<<

Limnology of Oneida Lake with Emphasis on Factors Contributing to Algal Blooms

by Phillip E. Greeson

U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT - i 1971

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

LIMNOLOGY OF ONEIDA LAKE WITH EMPHASIS ON FACTORS CONTRIBUTING TO ALGAL BLOOMS It at islands, each other delight with wh i the whole scene. LIMNOLOGY OF ONE LAKE WITH EMPHASI ON FACTORS CONTRIBUTING TO ALGAL BLOOMS

by

Phillip E. Greeson U.S. Geological Survey

OPEN-FILE REPORT

Prepared by DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

in cooperation with STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Albany, New York 1971 Hen r y L . D a rna n d . . • . • . . • ...... • • . . • • • ...... • Comm i s s i one r

John A. Finck ng Director

UN OR

Rogers C. B. Mor . • •.....•.....•...•...... •.. Secretary

Geol

Vincent E. McKe • . . . . . • • . . . . . • • . . • . . • ...... D i rector Ernest L. Hendricks .•.••.....•...... •••. h Hydrologist E...... i 1 Hydro 1og is t Robert J. . ...•..• , ...... District Chief

i v - d i nag e ba i n ......

71

Lake ......

i ...... B of Oneida Lake...... 1 102 104 igations ...... 104 1ankton...... 1 1 1 1 References...... 145 Appendix...... 1 Figure 1. 5

6

t 1 0

11

12

of Oneida 13 14

17

t i

subba in d inage 28

12-16.

12. r .. 30

13. Scri Fi 31

14. East B rg near

s. Va 1 and na raga 33

16. nd h ttenango t 34

17. Map with nes i mean annual precipitation for Oneida nage basin , 1 1 -60 ...... 36

18. Diagram i 11 ing

v gure 1 Lake .. 40

20

i ton r ......

21 • Map 43

2. ons in

46

23. ng 48

n:IJI 49

5. G 52 6.

27. w

55 28. water...... 56

G showing deve ida Lake ...... 57

30. p where is 59

31 . Sketch illust ting flue wate surface in a uninodal 61

32-36. G showing:

32. Harmonic train of seiches, r ' 1966...... 62

i i Figure nd iche

1 . • • • a • • • ...

4. 17 ...... • • • Ill • .. 35. in Oneida July ...... 36. Development st 10-

11 1 • • • • • • fl •••• ..

37. Aeri t ks on Oneida

La . . •• 0 • 68

38. 1 i ion of water rna

1 March. II; ...... & • ...... 70 39-43. G

39. 1 i ght May

th • • • • C< •• ......

40. Li t in One da October 1 74

41. Spati content of

Oneida 1 . . . . ••• Gl' .... 81

42. riou io ogi chemical Oneida Lake June 1 ...... 43. Mean month J 85

44. Diagram ng of d lved solid La 98

45. Photogra represen blue-green algae from Oneida Lake ...... 113

46. represen from Oneida Lake. . . . . 114

47. Graphs showing relative abundances of the major groups of lgae composing the phytoplankton of Oneida Lake ...... 115

- viii - ILLUSTRATIONS inued)

showing ti tions of 1ankton ng the growing 1 and 1 1

Graph show in eastern Oneida 122

50. ra alga1 mat near Bushnell Point

1. 1 curve of t t ion ......

- ix L

s. 6.

7. p

8.

9.

0. Ve 5

1 1 •

12. E1 76 13.

80 14

15. 87 16. Concen 90 17. 91 1 e 18.

92

1 • Mean of se1 ted chemical constituents in rge tributaries to Oneida Lake ...... 94

20. Concent t ons of trace metals in the tr butaries to Onei Lake...... 95

21. Cul 1 cant ibutions of nitrogen and phosphate to Oneida ke...... 97

22. Chemical budgets of the major nutrients in Oneida Lake ...... 99

23. i 1 i t of a 1gae observed in phytop 1ankton of Oneida Lake ...... 109

24. Other algae recently reported in the phytoplankton of Oneida Lake ...... 112

Distribution of algae observed two or more times in the phytoplankton of One da Lake ...... 116

Dominant 1ankton organisms in Oneida Lake...... 117

Summary of water budgets, dissolved-sol ids contents and algal blooms in One da Lake, May 1967 through r 1969 ...... •...... •...... •.•..... 128

28. Predicted water of Oneida Lake after diversion of sou t ibutaries ...... 129

Predic chemical bud of disso ved sol ids after diversion of south tributaries ...... 131

30. Field measurements and chemical analyses of samples llected routinely from stations in the Oneida Lake d i nage basin...... 156

31. Field mea rements and chemical anal surface sampl coll ted routinely from sta ion on Oneida Lake ...... 161

32. Checklist of the flora and the ida Lake ncludi algae, fish, macroinvertebra , vascular p ants nd zoop 1ankton ...... 171

- X '. Li

i 11 ip

about

rom r) to mater­ of which chemical 1 ids and the

each r. These Abou percent he Oneida

brium. Water -feet per year) Water leaves per year) of

•• 1 tom ith

r

f

1 minimal con cent t on. for t

w

per t ion

in

A reducti reduce the nu 3

Oligotrophic lake

Dry land

p of aging by ecological s (from Greeson 1969).

1 1 he U cooperation with the te rtment of ion, began a compre­ to t One ida Lake. In essence, effect rel tionships to provide the necessary

, mineral, and organic contributions rom ltural activities riptions of Oneida and quan i of cal condition of the ted with the various wi tion of algal control their app Oneida Lake. Several reports (Greeson and and rs, n press) based on these investigations

This final repo t s , inc i ng ion and discussion of the 1 imnology of Oneida ke and its ba in, factors contribut- ing to the annual nui gal blooms i the

ACKNOWL

rvey.

AND CU

. 7 sq re ) above mean of these

1 r reas f is km)

h •...... 1ong ..•.... t

w dth

h

Volume

Normal Normal

Effluent discharge llons 10 7

F ow-th time ...... •.....••...... DEPTH, IN METERS 18

Depth of (/) shoal area a.: w 1- w (/) w 120 _J 25 _J 2 ::..::: w a.: <( ::J 0 (/) 100

<( w a.: <( 80

60

40

10 20 30 DEPTH, IN FEET

igure 3.--Area lake tom nc uded at various (from Greeson an rs 1 )

10 +J u Q) ·iII (/) II 0~ J

:J Ol li.. Lakeport Bay

D

Ml LE

Kl LOMETER iQOJOw t-- ~ ~ :2 LL 3 10

Figure 5.--Bottom profiles. Transects as shown in figure 4 (from Greeson and rs, 1969).

- 12 -

(10'

LOCATION MAP

0 Ml LES

BASE FROM U.S. GEOLOGICAL SURVEY, 1 500,000

Figure 7. -Oneida Lake drainage basin.

4 an The broad

One i Lake r ng any lake he bottom 1 ted inage basin into the 1 ke an bundance 1 s ( rson and rs, in enrich or fertil i the water medium for aquatic tion. t ncludes d i r­ Lowland, lands,

ional altitudes

north-facing hart The )

ly below an (1 0 rio and merges Mohawk and land only becau bed rock (Mu 11 e r, 1 ) • m nor amount of sands and i rs) of unconsol- idated lac al 11 ed S I!) drumlini

ke is the a sequence of shrinking and lakes devel since glaciation. The prol about feet a balance of conditions.

