Borehole Logging for Uranium Exploration

Total Page:16

File Type:pdf, Size:1020Kb

Borehole Logging for Uranium Exploration TECHNICAL REPORTS SERIES No. 212 Borehole Logging for Uranium Exploration A Manual c # INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1982 BOREHOLE LOGGING FOR URANIUM EXPLORATION A Manual The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE'S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1982 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Austria January 1982 TECHNICAL REPORTS SERIES No.212 BOREHOLE LOGGING FOR URANIUM EXPLORATION A Manual INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1982 BOREHOLE LOGGING FOR URANIUM EXPLORATION: A MANUAL IAEA, VIENNA, 1982 STI/DOC/lO/212 ISBN 92-0-145082-6 FOREWORD Intensive worldwide efforts in uranium exploration over the past four years have been stimulating research on and development of new exploration techniques and field equipment. It is widely recognized that borehole logging is one of the most effective ways of estimating uranium resources, and its popularity has grown considerably. Logging for uranium, which once was an auxiliary technique subordinate to chemical analysis and drilled core exami- nation, has become one of the most powerful and efficacious methods of measuring, directly or indirectly, uranium at depth. Borehole logging provides, rapidly and economically, most of the sub-surface information needed by the exploration geologist. This includes in-situ analysis, lithological identification, stratigraphic correlation, and information on density and moisture. Logging is important not only in exploration but in mine development and grade control, in mining operations and in production. Tens of millions of metres will be drilled and logged by exploration firms and governmental organizations in Member States each year in the search for nuclear fuel. The joint NEA/IAEA Group of Experts in Research and Development on Uranium Exploration Techniques, aware of the importance of this particular subject, recommended the preparation of a manual that could be of use to both developing and industrialized countries. Accordingly, the IAEA convened a workshop to discuss problems related to borehole logging and, later, organized an international consultative group charged with the preparation of such a manual. The present text has been prepared taking into account the requirements of both developing countries, which might be at an incipient stage of uranium exploration, and industrialized countries, where more advanced exploration and resource evaluation techniques are commonly in use. While it was felt necessary to include some discussion of exploration concepts and fundamental physical principles underlying various logging methods, it was not the intention of the consultants to provide a thorough, detailed explanation of the various techniques, or even to give a comprehensive listing thereof. However, a list of references has been included, and it is strongly recommended that the serious student of mineral logging consult this list for further guidance. The Agency wishes to express its gratitude to the four consultants, Messrs. J.K. Hallenburg, P.G. Killeen, V.L.R. Furlong and J. Duray, who participated in the meetings and contributed to the report. Special thanks are due to Mr. J.K. Hallenburg, Chairman of the Consultative Group, who not only contributed much original material to the manual but also edited the text for technical content and prepared it for publication. Mr. P.M.C. Barretto, a member of the Group, was the responsible Agency staff member for this project. CONTENTS 1. INTRODUCTION 1 1.1. How borehole logging fits the uranium exploration program 1 1.2. Natural radioactivity 4 2. THE BOREHOLE: ITS CHARACTERISTICS AND EFFECTS 18 3. LOGGING TECHNIQUES 29 3.1. Common logging techniques 29 3.1.1. Gross-count gamma-ray logging 29 3.1.2. Spectrometric gamma-ray logging 52 3.1.3. Neutron logging 67 3.1.4. Resistance, resistivity, and conductivity 79 3.1.5. Spontaneous potentials 112 3.1.6. Calipers 135 3.1.7. Deviation 138 3.2. Other logging techniques 150 3.2.1. Neutron-activation systems 150 3.2.2. Density 153 3.2.3. Acoustic measurements 169 3.2.4. Induced polarization 176 3.2.5. Magnetic susceptibility 184 3.2.6. Dipmeters 187 3.2.7. Mud logging 190 3.2.8. Use of petroleum logs and petroleum logging equipment .... 