 Phase 3 Report February 2009 Final Report This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.act.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-08/55 4. Title and Subtitle 5. Report Date MICROPROCESSOR EVALUATIONS FOR SAFETY-CRITICAL, REAL-TIME February 2009 APPLICATIONS: AUTHORITY FOR EXPENDITURE NO. 43 PHASE 3 REPORT 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. TAMU-CS-AVSI-72005 Rabi N. Mahapatra, Praveen Bhojwani, Jason Lee, and Yoonjin Kim 9. Performing Organization Name and Address 10. Work Unit No.
    [Show full text]
  • P5 (Microarchitecture)
    P5 (microarchitecture) The Intel P5 Pentium family Produced From 1993 to 1999 Common manufacturer(s) • Intel Max. CPU clock rate 60 MHz to 300 MHz FSB speeds 50 MHz to 66 MHz Min. feature size 0.8pm to 0.25pm Instruction set x86 Socket(s) • Socket 4, Socket 5, Socket 7 Core name(s) P5. P54C, P54CS, P55C, Tillamook The original Pentium microprocessor was introduced on March 22, 1993.^^ Its microarchitecture, deemed P5, was Intel's fifth-generation and first superscalar x86 microarchitecture. As a direct extension of the 80486 architecture, it included dual integer pipelines, a faster FPU, wider data bus, separate code and data caches and features for further reduced address calculation latency. In 1996, the Pentium with MMX Technology (often simply referred to as Pentium MMX) was introduced with the same basic microarchitecture complemented with an MMX instruction set, larger caches, and some other enhancements. The P5 Pentium competitors included the Motorola 68060 and the PowerPC 601 as well as the SPARC, MIPS, and Alpha microprocessor families, most of which also used a superscalar in-order dual instruction pipeline configuration at some time. Intel's Larrabee multicore architecture project uses a processor core derived from a P5 core (P54C), augmented by multithreading, 64-bit instructions, and a 16-wide vector processing unit. T31 Intel's low-powered Bonnell [4i microarchitecture employed in Atom processor cores also uses an in-order dual pipeline similar to P5. Development The P5 microarchitecture was designed by the same Santa Clara team which designed the 386 and 486.^ Design work started in 1989;^ the team decided to use a superscalar architecture, with on-chip cache, floating-point, and branch prediction.
    [Show full text]
  • Osnovi Računarstva
    OSNOVI RAČUNARSTVA - laboratorijske vježbe - Literatura: Scott Mueller, Nadogradnja i popravka PC-ja 1 Preteče savremenih računara Abakus – nalik današnjoj računaljki – naprava koja ima pokretne djelove – pokretni djelovi nisu međusobno povezani – sve operacije izvodi sam korisnik 2 Preteče savremenih računara Kalkulatori: Prva mašina za računanje - 1623. godine, Vilhelm Šikard (Wilhelm Schickard), Njemačka Paskalina: Blez Paskal (Blaise Pascal) – 1642. počeo da konstruiše prvu računsku mašinu koja je mogla da sabira i oduzima Mašina je završena poslije tri godine rada i dobila je ime Paskalina Do 1652. je proizvedeno pedeset mašina Korisnici su upotrebu smatrali komplikovanom, pa je proizvodnja obustavljena 3 Preteče savremenih računara 1820. godine, Čarls Havijer Tomas (Charles Xavier Thomas) je napravio prvi mehanički kalkulator Kalkulator je mogao da sabira, oduzima, množi i dijeli 4 Preteče savremenih računara ANALITIČKA MAŠINA: Engleski matematičar Čarls Bebidž (Charles Babbage) automatizovao je proces dugačkih računanja Napravio je prvi automatski mehanički digitalni računar, tj. računar koji radi na osnovu programa (1822. god.) Podaci su se unosili pomoću bušenih kartica Trebalo je da mašina ima mogućnost da radi sa pedesetocifrenim brojevima i da ima kapacitet memorije za 1000 takvih 5 brojeva Elektronski računari 4 generacije Prva generacija: izrađeni od elektronskih cijevi bez tastature, monitora i memorije velikih dimenzija, spori, skupi 6 ENIAC “ENIAC” (Electronic Numerical Integrator and Computer ) – 1946. god. prvi uspješan elektronski računar opšte namjene 30 tona 18.000 elektronskih cijevi Imao je sposobnost da proračuna 100.000 kalkulacija u jednoj sekundi. 7 EDVAC Ova mašina je trebalo da ima samo desetinu komponenata od kojih je bio sastavljen ENIAC, i 100 puta veću memoriju Završen je 1949.