Pea rs (in ke drainage basin could be d vided and internally are Hi 11 , Ten·anes (fig. 8).

Hill Terrane and consists en t i re 1y cf Hi 11 region north of the lake and i underlain h materials. The pre­ dominant rock is sand to erosion.

Lake Plain surround Onei forms 2 percent of the drainage basin. sis of he r Lowland ribed earlier.

The three other terranes rm he achian Upland part of the drainage basin. T 11 Terrane consists ly sorted ice-laid glacial i t s w i t h s ma 1 1 rea s of sand and g rave . These its are virtually chemically unreactive. Seventeen percent of he d inage basin is encom- passed by Till Terrane. 14

14

11 16

6

100 100 93

Figure 11 y ) .

rrane 1 1d re in or reacti

Onl in an ap- p i ab 1 the r and Te ist of de 1 i vers

tr ida Lake is

a ida Lake lock and the improve­ men on of a lock 1 in 1846.

1 ke had increased and the first pl k rmit ed s coaches along the 1 the shipment n leveland.

the comple- 1 1 ink

, t te ily traveled. 11 the winter of One da

)

ram developed ity (R, L. he lake is the area n is used for is used for resi-

land is farmed.

south area is ncludes the

trib­ Dam.

About ,000 ttee on Government nage basins of communities, exc us t tment facil i- ,800 (Federal

la rea north one t Fi h

Wood

Onei

and

Chit c

Lake ur 100

8

ext rae a stream­ The

or tribu ary n includes tha ng s tion. inc that a

Table 5.

1 ing Geo1 station Su Locat on station

8 0 I w about m le north of south shore th )

9 I w mid 1ake at 107-FlW

10 I w mi e south of north shore )

1 1 about 1 mile north of south )

12 0 51 w, mid lake at buoy 11 F1W

1 3 0 I w, about 1 mile south of north shore

14 0 about 1 mile north of Shackel Point

15 w m d1ake at -FlW

1 16 o W, about 1 mile south of north shore

17 0 00 w north of south re

18 W, midlake at 12 Fl W

19 00 1 W, about mile south of north between L ttle Island and lsl

20 geogra ical center h 21a -FlR

21b low U.S. Hi 11 bridge at gage house in Brewerton (lake outlet)

22 0 1 W, about geogra ical center of ig

6 - STYROFOAM

CONCRETE

Figure 10.- Sampling- tation 1 tion C, Coupl r; EB, Bolt· N, Nut; SC Steel cabl · SP Steel plate and SR Stee 1 rod.

2 7 - Index of subbasin and station number J J East Branch I Subbasin boundary II Basin boundary

Oneida Creek

Chittenango Creek

LES

Kl LOMETERS

BASE FROM U.S. GEOLOGICAL SURVEY

Figure 11 .--Locations of tributaries, subbasins, and sampling stations in Oneida Lake drainage basin.

- 28 - n

t

0

0.4

2

3

4

5

6 Road

7 Figure 1 on C). Figure 13.--A. t t ion 0 ) . B. ling station 1). B

Figure 1 . samp ing station 2) 1 n station 3). to of

Mean ann . 0 inches ( 111 . Lake s ipita- tion for

) ' centimete drainage

Ground it flows 1 ke. manly, contribu

For the is Oneida Lake. percent of t rs (in pres 0.1 tion s water i flow MILES

BASE FROM GEOLOGICAL SURVEY

Figure 17. -Mean Lake drai bas commun 1 sh

Fish C

One

Can a reek 2.5

Creek 14

Chittenango Creek

reas

Lake

Total 1 1

rva i .

in

tributaries for andard r period, ) (table 7). s the differ- rain rea bove drainage basin of the

the lake surface times s the ranspiration me s l s qua r e mi 1e s ranspiration from the miles (3, square kilo-

from the drai ranspirati rom haws t t the annual inches (111.0 centi- i meters). Mean .7 cubic meters) per meters). Evapotrans­ is the difference (1 x 10 7 cubic

ration from the surface of per r.

Wa volume, repre- sents a 18). The stage of the 1 s rna ntained by an equa r:A•-r:c;uS outflow, as during When outflow through the the dry months of s 1 r . The

The

he occu distance ter i For typi Long­ sediments. F Oneida t randomly Peterson dred ti of

f

he of La ) 1 of bottom ma

for h t ion i mi 1a r to t tions is below the Stratification.' ) Oneida Lake wa in 1 1 the U.S. Army Corps of ineers (1912a 1 ob rvations of bottom were made. A comparison with the present distrib- ution of bottom mater insignificant in the past years. Figure 20.- Collect on of bottom samples from Oneida Lake with Pet son dredge and piston corer (B). l I Location and Gravel Sand and Organic rubble clay1

ing station 8 . 7 33.3 5.4

1 i ng station 9 .0 42.0 2.4

ng stat on 10 . 3 48.7 8.2

At FlW 2.0 98.0 10. l

At 113-Fl W 2.8 97.2 11.0

yds north of Bushne 11 Point . 4 6.6 .9

1 ng station 1 1 9.4 90.6 7.1

1 i ng station 12 1.0 . 0 9.0

ing station 13 .9 • 1 11 6

200 s north of Canaseraga 70.0 30.0 6.1 Creek mouth

400 south of Cleveland 100

1 ,000 yds th of buoy 121-FlW 100

200 yds east of Shac 1ton Point 100

1 ing station 4 27.8 72.2 5.8

Samp 1 i ng station 15 100

1 i ng station 16 2.7 97.3 9.2

200 s south of Bernhards Bay .0 18.0 1.7

200 yds west of Chittenango 41.1 .9 2.6 reek mouth

1 ing station 17 1.2 98.8 10.8

1 ing station 18 9.2 90.8 7. 1 t Organic 1

g t ti .4 .4

400 t Dunham I 1 61 9 .4

Cen r of Th 100.0 • 1

t .9 10.7

of F hman I and

Samp 1 in t on 20. • 5 5 .

Samp 1 in t ion 39 6 . 4 .4

lncl

van Beach from 1 D were the

81.

rge 1 and in some tribu The 1 and the tribu ua 11 wherever re- qui red. to cubi rds ,000 to ,000 cubic levees at the Rome summi air cover in the winter inverse, which the den t ies the ng of spr ng and

F gu te lake and g but t

r son uc sub- A. 1967 Mean variation alii o B. 0 0 r--.---.-~--·r·'1-r---,--r-:r----.--

10. I 3 10 (./) (./) rr. 0: 1- w 1- LU w 1- w 1- w w LU LU u_ I :::2: u_ :::2: I ~ 20 6 ~ ~ 20 ~ I. I. I. I. 1- 1- 0... I 1- 1- w I 0... 0... 0... LU LU LU 0 0 0 0 9 30 I 30

40L---~--~~L_L_ ___L ____ L---~--~~~ 10 12 14 16 18 20 22 24 26 14 TEMPERATURE, IN DEGREES CELSIUS DEGREES CELSIUS +- 00 Or----.----~--~r----r--~mr---,r----r----, 0 .,

iO 10 (.f) rr. 1- w 1- w 1- LU LU LU LU u_ :::2: u.. ~ 20 ~ ~ I I. I. :I , 1- 1- 1- 0... 0... 0... w LU LU 0 0 0 30