192 4. INSTRUMENTATION 194 4.1. Basic systems 194 4.2. Advanced systems 208 4.3. Radioactivity statistics 214 5. FIELD PROCEDURES 216 6. INTERPRETATION 231 6.1. The exploration philosophy 231 6.2. Interpretation of borehole data 232 7. SELECTED REFERENCES 248 APPENDIX A: Calibration procedure for gross-count gamma-ray logging 259 APPENDIX B: Deadtime determination for gross-count gamma-ray logging 266 APPENDIX C: Correction factors for gross-count gamma-ray logging 270 APPENDIX D: Glossary 276 LIST OF CONSULTANTS 279 1. INTRCDUCTiai The importance of logging in uranium exploration was summarized in a 1976 IAEA report as follows: "Borehole logging rapidly and economically provides most of the subsurface infor- mation required by the exploration geologist. This includes in-situ sampling and assaying, lithologic identification, strat- igraphic correlation, and the more sophisticated logging pro- grairmes measure petrophysical parameters such as density, and moisture or various types of geological formation. Logging can often greatly reduce drilling costs by obtaining the needed data from less costly noncored holes or from holes previously drilled for other purposes. Generally, logging provides more represent- ative and objective data in less time and at lower cost than is required by descriptive logging, sampling and assaying of cores or cuttings." The dictionary defines a log as "a record of progress, as in a record of a ship's speed." A borehole log is a record of one or more physical measurements as a function of depth in a bore- hole. Logs are recorded by means of sondes, probes or tools carrying sensors which are lowered into the hole by a cable. Examples include logs of electrical measurements, nuclear meas- urements, acoustic measurements and temperature measurements. Measurement of certain parameters are especially useful in a uranium exploration program. The most common logging techniques useful in uranium exploration are described, including the phys- ical basis of each technique, its application, and the analysis of an example log. Less common logging techniques which may become in greater usage in the future are reviewed more briefly. Finally logging systems (more than one parameter) are dis- cussed including instrumentation, field procedures and inter- pretation in several specific geologic environments. 1.1. How borehole logging fits the uranium exploration program 1.1.1. A successful exploration program consists of systematic and sequential decision-making actions. In general, these actions are: 1.1.1.1. Preliminary appraisal A basic decision is made to explore for uranium. Considera- tion is given to the selection of promising areas which may be favorable for uranium occurrence (indicated by existing geologi- cal and geophysical information). Detailed geological appraisal of the selected area from existing geologic knowledge is carried 1 out in an attempt to reduce the areas to be examined. Geologi- cal interpretation from aerial photographs is often included in this stage. Geological and radiometric field checks are made for confirmation on the areas selected where possible host environments exists. 1.1.1.2. First phase program During the first phase of an exploration program several steps should be considered and/or must be followed. Airborne radiometric, ground radiometric, and/or geochemical surface sampling must be considered and carried out if they appear use- ful. Regional and local geological mapping are very necessary. Stratigraphic drilling should be carefully planned along
Recommended publications
  • CL Jones, CG Bowles, and KG Bell Released to Open Tiles This Report Is
    EXPEm:MENTAL DRILL HOLE LOGGIlIl IN PO'W!R DEPOSITS OF THE CARISBAD DISTRICT, N»1 MEXICO C. L. Jones, C. G. Bowles, and K. G. Bell TJ. S. GEOLOGICAL SURVEY This report is prelimi:csry\ "-- and has not been edtted or ,,"- Released to open tiles reviewed tor conformity to ~­ /' r- /'-' Geological Survey standards _~(1..~~_'--:_ '~_ ~~~~ .. .. I or nomenclature. / ,I 1- COtll'e:tf!'S; Page Abstract -------------~------------------------------------------1 ~troduct1on -------------------------------------------------7-­ 2 4 Geology -----------------------------------------------------~-­ ---------------------------------------------------~-- 7 Equipment .. 8 Drill hole data ----------------------------------------------~-- Supplementary ~e8ts -~_._----_.------------------------------~--- 10 Gamma-ray logs --~------------------------------------------y----11 Grade aDd th1clc1ess est1mates f'rom gamma-ray logs ---------- 14 l'leutron lop -------------....--------..........---.....------.------------ l5 Electrical resistivity logs ------------------------------------­ 18 21 Literature cited -----------------------------------------._----- ILLUSTRATIONS Figure 1. Generalized columnar section and radioactivity log of potassium-bearing rocks -------------------------- 2. Abridged gamma-ray logs recorded by commercial All companies and the U. S. Geological Survey --------------- figures Lithologie, gamma-ray, neutron, and electrical resistiVity logs .-------~-_.---------------.------------ are in 4. Abridged gamma-ray and graphic logs of a potash