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 1.1
    The Intel x86 Microarchitectures Map Version 1.1 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Alternative Names: iAPX 86 Alternative Names: 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) Series: 8086, 8088 (cheaper) Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) • Launch: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • Cheaper: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) • Lower-power: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128 (Celeron), Northwood-128 (Celeron) • Desktop lower-performance:
    [Show full text]
  • Intel Pentium Processor Users Manual Volume 1 1993
    ~ • INTEL. ~~ " Founded in 1968 to pursue the integration of large numbers of transistors onto tiny silicon chips, Intel's history has been marked by a remarkable number of scientific breakthroughs and innovations. In 1971, Intel introduced the 4004, the first microprocessor. Containing 2300 transistors, this first commercially available computer-on-a-chip is primitive compared with today's million-plus transistor products. Innovations such as the microprocessor, the erasable programmable read-only memory (EPROM) and the dynamic random access memory (DRAM) revolutionized electronics by making integrated circuits the mainstay of both consumer and business computing products. Over the last two-and-a-half decades, Intel's business has evolved and today the company's focus is on delivering an extensive line of component, module and system-level building block products to the computer industry. The company's product line covers a broad spectrum, and includes microprocessors, flash memory, microcontrollers, a broad line of PC enhancement and local area network products, multimedia technology products, and massively parallel supercomputers. Intel's 32-bit X86 architecture, represented by the Inte1386™ and Inte1486™ microprocessor families, is the de facto standard of modem business computing in millions of PCs worldwide. Intel has over 26,000 employees located in offices and manufacturing facilities around the world. Today, Intel is the largest semiconductor company in the world. LITERATURE To order Intel literature or obtain literature pricing information in the U.S. and Canada call or write Intel Literature Sales. In Europe and other international locations, please contact your local sales office or distributor. INTEL LITERATURE SALES In the U.S.
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 3.2
    The Intel x86 Microarchitectures Map Version 3.2 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P6 (1995, 0.50 to 0.35 μm) Skylake (2015, 14 nm) NetBurst (2000 , 180 to 130 nm) Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: i686 Alternative Names: SKL (Desktop and Mobile), SKX (Server) (Note : all U and Y processors are MCPs) P5 (1993, 0.80 to 0.35 μm) Alternative Names: Pentium 4, Pentium IV, P4 • 16-bit data bus: Series: Series: Pentium Pro (used in desktops and servers) Series: Alternative Names: Pentium, Series: 8086 (iAPX 86) • Desktop/Server: i386DX Variant: Klamath (1997, 0.35 μm) • Desktop: Desktop 6th Generation Core i5 (i5-6xxx, S-H) 80586, 586, i586 • Desktop: Pentium 4 1.x (except those with a suffix, Willamette, 180 nm), Pentium 4 2.0 (Willamette, 180 • 8-bit data bus: • Desktop lower-performance: i386SX Alternative Names: Pentium II, PII • Desktop higher-performance: Desktop 6th Generation Core i7 (i7-6xxx, S-H), Desktop 7th Generation Core i7 X (i7-7xxxX, X), Desktop 7th Series: nm) 8088 (iAPX 88) • Mobile: i386SL, 80376, i386EX, Series: Pentium II 233/266/300 steppings C0 and C1 (Klamath, used in desktops) Generation Core i9 X (i7-7xxxXE, i7-7xxxX, X), Desktop 9th Generation Core i7 X (i7-9xxxX, X, 14 nm++?), Desktop 9th Generation Core i9 X • Desktop/Server: P5, P54C • Desktop higher-performance: Pentium 4 1.xA (Northwood, 130 nm), Pentium 4 2.x (except 2.0, 2.40A, i386CXSA, i386SXSA, i386CXSB New instructions: Deschutes (1998, 0.25 to 0.18 μm) (i7-9xxxXE, i7-9xxxX, X, 14 nm++?), Xeon W-3175X (W, 14 nm++?)
    [Show full text]
  • OVERVIEW Intel Corporation Is an American Multinational Corporation
    OVERVIEW ⌂ Introduced April 1, 1974. ⌂ Intel Corporation is an American multinational corporation headquartered in ⌂ 10 times faster than 8008. Santa Clara, California. ⌂ Used in the Altair 8800, Traffic light controller, cruise missile. ⌂ It is the inventor of the x86 series of microprocessors, the processors found in ⌂ Characteristics most personal computers. • 6 mm process ⌂ Intel Corporation, founded on July 18, 1968, is a portmanteau of • 4500 transistors Integrated Electronics (the fact that "intel" is the term for intelligence • 2 MHz information also made the name appropriate). • 8-bit word size ⌂ Intel sells its products and solutions to original equipment manufacturers • 40-pin DIP package (OEMs) and original design manufacturers (ODMs). Intel 8086/8088 ⌂ The 80486 architecture, for example, supports clock rates of from 33 to 66 ⌂ A 16 bit processors Introduced June 8, 1978(8086) and Introduced June 1, MHz. 1979(8088). ⌂ Because Intel discovered that it couldn't trademark its CPU numbers, it shifted ⌂ First used in the Compaq Deskpro IBM PC-compatible computers. Later used to a naming scheme, starting with the Pentium processors. Intel's sixth- in portable computing, and in the IBM PS/2 Model 25 and Model 30. Also generation chip is called the Pentium Pro. used in the AT&T PC6300 / Olivetti M24, a popular IBM PC-compatible HISTORY (predating the IBM PS/2 line). ⌂ Intel was originally founded in Mountain View, California in 1968 by Gordon E. ⌂ NASA used original 8086 CPUs on equipment for ground-based maintenance Moore, Robert Noyce, Arthur Rock and Max Palevsky. of the Space Shuttle Discovery until the end of the space shuttle program in ⌂ Intel's third employee was Andy Grove, a chemical engineer, who later ran the 2011.
    [Show full text]