Download This Issue [PDF]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Illicium Floridanum1
Fact Sheet FPS-277 October, 1999 Illicium floridanum1 Edward F. Gilman2 Introduction This rapidly growing, evergreen, Florida native shrub has olive green leaves and reddish-purple, starry, two-inch flowers (Fig. 1). The many slender branches of Florida Anise droop to the ground giving a rounded, open canopy in the shade, ideal for natural settings, or in sunny locations it can be pruned into dense hedges or windbreaks. The small, somewhat showy, maroon flowers appear in spring and are followed in late summer to fall by star-shaped, many-seeded pods which cling to the stems. The leaves of Florida Anise give off a distinctive odor when bruised or crushed. General Information Scientific name: Illicium floridanum Pronunciation: ill-LISS-see-um flor-rid-DAY-num Common name(s): Florida Anise-Tree, Florida Anise Family: Illiciaceae Plant type: shrub USDA hardiness zones: 8 through 10 (Fig. 2) Planting month for zone 7: year round Figure 1. Florida Anise-Tree. Planting month for zone 8: year round Planting month for zone 9: year round Planting month for zone 10: year round Description Origin: native to Florida Height: 10 to 15 feet Uses: container or above-ground planter; hedge; espalier; Spread: 6 to 10 feet screen; foundation; border Plant habit: oval Availablity: somewhat available, may have to go out of the Plant density: dense region to find the plant Growth rate: moderate Texture: medium 1.This document is Fact Sheet FPS-277, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. -
Neurotoxicities in Infants Seen with the Consumption of Star Anise Tea
Neurotoxicities in Infants Seen With the Consumption of Star Anise Tea Diego Ize-Ludlow, MD*; Sean Ragone, MD‡; Isaac S. Bruck, PhD§; Jeffrey N. Bernstein, MD‡; Michael Duchowny, MD; and Barbara M. Garcia Pen˜a, MD, MPH¶ ABSTRACT. Chinese star anise (Illicium verum Hook pounds named veranisatins A, B, and C.15 Although f.) is a well-known spice used in many cultures. Many these veranisatins are not as potent as anisatin itself, populations use it as a treatment for infant colic. Japa- neurologic symptoms are observed at higher doses.15 nese star anise (Illicium anisatum L), however, has been Anisatin compounds are thought to act as potent documented to have both neurologic and gastrointestinal noncompetitive ␥-aminobutyric acid antagonists.16–20 toxicities. Recently, concern has been raised regarding Concern has been raised regarding the adultera- the adulteration of Chinese star anise with Japanese star anise. We report 7 cases of adverse neurologic reactions tion of I verum with I anisatum and has led to recalls in infants seen with the home administration of star of these products in other countries, including Spain, anise tea. In addition, we have found evidence that Chi- France, Scotland, China, Japan, and Netherlands.21–23 nese star anise has been contaminated with Japanese star In this communication, we report 7 cases of adverse anise. More strict federal regulation of the import of star neurologic reactions associated with the home ad- anise into the United States is warranted. Star anise tea ministration of star anise tea to young infants seen should no longer be administered to infants because of during the past 2 years at Miami Children’s Hospital. -
WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall ......................................................................................................... -
Camphor Laurels' Ecological Management & Restoration
emr_399.fm Page 88 Wednesday, July 9, 2008 8:54 AM FEATURE doi: 10.1111/j.1442-8903.2008.00399.x PotentialBlackwell Publishing Asia value of weedy regrowth for rainforest restoration By John Kanowski, Carla P. Catterall and Wendy Neilan Weeds are (usually justifiably) considered ‘bad’! But what about when weedy regrowth supports native species and facilitates the conversion of retired pasture back to functioning rainforest? Figure 1. The Topknot Pigeon (Lopholaimus antarcticus), a rainforest pigeon which feeds on the fruit of Camphor Laurel (Cinnamomum camphora) in north-east New South Wales, Australia. The Topknot Pigeon forages in large flocks and can travel tens of kilometres daily. For these reasons, it is an important long-distance disperser of rainforest plants to stands of Camphor Laurel (as well as being a disperser of Camphor Laurel to other forest types). (Photo: Terry M. Reis.) Introduction and subtropical Australia, many small restoration plantings have been estab- ustralian rainforests have been the lished, mostly utilizing a diverse range Afocus of much conservation and of locally occurring species, planted at restoration effort in the past few high densities (Kooyman 1996; Free- decades. Governments, community body 2007). Research has shown that John Kanowski is a Research Fellow and groups and individuals have invested these restoration plantings can develop Carla Catterall is an Associate Professor in the tens of millions of dollars to rehabi- a rainforest-like structure and support School of Environment, Griffith University (Nathan, litate degraded remnants and replant a moderate diversity of rainforest fauna Qld 4111, Australia; Tel. +61 (0) 7 3735 3823; rainforest trees in tropical and subtropical (Fig. -
Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships. -
Phylogeny and Historical Biogeography of Lauraceae
PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group -
Cinnamomum Cassia Bark Produced by Solid‑State Fermentation with Phellinus Baumii Has the Potential to Alleviate Atopic Dermatitis‑Related Symptoms
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 187-194, 2015 Cinnamomum cassia bark produced by solid‑state fermentation with Phellinus baumii has the potential to alleviate atopic dermatitis‑related symptoms YONG‑KYU SHIN1,2, HYEONG‑U SON3, JONG-MYUNG KIM2, JIN‑CHUL HEO4, SANG‑HAN LEE3,4 and JONG-GUK KIM1 1Department of Microbiology, Kyungpook National University; 2Farmbios Co. Ltd., Techno Building; 3Department of Food Science and Biotechnology; 4Food and Bio‑Industry Research Institute, Kyungpook National University, Daegu 702‑701, Republic of Korea Received July 25, 2014; Accepted November 14, 2014 DOI: 10.3892/ijmm.2014.2006 Abstract. In order to evaluate whether the aqueous fraction of C. cassia have not been fully elucidated using in vivo animal of Cinnamomum cassia produced by solid-state fermentation models. The dried bark of C. cassia is used not only as a preven- with Phellinus baumii (afCc/Pb) inhibits atopic symptoms tive/therapeutic agent for various diseases, but as a flavoring or in vivo, its efficacy was evaluated in an animal model of seasoning in various foods (2). The bark of the tree is known 2,4‑dinitrofluorobenzene (DNFB)‑induced atopic dermatitis. as cinnamon, which is rich in essential oils and tannins, and Immune‑related cells were quantified using hematoxylin and inhibits the growth of several types of microbes (3). eosin staining, and phenotypic cytokines, enzymes and the Allergy is a symptom that develops in response to invasion expression of other proteins in the animal model were evalu- of antigens in the human body (4). During allergic inflam- ated. The data revealed that afCc/Pb (100 µg/ml) exhibited mation, mast cells produce immunoglobulin E (IgE), which strong anti‑atopic activity, causing a significant 40% reduction attaches to the mast cells within the tissues and is combined in immune response, as shown by the extent of ear swelling, with IgE of the mast cells. -
Fungal Biofilms As a Valuable Target for the Discovery of Natural
antibiotics Review Fungal Biofilms as a Valuable Target for the Discovery of Natural Products That Cope with the Resistance of Medically Important Fungi—Latest Findings Estefanía Butassi 1,†, Laura Svetaz 1,†, María Cecilia Carpinella 2, Thomas Efferth 3 and Susana Zacchino 1,* 1 Pharmacognosy Area, School of Biochemical and Pharmaceutical Sciences, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; [email protected] (E.B.); [email protected] (L.S.) 2 Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Córdoba 5016, Argentina; [email protected] 3 Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The development of new antifungal agents that target biofilms is an urgent need. Natural products, mainly from the plant kingdom, represent an invaluable source of these enti- ties. The present review provides an update (2017–May 2021) on the available information on essential oils, propolis, extracts from plants, algae, lichens and microorganisms, compounds from different natural sources and nanosystems containing natural products with the capacity to in vitro or in vivo modulate fungal biofilms. The search yielded 42 articles; seven involved essential oils, two Citation: Butassi, E.; Svetaz, L.; Carpinella, M.C.; Efferth, T.; Zacchino, Brazilian propolis, six plant extracts and one of each, extracts from lichens and algae/cyanobacteria. S. Fungal Biofilms as a Valuable Twenty articles deal with the antibiofilm effect of pure natural compounds, with 10 of them in- Target for the Discovery of Natural cluding studies of the mechanism of action and five dealing with natural compounds included in Products That Cope with the nanosystems. -
Cinnamomum Camphora, Camphor Laurel Most Toxic Chemotypes.’
