Fusarium Wilt | Knowledge and News on Bananas from Promusa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Advancing Banana and Plantain R & D in Asia and the Pacific
Advancing banana and plantain R & D in Asia and the Pacific Proceedings of the 9th INIBAP-ASPNET Regional Advisory Committee meeting held at South China Agricultural University, Guangzhou, China - 2-5 November 1999 A. B. Molina and V. N. Roa, editors The mission of the International Network for the Improvement of Banana and Plantain is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: · To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved banana cultivars and at the conservation and use of Musa diversity. · To promote and strengthen collaboration and partnerships in banana-related activities at the national, regional and global levels. · To strengthen the ability of NARS to conduct research and development activities on bananas and plantains. · To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. Since May 1994, INIBAP is a programme of the International Plant Genetic Resources Institute (IPGRI). The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRIs mandate is to advocate the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRIs headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). -
Improvement of Cavendish Banana Cultivars Through Conventional Breeding
Improvement of Cavendish Banana Cultivars through Conventional Breeding J.F. Aguilar Morán Fundación Hondureña de Investigación Agrícola (FHIA) La Lima Honduras Keywords: Cavendish re-synthesis, female fertility, triploid × triploid crosses Abstract In their article “Banana breeding: polyploidy, disease resistance and productivity”, Stover and Buddenhagen (1986) reported the results of the evaluation of female fertility in Cavendish banana cultivars. They showed that the pollination of a few hundred bunches of ‘Valery’ (AAA) and other Cavendish clones with pollen from diploids did not yield seed. The authors concluded that “the apparent seed sterility of Cavendish cultivars (without any research to determine or overcome the blocks) precluded their use as female parents in conventional breeding programs”. The scientific community accepted these observations as fact and did not carry out additional tests, because the commercial cultivars of banana for export are all triploid and parthenocarpic. The triploid condition of the Cavendish banana causes them to produce many sterile eggs, and the process of parthenocarpy allows the development of fruit without ovule fertilization. On the assumption that Cavendish cultivars have low fertility, the Banana and Plantain Breeding Program at the Honduran Foundation for Agricultural Research (FHIA), starting in 2002, pollinated 20,000 bunches, approximately 2 million fingers, of the Cavendish cultivars ‘Grand Naine’ and ‘Williams’ with pollen from 10 Cavendish cultivars for the development of Cavendish tetraploids. As a result, 200 seeds with 40 viable embryos were obtained, from which 20 tetraploid hybrids were developed. These results confirmed the assumption that Cavendish cultivars have low fertility, which allows their use in conventional breeding methods to create new progenies. -
Networking Banana and Plantain
Networking Banana and Plantain Annual Report 2000 The mission of the International Network for the Improvement of Banana and Plantain is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: • To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved cultivars and at the conservation and use of Musa diversity • To promote and strengthen collaboration and partnerships in banana-related research activities at the national, regional and global levels • To strengthen the ability of NARS to conduct research and development activities on bananas and plantains • To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. INIBAP is a programme of the International Plant Genetic Resources Institute (IPGRI), a Future Harvest Centre. The International Plant Genetic Resources Institute is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI’s mandate is to advance the conservation and use of genetic diversity for the well-being of present and future generations. IPGRI’s headquarters is based in Rome, Italy, with offices in another 19 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources -
History of the Banana