    [Show full text]
  • DOCUMENT Mute
    DOCUMENT mute ED 124 18 . 88 SE 019 612 TITLEN: Radioactivity .and Man iinicourse, Career Oriented Pre-Technical Physics* , INSTITUTI N Dallas Independent School District, Tex. SPONS AGE CY Bureauvof Ele*entary and Secondary tducat4.0n (D5 HEN/OE),-WashingtOn, D.C. -RUB DATE 7 For rilated 0, NOTE - 78p.; Drawings may not reproduce wel documens, see SE 018 322-333 and SE 019 605-616 , . 4 EDRS PRICE MF-$0.83 HC-$4.67 Plus Postag4. DESCRIPTOR Instructional Materialsi Physics; *Program Guides; *Radiation Effects; *Science Activities; Science .41 Careers; Science Education; *Science Materials; Secondary Zdution;.*Secondary School Science; Technical Educe ion IDENTIFIrRS Elementary Seco dart' VIAlcation ACt Title III; ESEA Title' III 07. 1 ABSTRACT .1j This instructional guide, intended for student use, develops the subject of radioactivity and can through a series. of sequential activities.. `A technical development of the subject is pursued with examples stressing practical aspects'of the concepts. Included in the minicourse are:, (1) the rationale,(2) terminal behavioral objectives, (3) enabling behavioral objectives,(4) activities,(5) resource ,packages, and (6) evaluation materials. The' * benefits as well as the dangers of radiometivity to Ian are considered.,This unit is one of twelve intended for use in.the second year of tv9 year vocationally oriented .physics. program. (CP) j t I J ***********************************************************************. * . Documents acquired by ERIC include many inforgal unpublished * materials not a40.1able.from other sources. ERIC makes every effort * * to obtiit the best copy available. Nevertheless,items of.marginel * *.reproducibility are often encountered and this-affects the quality * - *`of the microfiche and hardcopy reproductions ERIC makes available * *.
    [Show full text]
  • DOCUMENT RESUME ED 071 911 SE 015 548 TITLE Project Physics
    DOCUMENT RESUME ED 071 911 SE 015 548 TITLE Project Physics Teacher Guide 6, The Nucleus. INSTITUTION Harvard Univ., Cambridge, Mass. Harvard Project Physics. SPONS AGENCY Office of Education (DHEW) Washington, D.C. Bureau of Research. BUREAU NO BR-5-1038 PUB DATE 68 CONTRACT OEC-5-10-058 NOTE 235p.; Authorized Interim Version EDRS PRICE MF-$0.65 HC-S9.87 DESCRIPTORS Instructional Materials; *Multimedia Instruction; *Nuclear Physics; Physics; *Radiation; Science Activities; Secondary Grades; *Secondary School Science; *Teaching Glides; Teaching Procedures IDENTIFIERS Harvard Project Physics ABSTRACT Teaching procedures of Project Physics Unit 6are presented to help teachers make effectiveuse of learning materials. Unit contents are discussed in connection withteaching aid lists, multi-media schedules, schedule blocks, andresource charts. Brief summaries are made for transparencies, 16mm films, and reader articles. Included is information about the backgroundand development of each unit chapter, procedures in demonstrations, apparatus operations, notes on the student handbook, andan explanation of film loops. Additional articlesare concerned with objects dated by radiocarbon, radiation safety, propertiesof radiations, radioactive sources, radioactivity determinationby electroscopes, and radiation detecting devices.Scalers, counters, Geiger tubes, and cadmium selenide photocellsare analyzed; and a bibliography of references is given, Solutionsto the study guide are provided in detail, and answers to test itemsare suggested. The sixth unit of the text, with marginal commentson each section, is also compiled in the manual. The work of Harvard ProjectPhysics has . been financially supported by: the Carnegie Corporation ofNew York, the Ford Foundation, the National Science Foundation,the Alfred P. Sloan Foundation, the United States office of Education,and Harvard University.