2 4 6 8 10 12 14 16 DISSOLVED OXYGEN, PER LITER

Figure 23.--Vertica es of ter rat conten he grow ng seasons 1-- l1J l1J LL

I 1-- I a_ 1-- l1J a_ 0 9 LLI 30 0

2.8

12 40 3.3

50 0 2 3 4 5 6 IN us

Figu .-~Vertical profi empera ure under ice cover. Va ues rep ra u for a 11 seasons. h h h

1 20

0 14 0 10 20

t 1 9.00 0 0. 10 10 8.21 20 20 r

D.O. 1

j

10 20

j

10 20 8.41 .1 0

10 20

0 10 20 10

4 (/) 1- a:: w Aerobic w w 1- LL w :::?:

I 1- wCL 0

30

40 1 10 1 AUGUST SEPTEMBER

SURFACE 0 0

B. 1968 2

10

C/) 1- a:: w w w Aerobic zone 1- LL w z :::?: 20 6 I 1- I CL 1- w CL 0 w 0 8 Level of dissolved-oxygen stratification 30

10

12

11 18 25 10 17 JUNE SEPTEMBER

Figure .--Mean depth of dissolved-oxygen stratification during the growing seasons 1967 (A) and 1968 (B). ime

veloci 1967

s 12.8 NW 24.5 B. 1968

t s 8.9

Figure 26.--Wind roses for calendar year (A) and 1968 (B), Hancock Field Syracuse, New York hewing percen of time that wind wa recorded from each direction. (Data from U.S. Department of Commerce, 1 and 1968.)

- 54 - Figure .--Wind r 1 (A) ' 1

, and Ac hei ing wi ity (Wv) in per second the

H

mete r second r r

According after Welch imum wave height (Hmax) in meters maximum rt 1 i nee between crest and trough (fi . ) i roporti to squa root the fetch (F), in ki ometers, during optimum wind cond tion . The fetch is the distance from shore to the

Crest

, I I I \ , ------Q---··-;,i~i~~-~{;;;-~ii""""" \ I I I I I I I P,' \ I I I \I II v

Figure 28.--Wave of oscill tion and circular pattern of water movement in deep water. (Lw = wave length; H = wave height; and a =wave amplitude) (from Greeson and Meyers, 1969).

- 56 - Wave t or from t to n

WI 0

12

10 3

Lake ) . shoal rea the wave 1 hortened waves re As a result the theoretical ratio of h to wave he probably in the order of 10 to 1 (Lw : H 10 : 1) i app A wave 1 h of about feet (18 8 mete ) the fore can accompany the maximum wave height of 6 feet (1 .8 meters) in the open paces of Oneida Lake.

water particles within wave con ide to revol in With increased h below the surface, according to the diameter of circular motion decrea exponenti lly and dimin approximately equal to the wave 1 h. Gross (1967) states mixing occur to bout one lf of h.

With wave len h of (18.8 meters), effective mixing by wave action occurs to depth of 31 meter ) in Oneida Lake The sig- nif cance of hi depth wa shown during the growing son when dissolved oxygen harply stratified at an average depth of about 30 feet (9 meters).

Accordingly the importance of bottom sediment and their contained chemical nut ent is greatly accentuated becau square miles (134 square kilometers) or 65 percent of the lake bottom is less than 30 feet (9 meters) in depth and can be subjected to mixing with the overlying water (fig. ) . (/) r twi the amp 1 i ly decrease with

ton of the length (1) of r along the axis. Forel

and is the acceleration of )

for a uninodal longitudinal 2.4 hours. This time was can- t Brewerton (fig. ).

in Oneida and t displacement of water has i meters) in period of record (1 ) . displ t occurred Brewerton on August

the mouth of Oneida Creek son of 1968. Records from igure 35 and during west, north­ at Brewerton was ac­ ida Creek. Period of Oneida Lake, there- fore uninodal t 1 ke (that is, a longitudinal iche).

acement of water at Brewerton was generally larger than the dis- at t mouth of Oneida Creek. This resulted from the deflection t 1 ke shore and the constriction of the hydraulic channel t of the lake.

SEPTEMBER SEPTEMBER SEPTEMBER 25, SEPTEMBER

1- LU LU u....

Figure 32.--Harmonic train of seiches r 23 Recorded at out et of One at B ton. 1- w w LL

Figure 33.--Developmen 0' 1 Recorded at A Wa rium,

B. 50

40

(/) cr.: w 30 f- f-w w w ~ u... i=z w 20 u

10

Water stage 0

B 10 20 8 ex:: 0 :J 16 z 0 0 u I w cr.: 6 (j) w 12 a.. 0:::w (/) a.. w {j) _.J 4 8 ~ ffi wf- ~ 4 2 Wind velocity and direction 0 0800 1600 2400 0800 1600 2400 HOUR Figure 34.--Development of seiche, August 16-17, 1966. Recorded at Oneida Lake outlet at Brewerton. A. Water s B. Wind velocity and wind direction as indicated by arrows. if) a: w w1-­ :::?! 1-­ z 0 w u

20

if) a: w 1--w 10 :::?! i= wz u

0

10

8

6 ffi a... if) a: w 4 1-­ w :::?!

2

L-~-L~--L-~~~-~--L-~~~~~~L-L_~_L_J __L_~_L_J~L_L_~_L_J __L_~_L_JO 1200 1800 2400 0600 1200 1800 2400 HOUR n ida Lake, July 30-August 1, 1968.

of Oneida Creek. and wind irection as indicated by arrows. (/) a: UJ l:i::i ::2 i­ z UJ u 10

(/) a: UJ l:i::i ::2 i­z UJ 10 u

a z 0 u UJ (/} a: UJ CL (/) a: UJ i­ UJ ::2

st 10-

a rows. the il ing wind Swi t t imete per ve 1 y 10

be-

the bottom. Cu i tently towa iona ly

ke. )

i r convergences re 11 11 wi nd

r hour .0 meters a t mete ). approached 0. feet per (1 ) indicated that helices momentum from the sur-

in this study, they we streaking on Oneida t

Figure r' the 1 ke for abou 4 month each In that period

and

bee au water. ---...... r--''

~. o 2 ~MI

Figure ce cove conductance. r

i nd i compa r i

La wa de­ The average g hs 1.

nee in mean lues between ( 1 . 7 meter ) . Becau i determined greatly imply rroneou con- in thi udy The minimum value wa t 14 1 StlllOH Nl '1H911AVO ::10 NOilVtJnO

co >

4- c 0 ::J (/) c-o u 0 <( (J) .j.J c 0 0 ()) N N (j) -o (J) c !..... ro o.. AVO tl:ld StB13~11N3J 3tJVnOS tl:ld S:llt!OlVJ Nl 'lH811NnS 1J3tll0 (J) .j.J !...... c

0 N

0

4-- 0 z !..... (J) c..o ---- 0 E ·- (J) .j.J > 0 z :::J 0 I <( I

c ) ....) (/) (J) !.....

) ::J ----- Ol (/) LJ_ (/) c -- - ..... ~, ... 0 ~ n... U) ......

<{ CD <(

feet . l Mean meters 1. l.

