Fy2014 [Pdf 9207Kb]

Total Page:16

File Type:pdf, Size:1020Kb

Fy2014 [Pdf 9207Kb] FY2014 Results of the Radioactive Material Monitoring in the Water Environment March 2016 Ministry of the Environment Contents Outline .......................................................................................................................................................... 1 Part 1: National Radioactive Material Monitoring in the Water Environment in the Whole of Japan (FY2014) ....................................................................................................................................................... 6 1. Objective and Details ............................................................................................................................ 6 1.1 Objective ......................................................................................................................................... 6 1.2 Details ............................................................................................................................................. 6 2. Survey Methods and Analysis Methods ............................................................................................. 18 2.1 Survey methods ............................................................................................................................ 18 2.2 Analysis methods .......................................................................................................................... 19 3. Results ................................................................................................................................................ 21 3.1 Detection of total β radioactivity and γ-ray emitting radionuclides ............................................... 21 (1) Public water areas ......................................................................................................................... 21 1) Water ........................................................................................................................................... 21 2) Sediments ................................................................................................................................... 23 (2) Groundwater .................................................................................................................................. 26 3.2 Consideration regarding detected radionuclides .......................................................................... 29 (1) Detection of naturally occurring radionuclides .............................................................................. 29 1) Correlation between activity concentrations of K-40 and salinity ............................................... 29 2) Uranium and thorium series radionuclides ................................................................................. 32 (2) Detection of artificial radionuclides ................................................................................................ 36 1) Cs-134 and Cs-137 in sediments................................................................................................ 36 2) Cs-134 and Cs-137 in water ....................................................................................................... 44 3) Cs-134 and Cs-137 in groundwater ............................................................................................ 44 3.3 Survey to check annual variation .................................................................................................. 45 Part 2: Radioactive Material Monitoring in the Water Environment in and around Fukushima Prefecture (FY2011 to FY2014) ................................................................................................................................... 47 1. Objective and Details .......................................................................................................................... 47 1.1 Objective ....................................................................................................................................... 47 1.2 Details ........................................................................................................................................... 47 2. Survey Methods and Analysis Methods ............................................................................................. 49 2.1 Survey methods ............................................................................................................................ 49 2.2 Analysis methods .......................................................................................................................... 49 3. Outline of the Results ......................................................................................................................... 51 3.1 Detection of radioactive cesium .................................................................................................... 51 3.2 Detection of radionuclides other than radioactive cesium ............................................................ 55 4. Results (Radioactive Cesium (Cs-134 and Cs-137)) ......................................................................... 56 4.1 Water ............................................................................................................................................. 56 (1) Public water areas ......................................................................................................................... 56 1) Rivers .......................................................................................................................................... 56 i 2) Lakes ........................................................................................................................................... 56 3) Coastal areas .............................................................................................................................. 56 (2) Groundwater .................................................................................................................................. 56 4.2 Sediments ..................................................................................................................................... 61 (1) Public water areas (rivers) ............................................................................................................. 61 (2) Public water areas (lakes) ............................................................................................................. 61 (3) Public water areas (coastal areas) ................................................................................................ 61 4.3 Detection of radioactive materials in sediments by location ......................................................... 65 (1) Evaluation policy ............................................................................................................................ 65 (2) Concentration levels in sediment samples from rivers, lakes, and coastal areas and their changes by prefecture ....................................................................................................................................... 68 (2)-1 Rivers ......................................................................................................................................... 68 (2)-2 Lakes .......................................................................................................................................... 86 (2)-3 Coastal areas ........................................................................................................................... 102 (3) Conclusion ....................................................................................................................................112 5. Results (Radionuclides Other than Radioactive Cesium) ................................................................ 121 5.1 Radioactive iodine (I-131) ........................................................................................................... 121 (1) Water ........................................................................................................................................... 121 1) Public water areas ..................................................................................................................... 121 2) Groundwater.............................................................................................................................. 121 (2) Sediments .................................................................................................................................... 121 5.2 Radioactive strontium (Sr-90 and Sr-89) .................................................................................... 124 (1) Public water areas ....................................................................................................................... 124 (2) Groundwater ................................................................................................................................ 127 5.3 Other γ-ray emitting radionuclides .............................................................................................. 128 Part 3: Other Radioactive Material Monitoring Conducted Nationwide (FY2014) ................................... 132 1. Outline of the Monitoring .................................................................................................................. 132 1.1 Covered monitoring ....................................................................................................................