History of the Banana Bananas: The Same The World Over Banana is the common name for the fruit and herbaceous plant that is part of the genus Musa. Bananas are one of the world’s oldest and most popular fruits. They are very nutritious, generally inexpensive, and readily available. The banana plant is a large flowering plant that grows 6–7 meters tall. Each plant produces a bunch of bananas from a flowering stem. Whether eating a ripe banana in the United States or in Europe, these store-bought bananas tend to taste the same. Part of the banana’s popularity is due to its predictably delicious flavor. However, the uniformity that makes the banana so popular could also lead to its demise. A bunch of bananas hangs from the main stem of the Banana History plant. As humans’ hunter-gatherer ancestors roamed the jungle collecting food, they ignored the bananas they found. Wild bananas, which flower and reproduce sexually, produce hard seed cases with inedible seeds inside. Occasionally, prehistoric humans found fruit on wild banana plants that did not contain seeds. These seedless bananas, when peeled, contained sweet, edible flesh. This is the edible banana that people know and enjoy today. Today’s edible banana is a genetic mutation. The mutation produces tasty fruit but prevents proper seed development. The dark lines sometimes seen after biting into a banana are the stunted seeds. Banana Sexual Reproduction In nature, bananas reproduce through sexual reproduction. Sexual reproduction in flowering plants is similar to sexual reproduction in animals. Sperm cells are produced inside pollen grains. -
The External Costs of Banana Production: a Global Study
The external costs of banana production: A global study Research Report Prepared for Fairtrade International The external costs of banana production: A global study Authors and acknowledgements Adrian de Groot Ruiz (True Price) Vincent Fobelets (True Price) Colette Grosscurt (True Price) Pietro Galgani (True Price) Rick Lord (Trucost) Richie Hardwicke (Trucost) Miriam Tarin (Trucost) Gautham P (Trucost) David McNeil (Trucost) Sarah Aird (Trucost) True Price True Price is a social enterprise that aims to contribute to a circular and inclusive economy that creates value for all people by providing the information needed for such an economy. True Price helps organizations – multinationals, SMEs, NGOs, governments – quantify value and improve their economic, environmental and social impacts. True Price works directly with organizations by providing research services. In addition, True Price enables organizations to measure their impact by developing open source methods for impact measurement that are relevant, sound and inclusive. www.trueprice.org Trucost Trucost helps companies and investors to achieve success by understanding environmental issues in business terms. Trucost produces data-driven insights which enable organizations to manage risks and identify opportunities for growth. Trucost is the world’s leading expert in quantifying and valuing the environmental impacts of operations, supply chains, products and financial assets. By putting a monetary value on pollution and resource use, Trucost integrates natural capital into business -
Bananatr4final.Pdf
i All reasonable efforts have been taken in the compilation and editing of the materials presented in this document. The views expressed herein are those of the presenters, panelists, and facilitators, and not necessarily those of the International Tropical Fruits Network (TFNet) and its members. Any companies, products from manufacturers, and technologies mentioned do not imply the endorsement or recommendation by TFNet. eISBN : 978-983-2532-09-5 © TFNet, 2021 This publication may not be reproduced or stored in a retrieval system without the prior written permission of TFNet. However, TFNet encourages the use and circulation of the information in this document. The information may be copied, downloaded, and printed for any non-commercial use, as long as TFNet is acknowledged as source and copyright holder, not as an endorser of any products or services. Published by: International Tropical Fruits Network (TFNet) Box 334, UPM Post Office, 43400 Serdang, Selangor, Malaysia. Tel: 603-89416589 Fax: 603-89416591 Website: www.itfnet.org E-mail: [email protected] Cover photo courtesy of Fruit Tree Research Institute, Guandong Academy Of Agricultural Sciences, China TABLE OF CONTENTS EXECUTIVE SUMMARY ..................................................................................................... 1 LIST OF ABBREVIATIONS .................................................................................................. 4 ORGANIZING COMMITTEE .............................................................................................. 6 SESSION -
Penetrating the Network of Fusarium Oxysporum Populations, Banana Cultivars and Graminoids