Advice to the Minister for the Environment and Heritage from the Threatened Species Scientific Committee (TSSC) on Amendments to the List of Key Threatening Processes under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Name and description of the threatening process ‘Cinnamomum camphora, Camphor Laurel most toxic chemotypes.’ Camphor Laurel is a large evergreen tree that was introduced into Australia following European settlement. The species is an invasive woody weed capable of replacing native trees along watercourses and on soil types which formerly supported rainforests. The infestation and spread of Camphor Laurel is aided by birds dispersing seed and its spread is particularly prevalent in disturbed landscapes. The nomination focuses on the claimed toxic effects of certain forms of the species. It proposes that the most toxic forms of Camphor Laurel contain compounds in their fruit, seeds, leaves, roots and bark which have caused declines in native species throughout northern New South Wales and southeastern Queensland. The nomination highlights that Camphor Laurel trees can exist in up to nine different chemical forms. The nominator uses the description ‘most toxic chemotypes1’ to refer to those Camphor Laurel trees with the greatest levels of toxic compounds. It is asserted that the hybridisation of various forms of Camphor Laurel has assisted in the proliferation of the more toxic chemotypes and that where the most toxic chemotypes of Camphor Laurel are present, loss of regional biodiversity -
Rose-Crowned Fruit-Dove Ptilinopus Regina Review of Current Information in NSW August 2008
NSW SCIENTIFIC COMMITTEE Rose-crowned Fruit-dove Ptilinopus regina Review of Current Information in NSW August 2008 Current status The NSW Scientific Committee recently determined that the Rose-crowned Fruit-dove Ptilinopus regina (Swainson 1825) meets criteria for listing as Vulnerable under the NSW Threatened Species Conservation Act 1995 (TSC Act), based on information contained in this report and other information available for the species. The Rose-crowned Fruit-dove is not currently listed under any other State or Commonwealth legislation. Species description: The Rose-crowned Fruit-dove is a small (23 cm in length), compact, short-tailed pigeon. It is mostly green, with grey foreparts, a pink-red crown with a yellow border, orange underparts, and a distinctive yellow tail tip. The grey breast has green-streaked spiky feathers, and there is a small mauve patch on the belly. It has a distinctive descending, accelerating call. The similar Superb Fruit-dove Ptilinopus superbus has a purple cap, orange hind-collar, a dark band separating the grey breast from the green flanks and white belly, a white tail tip, and a slow ‘whooping’ call. The larger and longer-tailed Wompoo Fruit-dove Ptilinopus magnificus has a plain grey head, a widening purple blaze from the chin to the belly, and yellow underwings. Taxonomy: Species: Ptilinopus regina (Swainson 1825) (Columbidae); an endemic Australasian species in an Australasian-centred genus extending to Malaysia and Polynesia. The nominate subspecies P. r. regina occurs in NSW and Queensland; subspecies P. r. ewingii (Gould 1842) occurs in the Northern Territory and the Kimberley of Western Australia. -
Cinnamomum Mabberleyi, a New Species from Vietnam and Laos
Gardens’ Bulletin Singapore 71(Suppl. 2):225-229. 2019 225 doi: 10.26492/gbs71(suppl. 2).2019-17 Cinnamomum mabberleyi, a new species from Vietnam and Laos R.P.J. de Kok Honorary Research Associate Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569 Singapore [email protected] ABSTRACT. A new species of Cinnamomum (Lauraceae), C. mabberleyi, is named from Vietnam and Laos. A formal description, notes on distribution, conservation status and ecology, and a map are given; it is differentiated from Cinnamomum tsoi C.K.Allen. Keywords. Cinnamomum, Laos, Vietnam Introduction The genus Cinnamomum Schaeff. was first described in 1760 based on a widely- cultivated species (Schäffer, 1760), which was then called Laurus cinnamomum L., but is now known as Cinnamomum verum J.Presl. It comprises about 300 species and occurs naturally in tropical and subtropical Asia, Australia and the Pacific (van der Werff, 2001: 135). The South American species have now been moved to Aiouea Aubl. (Rohde et al., 2017). The bark, flowers and fruits of a small number of species are used as spices, and these species are now commonly cultivated throughout the tropics, while other species are used as shade trees and often locally as medicine for several ailments (Kostermans, 1986). The brothers Christian & Theodor Nees von Esenbeck (1823) wrote a book on the then known species, and one of them (Christian) later revised the taxonomy in his Systema Laurinarum (Nees von Esenbeck, 1836). The genus was also studied by several authors in the 20th century: for Indonesia by Cammerloher (1925), and for South China and Indochina by both Liou Ho (1932) and Allen (1939). -
An Ontogenetic Study of Illicium Floridanum (Ellis) with Emphasis on Stamen and Carpel Development
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1973 An Ontogenetic Study of Illicium Floridanum (Ellis) With Emphasis on Stamen and Carpel Development. Richard Earl Robertson Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Robertson, Richard Earl, "An Ontogenetic Study of Illicium Floridanum (Ellis) With Emphasis on Stamen and Carpel Development." (1973). LSU Historical Dissertations and Theses. 2494. https://digitalcommons.lsu.edu/gradschool_disstheses/2494 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.