Recommended publications
  • Biogeography and Evolution of the Carassius Auratus-Complex in East
    Takada et al. BMC Evolutionary Biology 2010, 10:7 http://www.biomedcentral.com/1471-2148/10/7 RESEARCH ARTICLE Open Access Biogeography and evolution of the Carassius auratus-complex in East Asia Mikumi Takada1,2*, Katsunori Tachihara1, Takeshi Kon2, Gunji Yamamoto2, Kei’ichiro Iguchi3, Masaki Miya4, Mutsumi Nishida2 Abstract Background: Carassius auratus is a primary freshwater fish with bisexual diploid and unisexual gynogenetic triploid lineages. It is distributed widely in Eurasia and is especially common in East Asia. Although several genetic studies have been conducted on C. auratus, they have not provided clear phylogenetic and evolutionary descriptions of this fish, probably due to selection bias in sampling sites and the DNA regions analysed. As the first step in clarifying the evolutionary entity of the world’s Carassius fishes, we attempted to clarify the phylogeny of C. auratus populations distributed in East Asia. Results: We conducted a detailed analysis of a large dataset of mitochondrial gene sequences [CR, 323 bp, 672 sequences (528 sequenced + 144 downloaded); CR + ND4 + ND5 + cyt b, 4669 bp in total, 53 sequences] obtained from C. auratus in East Asia. Our phylogeographic analysis revealed two superlineages, one distributed mainly among the Japanese main islands and the other in various regions in and around the Eurasian continent, including the Ryukyus and Taiwan. The two superlineages include seven lineages with high regional specificity that are composed of endemic populations indigenous to each region. The divergence time of the seven lineages was estimated to be 0.2 million years ago (Mya) by a fossil-based method and 1.0-1.9 Mya by the molecular clock method.
    [Show full text]
  • Chapter 1. Relationships Between Japanese Economy and Land
    Part I Developments in Land, Infrastructure, Transport and Tourism Administration that Underpin Japan’s Economic Growth ~ Strategic infrastructure management that brings about productivity revolution ~ Section 1 Japanese Economy and Its Surrounding Conditions I Relationships between Japanese Economy and Land, Chapter 1 Chapter 1 Infrastructure, Transport and Tourism Administration Relationships between Japanese Economy and Land, Infrastructure, Transport and Tourism Administration and Tourism Transport Relationships between Japanese Economy and Land, Infrastructure, Chapter 1, Relationships between Japanese Economy and Land, Infrastructure, Transport and Tourism Administration, on the assumption of discussions described in chapter 2 and following sections, looks at the significance of the effects infrastructure development has on economic growth with awareness of severe circumstances surrounding the Japanese economy from the perspective of history and statistical data. Section 1, Japanese Economy and Its Surrounding Conditions, provides an overview of an increasingly declining population, especially that of a productive-age population, to become a super aging society with an estimated aging rate of close to 40% in 2050, and a severe fiscal position due to rapidly growing, long-term outstanding debts and other circumstances. Section 2, Economic Trends and Infrastructure Development, looks at how infrastructure has supported peoples’ lives and the economy of the time by exploring economic growth and the history of infrastructure development (Edo period and post-war economic growth period). In international comparisons of the level of public investment, we describe the need to consider Japan’s poor land and severe natural environment, provide an overview of the stock effect of the infrastructure, and examine its impact on the infrastructure, productivity, and economic growth.