E i he of t remes, a represen t i disc tran parency fal ly cha ized the condit on in Oneida Lake refo of reading hould be made over an extended period of t i

rmined re made and Mean ter,

Figure 1 i t ration. The 1-percent rat ion .0 meters). Th s 1 percent tra- tion h was Sau Ruttne (1 1, afte Nall 1 ) and Talling (1962) the lower 1 imit of the euphotic zone. During the five measurements, t 1-percent rat on h ranged from 11.7 feet (3.6 meters) to 17. feet .2 meter).

Concurren isc transparency readings were made at each loca- tion. They 5. feet (l .7 meters) and equalled the 10.5 percent penetration 0 6 100~----~----~----~~----L-----~----~34.0

80

25.5 X :J 1- _J z u.. LU u 0 a:::: (/) LU 0 CL 60 z <( (/) :J 0 I 17.0 1- z z 40 0 i= 1- <( I z (.9 ~ ::i :J _J _J 8.5

20

0 3 6 9 12 15 18 DEPTH. IN FEET Figure 40.--Light penetration in Oneida Lake, October 1, 1969.

ting nutrient trol of eutrophic condition of in what is called

re con idered to , concentrations in cant lling 1 b 1oom s u 1 1y

nitrogen and ), respectively, itrogen and phos- in lankton i mi t i n g ( Ku en t 1 , ke. Concentrations ted to be more than 1 ) • in

A1umi

ium

Ch 1

Copper Cu

Hydrogen H

Iron

i um

Mn

Mol

N trogen N 1mer

Oxygen 0 suff cient ium

Phosphorus

Potassium K

S i 1 icon Lund, 1

Sod um 0 Phi 1 i

Su fur

Vanadium v 1965

Zinc Zn 01 - '1 Provaso 1 i and for the ammon bott 1

were were

ionally roscopy. ric acid 1 boratory r 1 iter the b smuth ( Cu) ,

of nutrient infl llected from both

a sample was collected the re ationship be­ rges were determ- tream was to con many order to

Va

of years blooms. l many The s 1ow bu i 1 The bu i 1dup

t i 1 and n ida Lake during the s of chem- cal loads from the d i and

nt

each n tab 1 were de­ l and in the

during December

ircum­ the of

pproxi­ Mean values

highe (numbers 17 l ved so 1 i d (numbers

was h at 50- Tab

~ . 56 1.2 I 06 55 • 3 2.0 .2ft I .8 83 34 1 . 7 . 01 .01 2. I . 3 38 II

28.5 2.4 1.0 I~ g. 5 .2 21.1 I.S -- .8 .0 . 3 29 -- 3. 3 30

41 -57 1.1 111 .2 . 2 MEAN 8.4 L3 . '7 .9 I 03 .1 I .2 39 .;7 .8

4.3 ~ .61 6.8 1.3 ~~ 1 -~ 1.0 100 7 .38 .6

25.8 ~ -- I. 1 'l9 -9 • 0 30 .8 ~ 31

.fo 5.4 110 5

5-9 1.3 q.S 2. 37 -7

~ l,l .2 39

8 ~ 1.;] .53 4.Z .CI . c

i.2 111 5 33

.2 35

3 7 IN

Fi re t content of t 1968. Concent rat i proportionally with the only nu ri a: LJ.J CL

Figure monthl chem canst tuent , through

11

.5 5

.21 1 6 6

.0 > .0 .0

wri

s a 1 mi reported for of One da Lake 16. t r in 18. nd

to extent of the grow­ of most m nimum requirement for the Vari ion concentration of di ted w th in 1 nkton <2 ND ND 35 <2 <3 ND ND 70 8 NO ND 9 <3 ND ND 11 ND 14 ND 14 <3 41 34 <.2 ND ND 7 <3

32 < .2 ND 18 NO 13 <3 3 ND NO 8 7 4 <.6 <.6 <2 35 <.2 ND 26 NO 12 <3 I 0 NO NO 20 6 5 8 <.6 <.6 34 < .2 ~D 21 ND 8 <3 ND NO 65 4 13 35 <.2 ND 26 ND 8 <3 ND ND 6 19 54 40 < .2 ND 25 ND 12 <3 I+ ND ND 33 9 4 14 <.6 <.6

41 35 <.2 ND ND 21 <3 4 ND NO 55 7 4 16 <.6 28 30 < .2 ND ND <3 ]I+ NO ND 110 9 3 25 <.6 31 < .2 ND NO 8 <3 NO ND 45 3 3 8 <~6 32 < .2 NO 31 ND 8 <3 NO ND 18 5 4 8 <.6

35 < .6 'W 34 ND 3 <3 3 ND ND 45 18 l 7

40 < .2 <3 <2 I <2 3 <2 ND 4 8 2 <.6 25 30 <.1 <3 20 < 15 3 <2 7 <2 ND 50 I 7 1i <.6 20 -- <.I ND 30 ND 7 <5 10 NO ND 6 iS < .5 <.6 .8 JO 30 <.6 NO 40 ND 4 <8 10 ND ND 10 4 95 < .6 2 •. l. 25 31 <. 7 NO 23 ND 8 <5 30 NO ND 20 3 40 < .5

28 33 <.6 ND 2 i NO 5 <4 ND ND 70 9 38 <.4 2 ,f 29 <2 NO 17 NO 3 <5 NO ND 21 <3 3 7

20 <.8 <2 20 c-16 2 <8 29 <2 < 16 <2 <8 -- ND 4 8

5

Al Diel- En- Loca i Sarno DDE DDT . ·- --· - -T d n ch dane

La Wa r 0. 0 r tr t Sediment .00 .00 00 .00 .00

R r Water .00 r a Brewerton Sediment .00 2.00 .80 .00 .00 8

) 1

• 1

r

ND ND <

lga1 growth. rcent saturation. determined during mid umme d t and

chemi l con tit mostly from ta ribution from ned the chem i 1 From unmea from ny

i ke 1oad of

num boron cobalt, tion of

which contributed bout i ed on 1y 1 ton per i ved sol ids. Other north rried relatively small chemical

r or percent of the mater a or i g i ted in ( i g. 4 . The tream was rials even though it annual total bud The was ies he amount of Fi h Creeks, t the south solved rna rials as the two

was carried by Onei , 8 pe t of the 1 . reeks ributed about 16.6 per- ton Even h ted only pe t of the drainage the water, their dissolved-sol ids s great as the ent re north ba in.

rried the largest loads of most major chemical calcium, magnesium, ssium, strontium, bicarbonate, trogen. reas contributed slightly larger

_,.,, v \ m +-1 (]) E

(]) u m !.... +-1 4- 0 r in.

ke ribu­ r square l Onei

reams.

ted 0. 013 pub 1 i hed t of

of the nitro-

ina ted, 1oad of would be suf ry to pport phosphoru are key nutrient of the cultural ication by as much

Pe tota 1 y ng 1oad

( i lgal

OUTFLOW

F i re • -Chern ues represent

1

r sources 1 .5

to

7

Preclp tat ake rcent hun and 1 ) of

son

n 1u i in the of Because previou , '') ha shown ition of Oneida terial bottom

100 - t ribu nd re contribut eut ication) of the 1 ke water. of Oneida La con idered to the 1 ke can have tu eutro-

01

rowth of fl wa b of

1ga that i r r 1 ike Undoubted k part i c 1 who 1so

and the im i 1 r

(R) Rabenhor t (R)

) lwanoff ll r ) Ra 1f s (A)