Promotor: Prof. Dr. Ir. Monica Höfte Laboratory of Phytopathology Department of Crop Protection Faculty of Bioscience Engineering Ghent University Co-promotor: Dr. Ir. Soraya de Carvalho França Laboratory of Phytopathology Department of Crop Protection Faculty of Bioscience Engineering Ghent University Currently: Biobest NV. Dean: Prof. Dr. Ir. Marc Van Meirvenne Rector: Prof. Dr. Rik Van de Walle Penetrating the network of Fusarium oxysporum populations, banana cultivars and graminoids: Towards holistic management of Fusarium wilt in banana Pauline DELTOUR Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences: Agricultural Sciences Dutch translation of the title: Opklaren van interacties tussen Fusarium oxysporum populaties, banaan cultivars en grasachtigen: Op weg naar holistisch beheer van Fusarium verwelkingsziekte in banaan. Cover illustration: Growing bananas in an agroforestry system. Cooperafloresta, Barra do Turvo, São Paulo, Brazil. Back cover: Micro- and macroconidia of Fusarium oxysporum Cite as: Deltour P (2017). Penetrating the network of Fusarium oxysporum populations, banana cultivars and graminoids: Towards holistic management of Fusarium wilt in banana. PhD Thesis, Ghent University, Belgium. ISBN number: 9789463570480 The author and the promotors give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Members of the jury Prof. Dr. Ir. Monica Höfte (Promotor) Department of Crop Protection Faculty of Bioscience Engineering, Ghent University Dr. Ir. Soraya de Carvalho França (Co-promotor) Department of Crop Protection Faculty of Bioscience Engineering, Ghent University Currently: Biobest NV Prof. -
Caracterización Reológica De Almidón Y Evaluación Morfológica De 20
Agroindustria y Ciencia de los Alimentos / Agroindustry and Food Science Acta Agron. (2016) 65 (3) p 218-225 ISSN 0120-2812 | e-ISSN 2323-0118 doi: http://dx.doi.org/10.15446/acag.v65n3.48029 Caracterización reológica de almidón y evaluación morfológica de 20 variedades de musáceas (Musa sp.), del banco de germoplasma Fedeplátano, Chinchiná - Caldas, Colombia Starch rheological characterization and morphological evaluation of 20 varieties of Musaceae (Musa sp.), from Fedeplatano Germplasm Bank, Chinchiná - Caldas, Colombia Juan Carlos Lucas Aguirre* y Víctor Dumar Quintero Castaño Facultad de Ciencias Agroindustriales, Programa Ingeniería de Alimentos. Universidad del Quindío, Armenia, Quindío. *Autor para correspondencia: [email protected] Rec.:28.12.2014 Acep.: 26.05.2015 Resumen Se caracterizaron veinte variedades de musáceas de diferente composición genética del banco de germoplasma de Fedeplátano (AA, AAA, AAB, ABB, AAAA y AAAB). La caracterización incluyó propiedades físicas como peso, diámetro, longitud, materia seca y porcentaje de cáscara del fruto y propiedades funcionales de almidones (cur- vas de empastamiento). Las variedades Cachaco Pelipita, Fougamou, Kelong Mekintu y SH-3436-9 presentaron porcentajes de materia seca superiores al 35% lo cual indica que estas variedades serian de gran importancia para el sector de las frituras ya que al contener menos agua el proceso se agilizara incrementando el rendimiento y disminuyendo la absorción de aceite. Las variedades que presentaron mejores comportamientos frente a las propiedades de viscosidad máxima, breakdown, facilidad de cocción y consistencia fueron FHIA-23, Guineo Enano, Banano Gran Enano, Pompo Comino, lo cual indica que estas variedades tenían gran capacidad para resistir los procesos de retrogradación y la sinéresis. -
Somaclonal Variation of Bananas and Screening for Resistance to Fusarium Wilt S.C
The Australian Centre for International Agricultural Research (ACIAR) was established in June, 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australia and developing country researchers in fields where Australia has a special research competence. The International Network for the Improvement of Banana and Plantain (lNIBAP) (Avenue du val Montferrand, B.P. 5035, 34032 Montpellier Cedex, France) was established in 1985 to foster additional research on these important food crops. Its headquarters are in Montpellier, France. Regional networks are being established in Western and Eastern Africa, Latin America and the Caribbean, and the Asia/Pacific region. ACIAR PROCEEDINGS This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific institutions. Previous numbers in the series are listed on the inside back cover. Cl:> Australian Centre for International Agricultural Research G.P.O. Box 1571, Canberra, A.C.T. 2601 Persley, G.l., and De Langhe, E.A. 1987. Banana and plantain breeding strategies: proceedings of an international workshop held at Cairns, Australia, 13-17 October, 1986. ACIAR Proceedings No. 21, 187p. ISBN 0 949511 36 6 Typeset and laid out by Press Etching (Qld.) Pty. Ltd., Brisbane 4001. Printed by Brown Prior Anderson Pty. Ltd .. Burwood, Victoria -
Morphological and Molecular Characterization of Banana in Kerala, India