    [Show full text]
  • Geography & Climate
    Web Japan http://web-japan.org/ GEOGRAPHY AND CLIMATE A country of diverse topography and climate characterized by peninsulas and inlets and Geography offshore islands (like the Goto archipelago and the islands of Tsushima and Iki, which are part of that prefecture). There are also A Pacific Island Country accidented areas of the coast with many Japan is an island country forming an arc in inlets and steep cliffs caused by the the Pacific Ocean to the east of the Asian submersion of part of the former coastline due continent. The land comprises four large to changes in the Earth’s crust. islands named (in decreasing order of size) A warm ocean current known as the Honshu, Hokkaido, Kyushu, and Shikoku, Kuroshio (or Japan Current) flows together with many smaller islands. The northeastward along the southern part of the Pacific Ocean lies to the east while the Sea of Japanese archipelago, and a branch of it, Japan and the East China Sea separate known as the Tsushima Current, flows into Japan from the Asian continent. the Sea of Japan along the west side of the In terms of latitude, Japan coincides country. From the north, a cold current known approximately with the Mediterranean Sea as the Oyashio (or Chishima Current) flows and with the city of Los Angeles in North south along Japan’s east coast, and a branch America. Paris and London have latitudes of it, called the Liman Current, enters the Sea somewhat to the north of the northern tip of of Japan from the north. The mixing of these Hokkaido.
    [Show full text]
  • (News Release) the Results of Radioactive Material Monitoring of the Surface Water Bodies Within Tokyo, Saitama, and Chiba Prefectures (September-November Samples)
    (News Release) The Results of Radioactive Material Monitoring of the Surface Water Bodies within Tokyo, Saitama, and Chiba Prefectures (September-November Samples) Thursday, January 10, 2013 Water Environment Division, Environment Management Bureau, Ministry of the Environment Direct line: 03-5521-8316 Switchboard: 03-3581-3351 Director: Tadashi Kitamura (ext. 6610) Deputy Director: Tetsuo Furuta (ext. 6614) Coordinator: Katsuhiko Sato (ext. 6628) In accordance with the Comprehensive Radiation Monitoring Plan determined by the Monitoring Coordination Meeting, the Ministry of the Environment (MOE) is continuing to monitor radioactive materials in water environments (surface water bodies (rivers, lakes and headwaters, and coasts), etc.). Samples taken from the surface water bodies of Tokyo, Saitama, and Chiba Prefectures during the period of September 18-November 16, 2012 have been measured as part of MOE’s efforts to monitor radioactive materials; the results have recently been compiled and are released here. The monitoring results of radioactive materials in surface water bodies carried out to date can be found at the following web page: http://www.env.go.jp/jishin/rmp.html#monitoring 1. Survey Overview (1) Survey Locations 59 environmental reference points, etc. in the surface water bodies within Tokyo, Saitama, and Chiba Prefectures (Rivers: 51 locations, Coasts: 8 locations) Note: Starting with this survey, there is one new location (coast). (2) Survey Method ・ Measurement of concentrations of radioactive materials (radioactive cesium (Cs-134 and Cs-137), etc.) in water and sediment ・ Measurement of concentrations of radioactive materials and spatial dose-rate in soil in the surrounding environment of water and sediment sample collection points (river terraces, etc.) 2.