(C)

ing

110 (Klebahn) Geitler (R) Lemmermann (R) (Roth) rdh (R) Schmidl (C) rdh ( rborn (R) 1 i (c)

Figu al Figu D. Chlorophyta(green

0.1

0.01~~--~-L--~~~~~-J-L~~~~~~~~~~~~~~--~~--~~--~~~~~ MJ J A J F MA M J 1007 1%9

Figure .--Relative abundances of the or groups of algae composing the phytoplankton of Oneida ke

- 11 XX XXXXXXX X X X X X X X X X X X X

XX XXXXX X X X X X X Y XXXXXX XX

X X

XXXX XX

X XXXXXXXX XX X X X X X X X X X X X X

xxxxxxx X X X XXXXXXX XX

X X X X xxxxxxxx XXX XX XXXXXXXXXXXXX

X X X xxxxxxx X X XX XXXX

X X xxxxxxxxxxxx XXX XXX X X

X X X

EUGLENOPHYTA

X X X xxxxxxxxxxxxx X X X xxxxxxxxxxxxxx

X X X X X X XXX XXXXXXXXX XXXXXXXXXXXXX XX XX X X XXXX XX XXXXX XX XXXXX XX XX X X XX XXXXX XXX xxxx xxxx xxxxxx X X X

X X X X · XX XXXXXXXXXX XX xxxxxxxx X X X X xxxxxxxxxxxxxxxxxx XX XX XXXXXXXX X X X X X X X X X X XXXXXXXX XXX XXX XX XXXXXXXX X X X X X X X X X X X xxxxxxxxxxxxxxxx XXX XXX X X

X X X X X X X X X XXX XX XXXX X X X X X X X X XXX X XXXX X X X X X X X X X

PYRROPHYT A rund i ne 11 a X X X X X X X X X X X X

CYANOPYYTA X X X X X XXXX XXXX X X X X X X X X X X XXXXXX XX X X X X X X X X X X X X X X X fi X X X X X X X X X X X X X X X X X X X X xxxxxxxxx X X X X X X X X X X xxxxxx xxxx XXX XXXX X xxxxxx xxxx xxxx XX XXXXXXXXXXXXX X X X X X X X X X X xxxxx xxxxx xxxxxxxxxxxxxxxxx X X X X X X X XX XXXXXXXXXXX X X

XX XXX XX X X X X X X X Synechococcus ae rug i nasa xxxxxx

11

9 0

( 17.6 . ( . 3 .

. 4 . ) .

1' . 1).

1' ; Me spp. 200, ( 6.

) . • 1 ' . 3) 0

( 1

. ) .

.6 y

• 1) ; Dam

) .

• 1 ) ; ) . . 5) ;

8). ) . 6

I I I I I' I I 9 f I I I I I I I 12 40~--'------~----·----~------~ 0.1 I 10 100 PHYTOPLANKTON , IN OF MILL! Ll Figure 48.--Spatial variations of phytoplankton during the growing seasons 1967 and 1

- 1 1 11 i 111 109 '

(/) 0 z <( (/) ::J 0 I 1--

gure . -Va in eastern F ke f

enrich­ in Oneida imination

i Lake ngton tionship to 1y' if in-

t ion summer. rd ever observed in the wa un que in that nee or loom quan iti

data had been 1 ind i g r than t

High i panied the hi accompanied algal so 1 i d becau tion. with inte and Rawson content

t1ean i ted with of i the

g ter the 1

com- i Lake

of implies produces rge

percent north Di 1 id A1 1 popul ti ( r )

4

.8

ba in. Bu rd in ro Ea t Fish Creek n the long

treams in Lake and its 1 Control

he effect is not so inty. Fi t t on many of wave action sed i formation and penet t , 1 All be importan

Most pronounced changes would occur in the ter budget and in concen rat on of chemical bstances exampl nut ients). These part cul rly the 1 ter, would reduce the of b i o 1og i ca 1 pr i mary productiv ty. tion onto but ion inflow ng

from these ,200 r

bl

r th

wou d 1 1y' Oneida Lake after lved 1 d content 1 ke during thi th sources It would app i-

reduced the The

inflowing quan­ of retained or 1 year r after diversi

The r tons per r) would leave 0 ( ) .

in plant nutrients, es two nutri t fter te abou percent, or nd 0.

re not he 1ake but the on 1

of d i r would probably to the part t nt it nd low would now.

south t ies would have a dis lved- The combi t on of that water with 1 ke ter t 70 1) would have a i solved lid A s ightly h r dissoived 1 id content in iver, after diver on, would result from decreased tion dissolved materials by the lake. The effect of the slight se on the dynamics of the wou d be i significant l.

2. f i roc hem- re Tug Group Terranes. effect on the

"2 .J • tu event Geochem- 1 from the drain-

4. r rly tlers bloom-formi

5. ru ra 1 be­ and about persons in the ba in The popu 1 t ion

6. the shorel of ha inc from about in 1 to about persons n 1 In addition den population, more 1 mi 11 ion spar annually visi the

7. Lake i nd i ted by s and (or) volume rep- ic equilibrium of hydrol ic condition Wa r ke i from d i prec i pi tion (1 re- t

- 1 long average 5 days.

10. r dur-

11.

12.

1 •

r

14. period of 1 to feet. t

15 h mo ng 1 te

16. ter under more r i 1 t ion mit

1

even

19. in con- t t i tly higher gh-mine ized

water. wi with

21. i 1 i ida Lake h

22.

23. ) enters Oneida t amount of Chittenango 1 sub­ enter-

24. rogen and total tively. total 1 s, te natural needed to

entering Onei from the d basin r year) and t ion ( 1 , ton ke retain 1ved so 1 ids per (401, ton the lake through re

common.

treams nd

ld po-

rom r da

Di rsion of the sou would p bl reduce age d so 1 i d 1 ke from 1 to about l.

tream diver ion would the grea t amount of artificial richment t the 1 ke now i i ng.

40. The of dive of he tribu ries on the downstream r would bly be 1.

I i r ng

roup of m t gene 1 y re mi ro- n t 1

BLOOM: the tively rapid the total number of pl nkton ime the the p hinders the i 1 i of r

) and tran ported in

de ved

AUTOCHTHONOU : produced wit ) .

ALGAE. t grow n or on the bottom of of wa

C FAUNA: nima hat n or the bottom of a body r.

IC FLORA: plant o n sms hat in or the bottom of of r.

nisms hat 1 i in or on the bottom of body of water.

!CAL GRAZ animal organisms feed on vegetation; herbivores.

BLOOt~ · ALGAL BLOOM).

chloropl st nd t.

movement.

containing

in riou combi to the env ronment.

rogen to or the substraction of oppos te to the chemical tion.

r i

FORM TOPOGRAPHY. a loping pl in that bru on by a 1 d and the bottom

lume ndex of 1

Dl t primarily of di tom

terized a cell whi h gi it

) that pa given point

f wh ch l ke r ves it n-

hi 11 g

ion rom one 1 i into

w hin of water.

r r t t i ica-

h gh p in.

chemi form i required for

lake.

ing of of water through

amount of di solved nutrients.

r from the liqui to the par tate bo i 1 i n g po i n t .

tion and t n pira ion.

FAUNA: n t

FLORA

be re mi ing of

1 1

of t

t in

ROUND su the

H GHER PLANT·

HOMOTHERMOU : uni n rature.