    [Show full text]
  • Experimental Drill Hole Logging in Potash Deposits Op the Cablsbad District, Hew Mexico
    EXPERIMENTAL DRILL HOLE LOGGING IN POTASH DEPOSITS OP THE CABLSBAD DISTRICT, HEW MEXICO By C. L. Jones, C. G. Bovles, and K. G. Bell U. S. GEOLOGICAL SURVEY This report is preliminary and has not been edited or Released to open, files reviewed for conformity to Geological Survey standards or nomenclature. COHTEUTS Page Abstract i Introduction y 2 Geology . .. .. .....-*. k Equipment 7 Drill hole data . - ...... .... ..-. - 8 Supplementary tests 10 Gamma-ray logs -T 11 Grade and thidmess estimates from gamma-ray logs Ik Neutron logs 15 Electrical resistivity logs 18 Literature cited . ........... ........ 21 ILLUSTRATIONS Figure 1. Generalized columnar section and radioactivity log of potassium-bearing rocks 2. Abridged gamma-ray logs recorded by commercial All companies and the U. S. Geological Survey figures 3« Lithologic, gamma-ray, neutron, and electrical resistivity logs ................. are in k. Abridged gamma-ray and graphic logs of a potash envelope deposit at end of 5« Lithologic interpretations derived from gamma-ray and electrical resistivity logs - ...... report. TABLE Table 1. Summary of drill hole data 9 EXPERIMENTAL DRILL HOLE LOGGING Iff POTASH DEPOSITS OP THE CARISBAD DISTRICT, HEW MEXICO By C. L. Jones, C. G. Bowles, and K. G>. Bell ABSTRACT Experimental logging of holes drilled through potash deposits in the Carlsbad district, southeastern Hew Mexico, demonstrate the consider­ able utility of gamma-ray, neutron, and electrical resistivity logging in the search for and identification of mineable deposits of sylvite and langbeinite. Such deposits are strongly radioactive with both gamma-ray and neutron well logging. Their radioactivity serves to distinguish them from clay stone, sandstone, and polyhalite beds and from potash deposits containing carnallite, leonite, and kainite.
    [Show full text]
  • Main Attributes of Nuclides Presented in This Book
    Appendix A Main Attributes of Nuclides Presented in This Book Data given in TableA.1 can be used to determine the various decay energies for the specific radioactive decay examples as well as for the nuclear activation examples presented in this book. M stands for the nuclear rest mass; M stands for the atomic rest mass. The data were obtained from the NIST and are based on CODATA 2010 as follows: 1. Data for atomic masses M are given in atomic mass constants u and were obtained from the NIST at: (http://www.physics.nist.gov/pml/data/comp.cfm). 2. Rest mass of proton mp, neutron mn, electron me, and of the atomic mass constant u are from the NIST (http://www.physics.nist.gov/cuu/constants/index. html) as follows: −27 2 mp = 1.672 621 777×10 kg = 1.007 276 467 u = 938.272 046 MeV/c (A.1) −27 2 mn = 1.674 927 351×10 kg = 1.008 664 916 u = 939.565 379 MeV/c (A.2) −31 −4 2 me = 9.109 382 91×10 kg = 5.485 799 095×10 u = 0.510 998 928 MeV/c (A.3) − 1u= 1.660 538 922×10 27 kg = 931.494 060 MeV/c2 (A.4) 3. For a given nuclide, its nuclear rest energy was determined by subtracting the 2 rest energy of all atomic orbital electrons (Zmec ) from the atomic rest energy M(u)c2 as follows 2 2 2 Mc = M(u)c − Zmec = M(u) × 931.494 060 MeV/u − Z × 0.510 999 MeV.