    [Show full text]
  • The Transition of Sabo Works for Disaster Mitigation in Japan
    THE TRANSITION OF SABO WORKS FOR DISASTER MITIGATION IN JAPAN Masao Okamoto1* INTRODUCTION Ten years have passed since the beginning of the 21st century. During that time, a huge number of large-scale natural disasters occurred in various parts of the world (Table 1). Table 1. Major natural disasters that occurred in the world from 2001 to 2010 (As of March 3) Disaster Damage Date Region Country Est. Damage (m/y) Type Name Killed (US$ Million) Tropical 03/2004 Eastern Africa Madagascar Galifo 363 250 cyclone 08/2006 Middle Africa Ethiopia Flash flood 498 3 05/2003 Northern Africa Algeria Earthquake 2,266 5,000 01/2010 Caribbean Haiti Earthquake 230,000 Tropical 09/2004 Haiti 2,754 50 cyclone Tropical 10/2005 Central America Guatemala 1,513 988 cyclone United Tropical 08/2005 Northern America Katrina 1,833 125,000 States cyclone 02/2010 Southern America Chile Earthquake 799 08/2007 Peru Earthquake 593 600 05/2008 Eastern Asia China Earthquake 87,476 85,000 10/2004 Japan Earthquake 40 28,000 08/2007 Korea General flood 610 300 Tropical Typhoon 08/2009 Taiwan 630 250 cyclone Morakot South Eastern 09/2009 Indonesia Earthquake 1,177 2,000 Asia 05/2006 Indonesia Earthquake 5,778 3,100 12/2004 Indonesia Tsunami 165,708 4,452 Tropical 05/2008 Myanmar Cyclone Nargis 138,366 4,000 cyclone 02/2006 Philippines Landslide 1,126 2 Tropical 11/2004 Philippines Winnie 1,619 78 cyclone 12/2004 Thailand Tsunami 8,345 1,000 03/2002 South Asia Afghanistan Earthquake 1,000 1 Director General, Japan Sabo Association, 2-7-5, Hirakawac-cho, Chiyoda-ku, Tokyo, Japan (*Corresponding Author; E-mail: [email protected]) -41- Tropical 11/2007 Bangladesh Sidr 4,234 2,300 cyclone 12/2004 India Tsunami 16,389 1,023 01/2001 India Earthquake 20,005 2,623 12/2003 Iran Earthquake 26,796 500 10/2005 Pakistan Earthquake 73,338 5,200 12/2004 Sri Lanka Tsunami 35,399 1,317 04/2009 Southern Europe Italy Earthquake 295 2,500 (Quoted from EM-DAT, Center for Research on the Epidemiology of Disasters and added data of 2010) Last year, Taiwan suffered serious damage due to Typhoon Morakot.
    [Show full text]
  • Japan Geoscience Union Meeting 2009 Presentation List
    Japan Geoscience Union Meeting 2009 Presentation List A002: (Advances in Earth & Planetary Science) oral 201A 5/17, 9:45–10:20, *A002-001, Science of small bodies opened by Hayabusa Akira Fujiwara 5/17, 10:20–10:55, *A002-002, What has the lunar explorer ''Kaguya'' seen ? Junichi Haruyama 5/17, 10:55–11:30, *A002-003, Planetary Explorations of Japan: Past, current, and future Takehiko Satoh A003: (Geoscience Education and Outreach) oral 301A 5/17, 9:00–9:02, Introductory talk -outreach activity for primary school students 5/17, 9:02–9:14, A003-001, Learning of geological formation for pupils by Geological Museum: Part (3) Explanation of geological formation Shiro Tamanyu, Rie Morijiri, Yuki Sawada 5/17, 9:14-9:26, A003-002 YUREO: an analog experiment equipment for earthquake induced landslide Youhei Suzuki, Shintaro Hayashi, Shuichi Sasaki 5/17, 9:26-9:38, A003-003 Learning of 'geological formation' for elementary schoolchildren by the Geological Museum, AIST: Overview and Drawing worksheets Rie Morijiri, Yuki Sawada, Shiro Tamanyu 5/17, 9:38-9:50, A003-004 Collaborative educational activities with schools in the Geological Museum and Geological Survey of Japan Yuki Sawada, Rie Morijiri, Shiro Tamanyu, other 5/17, 9:50-10:02, A003-005 What did the Schoolchildren's Summer Course in Seismology and Volcanology left 400 participants something? Kazuyuki Nakagawa 5/17, 10:02-10:14, A003-006 The seacret of Kyoto : The 9th Schoolchildren's Summer Course inSeismology and Volcanology Akiko Sato, Akira Sangawa, Kazuyuki Nakagawa Working group for
    [Show full text]
  • Outline of Water Supply Operation Center and Human Resource Development
    Ensuring stable water supply by centralized administrative control over a large scale water supply network (Outline of the Water Supply Operation Center) Hiroshi Taniguchi Bureau of Waterworks, Tokyo Metropolitan Government Today’s Topics 1. Outline of the water supply system of Tokyo 2. Primary roles of the Water Supply Operation Center 3. Examples of fluctuations in water demand Outline of Tokyo’s Waterworks As of the end of March, 2017 Date of Initial service December 1st, 1898 (Meiji 31) Service area 1,239 km2 Population served 13,295,385 people Number of service connections 7,443,762 cases 3 Total capacity of facilities 6,859,500 m /day (11 purification plants) Water resource amount 6,300,000 m3/day Total length of water