I STRY: the i ence or tudy he chemi try of water.

IC MAP. chart of the 1 bottom indi ting variou con-

HYDROLOGY. the ea th ience that to he occurrence of water in the r h' it ical and hemica t i with the rest of the earth, nd lat ion to 1 iving

HYPOL the bot r wa during period of thermal strati fica-

SOHYETAL MAP: rna t t hows on by 1 i nes connecting t of equal

he long a

OF SHORELINE: the linea di nee of the hare.

L ny bstance or condi on that approache or exceed the tol ranee mit of an organi

L of f water, especi 11 y of and lakes, and biologi l cond

t length of ke.

roscop on he bot- n y quant ti MACRONUTR ENT

urn rbonate.

h mode te content d lved nut ent .

requi in rel tive sma11 t

loni peci blue-

that ha a h i g h matter such as

ni matter ing nee of

Nl teria and

t t which the 1 i tude i to i 1 t on· SEICHE).

any an organism for cont nua of g fo reproduct on.

IC LAKE: low t of i solved nutrient .

ORGAN 1 iving pl t imal

t neous semblage of organisms living upon the free of subme in wa

t i of i ht for the con- ve i 1u 1 iv ing 11-bear rgani PHOTOSYNTHETIC ZONE: EUPHOTI ZONE)

PHYSIOGRAPH of o in t and evolution of land forms.

pl nkton, of rel

d 1ved nu r i ent d i-

r hat formed from raw

on the bot-

i a 1 carried n suspension or

within 1ake. in which the

water displacement during a iche.

of living and non-1 iving ~ateri ls

AREA: t is shallower than 14 feet in depth.

nding the 1 ke surface.

t from the sun.

1.

a of water.

of 1 iving material at any moment in time.

STAND NG ) .

r rom the natural stream channel and or other conduit.

SUMMER STAGNATION riod of t rmal stratification in a lake when hypo

AREA: t n of the surface. fl t

r i u t 1 r .

t

compl g p of t ta accumul ted within defini geologic

ing of therma 11 y r and 1 r of

di tine of r becau

ep imn and the 1 mn on per unit h from the upper

TRACE ENT· t in ry nu it i in the ronment.

TRANSP RATION: the ich wa r t nsfer to t at re from 1 iv i ng

TR any stream that contributes water to another st or of

TYCHOPLANKTON: planktonic organisms that or ginated from attached commu

VACUOLI contain ng vacuol or "air II

VASCU hi hly devel plant with water conducting tern. t plant with leaves, stems, and roots.

VERNAL: of or in t spring.

increase in standing crop of plankton during he spring

VOLUME: amount of water in lake.

COLUMN: vert cal i le in lake from surface to tom. WATERSHED: DRAINAGE AREA).

WAVE AMPLITUDE. -ha 1f of the wave he i

WAVE HEIGHT: maximum vertical distance between crest and t of a wave.

WAVE from c t to crest from roug to t WAV

WIDTH· the

WIN VELOC TV wind.

ZOO PLAN n n

Oneida La Wild L i

da Lake fi h: v. p.

in Onei Lake fish nd T Am. p 1 -169.

fi h· Roosevelt Wild Life

of Onei fish Roosevelt

on nitrogen

Wate Works Assoc tion, and Standard methods for the uding bottom sed ments and New York Am. bl i Health

of nitrogen and Assoc. Jour., v. p.

r r i r i from Oneida on the p. 74-77.

91 The hwa r mo 11 u of Oneida Lake, New York: Nautilus, v.

1 of mollu ks to fi h in Oneida New York: 11 re t Technology. Pub. no. 4

191 The roduc ivi of invertebrate fi h food on the bottom of --~-- da Lake with i 1 reference to mollus New York tate Call. try Techno ogy. Pub. no p.

Benoit R J. Cur J r Connecticut, Algae nd Metropol tan Wa tes. USPH p. 18-22

Biggar . ' The wo of Samuel de Champl in: Toronto, The c ain Soc. v. 3, 418 p.

Birge E. A. nd C. , The nland 1 kes of Wisconsi . The plankton I. Its quant t and chemical composition: Wise. Geol. and Nat. History Su Bull., v. 64 p. 1-222. Borte 1 , H r f bindendene 11 ' p.

rd L. V. and

Buddhar i W. for -green 1gae: Ph. D. 1 i p.

rd k G. E. and A t on the investigation of One i Lake. mimeo p.

ro 11 p rev ev1 p.

Chu of the medium on the concentra Jour. Eco 1ogy

i a 1d i A. (2d ed.) p. ter

Cobb, H. r tudies of ni rogen fixation and Am. Jour Botany, v. 51

ience and engineering: New York,

Dence, W. A. nd logical conditi n k v. 317

Edmond W T. and La Wa hington after diver 1 p. l.

Edmondson eut v. 1' p.

Eyster, C., requirement espec i a 11 y algae, . F. racu Un v . Pres

Federal Water Poll t ion, ti 1 ization and a 1gae, in incinnati Robt A. Taft Sani- tary

1968, Water po11ut and improvement need St. Lawrence Ri r hi , Feder a 1 Wate Po 11 uti on Con- trol Adminis tion 1 Madison Univ.

Lau ra ie 1 mnologique v

rvi of llmouth s New York: New York Fish and

f

Oneida Lake,

d ren for ng f n no 1-c Corne1 1 Univ

samp 1 i ng of no p.

ndment nc i ng F 17 job no. I

popul

routine samp 1 i ng F 1 R job no.

impoundment for inc ing . no. F-17-R-9 job no. II p.

h of

; routine ling h no. F- 7- job no.

year-class trength of wal 1- F-17-R-10, job no -b northern p rne 1 Un i .

i F

eyes in Un v. B

J. L. Oneida Lake P· 200.

Fruh, E. G. r. Wa r Po11ut on Cant

Gerloff

Gree r Re-

0 La An of I nv.

Gross M. G. E. rri

Grosslein, M. D. 0 ke New York Ph. D.

Ha 11, D. J. h Corne 11 Un i 8 p.

Hankin , T. L Onei Lake f i she Roosevelt Wild Life

ke f i he W ld Life

Harmon W. N. nd rney of change in the mol luscan fauna of Onei and Ocea ra v. 15, p

Has 1e r , A. D. t i domesti d inage Ecology v. 28, The zooplankton abundance ribution of in k: Ph. p.

L. logy of the t Urban a Un i v . I 1 1 • Pres

8 The of he tern end of Oneida La New Bull. p. 61 110.

n 1 u of low measurement to timate flow duration u. 1. r 475-C p. l 1

G. E. reat i raphy, ic and A ' try New York John W v. 1' 1015 p.

i 1 chemical ana 1ewood c Prenti

Trend in abundance of the ly in Onei Lake: New York Fish and Game Jour. . 13

ki David rvation of forms in ngton Am. Chern. r. p.

and Birge E. A The t parency the color and he pee conductance of the ake ' northeastern Wi scon in: Wi Art & Let Tra v.

resources in the ea tern r Comm. Ba in Pl nning

Ka N hol 0 ida ... hi t lake of them all: Field nd tream 1

Karrow, . F J and Terasmae J. The lroquoi Ontario Jou . Geology p

W. A. and of sever a 1 1ue- green lgae.

Krau R. W. the in the lgae: Ind. and . Chemi try v. p.