Journal of Open Science Publications Plant Science & Research Volume 6, Issue 2 - 2019 © Anu A, et al. 2019 www.opensciencepublications.com Morphological and Molecular Characterization of Banana in Kerala, India Research Article Anu A1, Geethalakshmi S1* and Vazhackarickal,PJ2 1Department of Biotechnology, Sree Narayana Guru College, India 2Department of Biotechnology, Mar Augusthinose College, India *Corresponding author: Geethalakshmi S, Department of Biotechnology, Sree Narayana Guru College, Coimbatore, 641105 Tamil Nadu, India; E-mail: [email protected] Copyright: © Anu A, et al. 2019. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Article Information: Submission: 23/10/2019; Accepted: 25/11/2019; Published: 27/11/2019 Abstract Banana is one of the most important food crops all over the world. There are around 365 varieties of bananas available throughout the world. Banana is a traditional medicine for diabetes, cancer, diarrhea and also highly nutritional food crop. In this study, commonly used varieties of banana are taken for characterization by morphology and genotype which is based on International Plant Genetic Resources Institute, 1984 (Descriptors for banana (Musa sp.,) and RAPD analysis. Five varieties were morphologically similar in parameters such as leaf habit, pseudo stem appearance and peel color. RAPD analysis proved that these varieties of banana are closely related which coincides with the morphological characterization. Keywords: RAPD analysis; Morphological characters; Genotype Introduction Differentiating varieties of banana based on their morphology has some limitations in the accurate identification because limited traits Banana is naturally packed with nutrients, fibers, protein are available for characterization [3]. -
Sustainability Report 2018 Content Sustainability Report 2018 Foreword 04
SUSTAINABILITY REPORT 2018 CONTENT SUSTAINABILITY REPORT 2018 FOREWORD 04 INTRODUCTION AGROFAIR APPROACH TO SUSTAINABILITY THE MATERIAL- 06 ITY MATRIX AGROFAIR FOCUS ON SUSTAINABILITY 16 PEOPLE & SOCIETY AGROFAIR’S SOCIAL IMPACT • Fairtrade Premium stories • Health & Safety PLANET 24 & ECOLOGY AGROFAIR’S ENVIRONMENTAL IMPACT • Carbon Footprint • Plastic recycling PROFIT • Water management & ECONOMY 38 AGROFAIR’S ECONOMIC IMPACT • TR4 • Healthy soils – micorhyza tests • Red Trust 48 PROJECTS IN AFRICA | 60 LOOKING AHEAD – PLANS FOR 2019 | 62 GRI CONTENT TABLE | 64 COLOPHON | 66 CONTENT ‘WE DO FRUIT. ACTUALLY WE DO A LOT MORE THAN FRUIT. WE TRY TO DO GOOD THROUGH FRUIT ’ - 03 - TO AGROFAIR’S VALUED CUSTOMERS AND PARTNERS, We are very pleased to present this fourth edition of our Annual Sustainability Report. We hope that a little pride is justified because we are so convinced that this type of sustainable information is vital. It is vital because the fruit and vegetable sector has a major impact on sustainability and as we are also in a position to make a real difference. lowly but surely, things are moving in the right direction: more and more large fruit and vegetable companies are beginning to understand the importance of sustainability. Many of them have now signed up to the Sustainability Initiative Fresh Fruit and Vegetables (SIFAV) Sustainability Covenant, pledging to buy nothing but sustainable fruit and vegetables by the year 2020. In early 2018, the average score in the sector was around the 70% mark. (By the way, AgroFair already achieved a Sscore of more than 99% in 2016!) Although this is good news, there is also criticism. -
Banana in Uganda an Overview of Progress and Adoption Forecast
Status of Research on GM Banana in Uganda An overview of progress and adoption forecast Wilberforce.K. Tushemereirwe Director of Research National Agricultural Research Laboratories National Agricultural Research Organization, Uganda Background Tunisia Morocco Algeria Tunisia N Li bya EGY PT Morocco Location of UgandaW estern S ahara Algeria N Mauritania Li bya EGY PT Western S ahara Mali Ni ger Eritrea SenegMaal uritania Chad The Gam bia MBaulriki na Sudan Guinea-B issau Ni ger Dj ibouti Guinea Eritrea Somal ia Senegal Chad Benin Ethi opia Sierra Leone Ni geria The Gam bia Ghana Togo Tunisia Cote B ivoireBurki na Sudan Guinea-B issau Li beri a Central A frican Republic Dj ibouti Guinea Morocco Somal ia Cam eroon Somal a Benin Ethi opia Sierra Leone Ni geria Togo Algeria Cote B ivoire Ghana Li beri a Central A frican Republic N Li bya Equatorial Guinea EGY PT Uganda Kakir a Entebbe Kenya Cam eroon # Somal a Western S ahara Gabon # Congo L. V ictor ia Rwanda Equatorial Guinea Uganda Zaire Kakir a Mauritania BurunEntedbbei # Kenya Gabon # L. V ictor ia Mali Congo Tanzania Ni ger Rwanda Zaire Burundi Eritrea Senegal Chad The Gam bia Tanzania Burki na Sudan Guinea-B issau Dj ibouti Guinea Malawi Somal ia Benin Angola Ethi opia Sierra Leone Ni geria Togo Cote B ivoire Ghana Li beri a Central A frican Republic Zambia Malawi Angola Cam eroon Somal a Zambia Mozam ique Zimbabwe Equatorial Guinea Uganda Kakir a Entebbe # Kenya Gabon # Mozam ique Madagascar L. V ictor ia Congo Zimbabwe BotswRawnanada Nam ibia Madagascar Zaire Burundi Botswana Nam ibia Tanzania Swazl and Swazl and Lesotho South Africa Malawi Angola Lesotho South Africa Zambia Mozam ique Zimbabwe Madagascar Botswana Nam ibia Swazl and 0 3000 Kilometers 0 Lesotho 3000 Kilometers SSuuddaann South Africa CCoonnggoo ( (DDRR)) 0 3000 Kilometers Sudan Uganda LLaakkee V Vicictotoriraia UganKakdiraa #Kak ira Entebbe # Kenya Ent#ebbe Kenya Uganda Congo (DR) # Uganda L.