mains 27,038 km 41 places Main water supply stations (reservoir capacity 10,000m3) Average distribution amount per day 4,192,300 m3/day Maximum distribution amount per day 4,511,000 m3/day Number of staff 3,750 people 3 Water Resources and Major Facilities Yagisawa Dam Naramata Dam R.Naka Kasumigaura Water Conveyance Sonohara Dam Kusaki Dam (Under Construction) Aimata Dam Fujiwara Dam Water Supply Operation Center Lake Kasumigaura Yamba Dam R.Tone利根川 Watarase Reservoir (Under construction) Kasumigaura Tone Weir kaihatsu Shimokubo Dam Musashi Channel Takizawa Dam Akigase Intake Weir R.Naka R.Edo Urayama Dam Kita-chiba Water Conveyance Channel R.Ara Arakawa Reservoir Misato Nakagawa River/Edo River Murayama-Yamaguchi Connection Water Conveyance Channel Mizumoto Water conservation forests 山口貯水池reservoir Raw water Asaka
    [Show full text]
  • Iwaki River System Iwaki River
    Iwaki River system Iwaki River History of Tsugaru Dam April 1988 Implementation plan survey begins Tsugaru Dam April 1991 Mascot Tsugaru Dam Research Office opens Pecker-kun Tsugaru Dam Construction Office opens August 2000 Concluded agreement on general compensation November 2008: Construction of main dam structure begins May 2010 Concrete casting begins August 2014 Concrete casting of main dam structure is completed February 2016: Trial flooding begins September 2016: Trial flooding is completed October 2016: Construction is completed April 2017: Transition made to management and operations Tsugaru Aomori prefecture Dam Akita prefecture Iwate prefecture The Tsugaru Dam is a concrete gravity dam constructed as a redevelopment of the Meya Dam completed in 1960. This is a “multipurpose dam” that has six different roles: flood control, river ecosystem conservation, agricultural water supply, municipal water supply, industrial water supply, and power generation. Concrete casting was performed using the cruising roller compacted dam (RCD) method_only the third such example in Japan (the first in Tohoku). Tsugaru Dam’s functions Mitigating flood disasters Maintaining proper waterflow functions Supplying municipal water Planned flood discharge at dam site: Providing consistent replenishment for Additional water supply to Hirosaki city: Adjusted from 3,100 m3/sec existing water supplies, and conserving 14,000 m3/day to 160 m3/sec the river’s ecosystem. Replenishing irrigation water Generating power Supplying industrial water Replenishes irrigation
    [Show full text]
  • Flood Loss Model Model
    GIROJ FloodGIROJ Loss Flood Loss Model Model General Insurance Rating Organization of Japan 2 Overview of Our Flood Loss Model GIROJ flood loss model includes three sub-models. Floods Modelling Estimate the loss using a flood simulation for calculating Riverine flooding*1 flooded areas and flood levels Less frequent (River Flood Engineering Model) and large- scale disasters Estimate the loss using a storm surge flood simulation for Storm surge*2 calculating flooded areas and flood levels (Storm Surge Flood Engineering Model) Estimate the loss using a statistical method for estimating the Ordinarily Other precipitation probability distribution of the number of affected buildings and occurring disasters related events loss ratio (Statistical Flood Model) *1 Floods that occur when water overflows a river bank or a river bank is breached. *2 Floods that occur when water overflows a bank or a bank is breached due to an approaching typhoon or large low-pressure system and a resulting rise in sea level in coastal region. 3 Overview of River Flood Engineering Model 1. Estimate Flooded Areas and Flood Levels Set rainfall data Flood simulation Calculate flooded areas and flood levels 2. Estimate Losses Calculate the loss ratio for each district per town Estimate losses 4 River Flood Engineering Model: Estimate targets Estimate targets are 109 Class A rivers. 【Hokkaido region】 Teshio River, Shokotsu River, Yubetsu River, Tokoro River, 【Hokuriku region】 Abashiri River, Rumoi River, Arakawa River, Agano River, Ishikari River, Shiribetsu River, Shinano
    [Show full text]
  • Press Release