Kuen L. E. , Bac i rbon d i i d and a gal blooms: Jour. Pollution Con rol Federation . 1 p. 1 1747.

H. C. 1911, One da Lake pa t and present. Albany New York Libr 0 p h

M

H

Mu 11 nkton pul in he Ohio Lou i i 11

th 1 New Yor te N.Y

A b i 1og i survey of the New York Sta Con rv.

tioni v. 1 p. 11.

ida i r drainage New D nage Basin Survey

on su ival of young no. job no. -e mimeo. p.

surv 1 young fi h in j . I Cornell Univ.

p tic enve ope subs ituted for drift bottl h 10 . 1 1

Pa mer M., Env ronmental of nui 1 forms: Albany NY. 4 h Ann. Water li ium Proc. p

nkton in the 1 i lakes. 2. The composi- 1 ion to di lved subs Jour

. J. G. Hydrochemi t of the Onei Lake New . Environmental Conserv. t. of lnv Rl pres

Perl G 5 tni der wahren Sonnen trahlung in verschiedenen Breiten. Met. itschr. v. p. 85

Ph 11 ips, K. N. Newcomb R. C., Swenson H. L B. Wa r for Oregon: U.S. 1. Survey Wate r 1 p.

Amn i 1 i from Oneida La New York: Nautilu ,

Pirson, , Ernahrungs und Stoffwechselphysiologische Untersuchungen an and l Z. · Botan. v. 31 p. 1

P tt, H. S. , Preliminary report on the parasitic worms of Oneida Lake, New York: Roosevelt Wild Life Bull., v. 23, p. 1.

- 151 - Table }/,··Field

for pH! va Iues

D i s• solved Orqan i c Tot a! Tot a I 0 is- oxygen a nee Te"lper- l ica Stron- Potas- B i car- Su 1- Chlo- Fl uo- N i- N i- Date Time pH solved (tJ."'ho,/cm ature ci um tl 13m slum ride ride oxygen satu- at ( oc) (Ca) (Mg) ( Sr) (K) (SO,.) ( c1) (F) ration) 25°C)

0N[ID·~ LAKE NO. 8 -- 13.3 ------<1 8.3 9 .gO 290 18.2 0.2 42 9.4 -- 5. 5 0.9 I 07 I 0 0.2 0.2 0.01 0.1 -- 8.16 290 24.8 ------7. 7 7. 20 290 19.6 1. 6 9-9 -- s. 3 .8 104 57 9-1 .2 .1 . 02 . 09 -- -- • 03 -- 8.85 285 21.6 -· ------104.6 300 22.0 1 .8 41 9-3 -- 5.2 1.0 104 55 9. 0 .1 .1 .00 . 12 -- -- .04 174 123.4 ------8.3 8. 50 310 I .8 40 5 ~ 0 102 54 9.2 .o .1 .00 . 12 -- -- .OJ 170 9.66 ------123.3 300 26.0 2.4 39 -- 1 .9 104 56 9.8 .o .0 . 02 .07 ------320 ------95 -- -- .00 310 ------108 -- -- . 0 • 0 ------··------8.2 12. I 0 IIi ILl 41 o. 56 1.1 i 02 50 .2 .I .03 ,04 • 19 22 ,o M. hei nd

ng J . F. , New York p

Tran • N 7 nd of algae rom One da Lake: New York try Pub. 8 v. 17 p. u.s. of the northern and northwe tern Oneida Lake: U S. Lake rvey no. 1.

the northern northwestern -New York Sta of Oneida U.. Lake Survey Field Sheet no. u.s. Subcommittee of the Commit on lution -G t Lakes ) Hea ings: 89th

U.S. rtment of Commerce 1 1 imatologica1 data, se, New York, Hancock Fi ld: U.S. . Commerce, Environmental Data Service, p.

1 ima York, Hancock Field: p.

climatological data, racuse, New York, Hancock Field: , Environmen 1 Da Service, 24 p.

U.S. Geologi , tion of records of surface waters of the United Sta through r 1950. Part 4. St. Lawrence River Basin: U.S. Geol. Survey Water-Supply Paper 1307, 397 p.

Water resources data for New York, 1967. Part 1. Surface water rd : U.. Geol. Survey, Water Resources Div., 376 p.

da r New York, 1 Part 2. Water qua ity Geol. Survey, Water Resources Div., 160 p.

1969b Water resources data for New York, 1968. Part 1. Surface wa record : U.. Geol. Survey, Water Resources Div., 366 p.

Water resources data for New York, 1 Part 2. Water qua ity record : US. Geo1. Survey, Water Resources Div., 137 p.

1970b, Water resources data for New York, 1969. Part . Surface wa r records: U.S. Geol. Survey, Water Resources Div., 283 p.

1971, Water resources data for New York, 1969. Part 2. Water Qual­ ty records: U.S. Geol. Survey, Water Resources Div., 119 p.

- 153 - We 1ch, . S. , 1 Limnology ) : New Yor McGraw- 11,

- 1 APPENDIX

- 1

Table 30.--Field :-ne>asurern.cnts anrl chc:mlca1 aralvses cf sa"'pics col ();~eida Lake dr-alnaqe basi~"'

Dis- f i c so I ved a nee Temper- S i I Ce I- Stron- Sod i urn Chlo- Fl uo- N;- Date Time pH <;O 1 ved rl-ld"'lhos/cn atu re tium satu- at ( o C) ( Ca) ( Sr) 25° C)

3 I 0 I 3. I 4. 7 7 0 I 0 SO 84.8 I 50 5.8 4. 0 20 4.9 . 04 3. 7 1.0 64 I 3 6. 0 .2 1.2 I 37 1.7 I 3 4.1 . 06 4.1 .8 15 6. 1 .1 1.3 . 00 .21 300 . 0 36 9. 1 .22 8.4 1.2 26 18 I 16 7. 5 -- -- 240 . 0 2 7 6. 8 . 15 I 0 1.1 21 20 .I . 02 • 06 . 07 2-15-68 1600 8. 0 -- -- 300 . 0 35 I 0 . 2 I 10 I .2 118 23 19 .2 3.8 . 02 . 01 . 2 7 I .. 14 . 05 165 I 03 370 . 0 38 9· 9 . 25 24 1.2 122 25 42 .I 3.6 . 01 . og I. 02 130 1.1 15 3. 8 . I 0 3.4 1.0 46 15 7. 0 .1 1.3 . 02 26 6.8 . 16 6. 0 86 19 12 .I 2. 2 38 8.4 .26 7. 7 29 15 .2 1.9

2.6 31 7. 5 . 17 1.1 I 06 15 16 .2 2. I . 02 2 7 6. 5 . 08 ·9 93 13 .l 1.4 33 8.2 . 15 l.l 120 16 .2 1.8 7. 5 -- -- 185 16. I 2 7 6. 4 . 05 1.0 l 02 12 8.8 . 3 1.7 7. 8 I 0. 59 93.4 230 9-4 30 7. 5 -- 1.0 15 I 0 -- 3. I • 15 . 07 9-30-69 l I 45 8. 0 -- -- 240 I 3.9 2. 5 32 s. 0 -- 6.9 l.O l 06 8.1 -- 3. l . 04 . I 0 . 15 . 23 . 12 123 43

1;, v- 2020 8. 1 75. I Boo 21.1 1.1 114 29 13 2.6 224 19 . 3 . 8 .66 V1 -- 8. 6 I 49.9 830 25.0 126 30 -- 13 231 20 .2 . 5 . IS co " " I 100 7. 8 6. 50 71.9 820 20.0 145 26 -- 17 224 21 .2 2.4 . 51 1445 8. 0 s. So I soo 19.9 I 07 27 -- 14 200 20 • 2 1.8 . 00 1330 8. 6 11 .go 740 23. b 98 24 -- II 185 17 .2 1.7 620 22.2 10 22 -- 14 208 153 24 .I 1.7 • 56 .ll 900 21.1 30 2.9 21 253 30 .l . 03 . 17 8. 0 -- -- 975 13.3 26 3. 5 18 273 23 .2 .21 . 12 7. 5 I 0.20 84.3 580 6. 7 21 1.5 8.2 101 14 . 2 2.9 . 02 • 00 7. 9 -- -- 530 3. 3 1 75 18 1.0 7.2 2.2 71 12 .l 4.1 .03 .07 .11 .0 124 29 2.9 10 2. 0 195 18 .l 4.6 • 03 .44 1. 20 • 0 18 l.l 8. 7 2. 0 75 Jb • 2 • 0 29 2.6 ll 1.9 187 19 • 2 7. 6 -- -- 867 . 0 29 3. 0 14 2. I 211 22 .I 7 8 -- -- 420 3. 3 15 . 8 5.8 1.9 58 12 8. 3 -- -- 525 9.4 88 21 1.6 ]. 7 I 96 15 .I 3.4 8. 3 -- -- 630 12.2 113 26 2.3 10 I 164 18 .2 1.5 8. 0 -- -- 754 -- . 5 117 26 2.6 12 262 174 21 .3 1.6 610 J3. 3 3. 5 l 01 24 1.8 I 0 1.8 13'• .I 1.7 no 16.4 1.5 2 7 5 !6 178 23 l

18.0 4.g 57 13 .7 4.6 2.6 45 8. 0 . 0 4. 5 . 05 .14 l. 20 . 16 117 29 2.8 200 26 1. . 22 . 23 • 82 92 20 -- 8. 2 -- -- 950 111.4 156 -- 19 c ( a:

0 co '0 : 0

~

0 0 0 ~ 0

u; a:'''; a; ('J ('-.j

:c CL

0 0 "'0 160 - : a: c; : a; : a;

: Cf\ : : N : C) : V\ V\ V\ LC\ ~

: : : : :

: m : : : N m m "" : '1 -:t ~

u Q_'"

I Q_

E'" f- ~·~ '~~·~~·~·"'~ ,~~~ ·~ ,~~-~ --"·r·-"' -·~ Onediu

Dis-

Dis- Time pH

0.0 14 .o 18 0~ 0 2.3 18 220 12.2 1.0 35 25 280 18.4 ------2.2 76 8.1 • 50 4. 7 100 9.0 .1 .3 .02 .05 .07 ------23.3 2. 3 41 8.9 4.6 1.0 104 48 9.3 .2 1.1 .00 • 10 .41

240 21.8 3. 7 40 • 56 1.1 104 If] 9. 0 .1 .4 .oo • 13 .02 .21 21 21 14.0 4.3 40 -- 1.1 104 45 8.8 -- .o i20 .0 4.5 14 -- -- .8 .00 ...... 8-14-69 1320 8.6 -- -- 265 24.4 2.9 41 7.4 -- 4. 7 .9 94 49 8.2 -- .o .01 .45 .22 .57 ~ N ONEIDA ------13.3 ------8.3 10.00 109.2 280 19.4 • 3 41 9.1 -- s. 3 .8 104 52 9.2 .2 .2 .01 .24 -- -- .03 ------.6 40 9.6 -- 5.0 ------1.8 41 9-1 -- 5.1 1.0 103 57 8.9 .1 .1 .00 • 12 -- -- .04 175 ------1.9 39 9· 1 -- s.o -9 101 53 8.8 .1 .1 ------.9 104 55 9.5 .1 .1 .02 ------.1 .I .00 . 02 • 14 .0 .0 ------240 11.0

7.8 11 ~--Fie1d rneasurements and chemical analyses of surface sarnp1es collected routinely from stations on Oneida Lake

Dis- Dis­ Date Time pH so 1ved Potas-

satu- at ration) 25°C)

12.2 9.2 -- 5.2 0.8 I 03 ------4i 9.6 -- 5.4 .8 1 Oil 9· 0 .2 • 0 . 09 ------41 8.9 -- 5.2 1.0 104 54 8.8 .1 .0 .00 • 18 ------39 8.8 -- 5.1 .9 104 57 9. 7 .0 .0 .01 .30

8.5 22.5

9.5 .2 -- .I ------54 -9 -- .9 • 0 .02 -- -- .l 2

.9

8.1 s.s 0 I 0 I I -: : I ' : :::'

0 : 0 : a :

~ 0\- ('¥"\ I I I I I I - I -: I : "! ' ' ':.:

I I I I I I -: I I "! : ' ' ' ' -: '

I 00 I : ..j· -(f.,

I r-. I I ""'0 0 I

~0:0:

I Lf\ I : Lf\ Lf\

z Ocr\ I I- I ""I • I I I • I 00 '"

I I C'\ I ~·:;~~ _.,.

(J)' iN I r---. I I t 0 l • I I & I *I I • t I • I 0 M N

N

N

'-''I

• I -I ""

I I I I I I I I

- 164 - - 1 ! I I I

I "~ I I I

~I I

I• I

''

(lJ

0"'

- 1 I 'I Dis- Specific

D i Date pH

12.2

, 3

·7

-9

17.3 11.3 • 7 35 7.2 .53 4.5 98 37 9-9 .4

14.4 .2 41 -- .8 103 54 9. 7 .1 .00 • 51; -- -- .02 ------7. I .8 54 9-5 .I ------40 9.1 -- 5. 1 ·9 104 54 9. I .I .2 ------9.2 -- 5.2 ·9 93 53 9-3 ------3 7 9· 1 -- 5. I .8 94 54 .I -- -- .11 ------87 107 -- -- .o ------8.2 1o.oo 92.8 240 11.6 .5 39 7.9 .54 4.3 1.1 100 49 9-9 .2 .o .02 .03 .35 .38 21.2 -- 21.5 :r: "-

()) E f-

:::::1 I I ''

i I I I

I I I I

I' I I

I I I I I I I I CH Dl

1 riphyton LLOW-BROWN ALGAE INCLUDING DIATOMS)--Continued

- 172 - Cant nued

c ISH FAMILY) Banded Ki 11 if ish

GAD rbot

K FAMILY) Stickleback HI

FAMI Vel ow Bullhead Brown Bullhead Channel Catfish

Gar

ide Darter Pikeperch or Walleye

Eastern Troutperch

- 174 - rum

2 n re very a t f lake 1

Ranatra sp. (Butterflies and Moths) sp. macula lis

- 177 - the fauna of Oneida Lake -Continued

1 i es)

ISOPODA

- 178 -

bl and the fau Con inued

TURBE

- 180 - AL

)

ASC

) IL FAMILY)

FAMILY)

spicatum)

FAMI

WORT FAMILY)

L FAMILY)

- 182 ~