    Press Release Press Release (This is provisional translation. Please refer to the original text written in Japanese.) June 22, 2012 Policy Planning and Communication Division, Inspection and Safety Division, Department of Food Safety To Press and those who may concern, Insurance and cancellation of Instruction to restrict of distribution of foods based on the Act on Special Measures Concerning Nuclear Emergency Preparedness, direction of Director-General of the Nuclear Emergency Response Headquarters Today, based on the results of inspections conducted until yesterday and in the lights of the Nuclear Safety Commission’s advice, the Nuclear Emergency Response Headquarters has issued the following instructions for Governors of Miyagi and Fukushima. (1) Restriction of distribution (i) Whitespotted cahr (excluding farmed fish) captured in Ichihasama river (limiting upper reaches from Hanayama dam and including its branches) and Goishi river (limiting upper reaches from Kamafusa dam and including its branches), Miyagi prefecture. (ii) Fat greenling, Flathead flounder, Red tongue sole, Japanese sandlance (excluding juvenile), Stone flounder, Goldeye rockfish, Surfperch, Brown hakeling, Fox jacopever, Black cow-tongue, Black rockfish, Japanese black porgy, Sea raven, Ocellate spot skate, Cherry salmon, Poacher, Rockfish (Sebastes cheni), Alaska Pollack, Japanese seabass, Nibe croaker, Starry flounder, Slime flounder, Panther puffer, Olive flounder, Gurnard, Spotted halibut, Conger eel, Littlemouth flounder, Marbled flounder, Flathead, Pacific
    [Show full text]
  • FY2017 Results of the Radioactive Material Monitoring in the Water Environment
    FY2017 Results of the Radioactive Material Monitoring in the Water Environment March 2019 Ministry of the Environment Contents Outline .......................................................................................................................................................... 5 1) Radioactive cesium ................................................................................................................... 6 (2) Radionuclides other than radioactive cesium .......................................................................... 6 Part 1: National Radioactive Material Monitoring Water Environments throughout Japan (FY2017) ....... 10 1 Objective and Details ........................................................................................................................... 10 1.1 Objective .................................................................................................................................. 10 1.2 Details ...................................................................................................................................... 10 (1) Monitoring locations ............................................................................................................... 10 1) Public water areas ................................................................................................................ 10 2) Groundwater ......................................................................................................................... 10 (2) Targets ....................................................................................................................................
    [Show full text]
  • Spatial and Temporal Models of J¯Omon Settlement
    Spatial and Temporal Models of Jomon¯ Settlement Enrico R. Crema A Thesis submitted for the degree of Doctor of Philosophy Institute of Archaeology University College London January 2013 Declaration I, Enrico Ryunosuke Crema, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 ”Ce qui est simple est toujours faux. Ce qui ne l’est pas est inutilisable” (P. Valery) ”All models are wrong, but some are useful” (George E.P. Box) Abstract The Jomon¯ culture is a tradition of complex hunter-gatherers which rose in the Japanese archipelago at the end of the Pleistocene (ca. 13,000 cal BP) and lasted until the 3rd millennium cal BP. Recent studies increasingly suggest how this long cultural persistence was characterised by repeated episodes of change in settle- ment pattern, primarily manifested as cyclical transitions between nucleated and dispersed distributions. Although it has been suggested that these events corre- late with population dynamics, shifts in subsistence strategies, and environmental change, to date there have been very few attempts to provide a quantitative anal- ysis of spatio-temporal change in Jomon settlement and its possible causes. This thesis is an attempt to fill that lacuna by adopting a twin-track approach to the problem. First, two case studies from central Japan have been examined us- ing a novel set of methods, which have been specifically designed to handle the intrinsic chronological uncertainty which characterises most prehistoric data. This facilitated the application of a probabilistic framework for quantitatively assessing the available information, making it possible to identify alternating phases of nu- cleated and dispersed pattern during a chronological interval between 7000 and 3300 cal BP.
    [Show full text]