    [Show full text]
  • And -Ray Scintillators
    crystals Article Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and g-ray Scintillators Francesco Maddalena 1,2 , Liliana Tjahjana 1,2 , Aozhen Xie 1,2,3 , Arramel 4 , Shuwen Zeng 5, Hong Wang 1,2,*, Philippe Coquet 1,2,6, Winicjusz Drozdowski 7, Christophe Dujardin 8,* , Cuong Dang 1,2,3,* and Muhammad Danang Birowosuto 1,* 1 CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Level 6, Border X Block, Singapore 637553, Singapore; [email protected] (F.M.); [email protected] (L.T.); [email protected] (A.X.); [email protected] (P.C.) 2 School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore 3 Energy Research Institute @NTU (ERI@N), Nanyang Technological University, Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore 637553, Singapore 4 Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore; [email protected] 5 XLIM Research Institute, UMR 7252 CNRS/University of Limoges, 123, avenue Albert Thomas, 87060 Limoges CEDEX, France; [email protected] 6 Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520-Université de Lille, 59650 Villeneuve d’Ascq, France 7 Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland; wind@fizyka.umk.pl 8 Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière UMR 5306, F-69622 Villeurbanne, France * Correspondence: [email protected] (H.W.); [email protected] (C.D.); [email protected] (C.Dang); [email protected] (M.D.B.); Tel.: +65-6790-6595 (M.D.B.) Received: 31 December 2018; Accepted: 4 February 2019; Published: 8 February 2019 Abstract: Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed.
    [Show full text]
  • Chapter 20 Detectors in Medicine and Biology
    Chapter 20 Detectors in Medicine and Biology P. Lecoq 20.1 Dosimetry and Medical Imaging The invention by Crookes at the end of the nineteenth century of a device called spinthariscope, which made use of the scintillating properties of Lead Sulfide allowed Rutherford to count α particles in an experiment, opening the way towards modern dosimetry. When at the same time Wilhelm C. Roentgen, also using a similar device, was able to record the first X-ray picture of his wife’s hand 2 weeks only after the X-ray discovery, he initiated the first and fastest technology transfer between particle physics and medical imaging and the beginning of a long and common history. Since that time, physics, and particularly particle physics has contributed to a significant amount to the development of instrumentation for research, diagnosis and therapy in the biomedical area. This has been a direct consequence, one century ago, of the recognition of the role of ionizing radiation for medical imaging as well as for therapy. 20.1.1 Radiotherapy and Dosimetry The curative role of ionizing radiation for the treatment of skin cancers has been exploited in the beginning of the twentieth century through the pioneering work of some physicists and medical doctors in France and in Sweden. This activity has very much progressed with the spectacular developments in the field of accelerators, P. Lecoq () CERN, Geneva, Switzerland e-mail: [email protected] © The Author(s) 2020 913 C. W. Fabjan, H. Schopper (eds.), Particle Physics Reference Library, https://doi.org/10.1007/978-3-030-35318-6_20 914 P.
    [Show full text]
  • THERMAL POST-FABRICATION PROCESSING of Y2O3:Tm CERAMIC SCINTILLATORS Matthew Graham Chapman Clemson University
    Clemson University TigerPrints All Theses Theses 5-2015 THERMAL POST-FABRICATION PROCESSING OF Y2O3:Tm CERAMIC SCINTILLATORS Matthew Graham Chapman Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Chapman, Matthew Graham, "THERMAL POST-FABRICATION PROCESSING OF Y2O3:Tm CERAMIC SCINTILLATORS" (2015). All Theses. 2078. https://tigerprints.clemson.edu/all_theses/2078 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THERMAL POST-FABRICATION PROCESSING OF Y2O3:Tm CERAMIC SCINTILLATORS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Materials Science and Engineering by Matthew Graham Chapman May 2015 Accepted by: Dr. Luiz G. Jacobsohn (Advisor) Dr. John M. Ballato Dr. Colin D. McMillen i Abstract The effects of thermal post-fabrication processing in O2 flux on the luminescence and scintillation of Y2O3:Tm transparent ceramics were investigated. The material’s microstructure, optical properties, and scintillation properties were characterized using X- ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, thermoluminescence measurements, differential pulse height distribution measurements, Archimedes density measurements, photoluminescence measurements, and ultra violet- visible transmission measurements. The processing is effective if performed in the time frame of 60-120mins at 1050°C under oxygen flow. After the first hour of processing, about 40% enhancement in the luminescence output together with about 20% enhancement in the scintillation light yield were observed.
    [Show full text]
  • Gamma Ray Spectroscopy for Logging While Drilling in Mineral Exploration
    Western Australian School of Mines Department of Exploration Geophysics Gamma Ray Spectroscopy for Logging While Drilling in Mineral Exploration Ida Hooshyari Far This thesis is presented for the Degree of Doctor of Philosophy of Curtin University March 2018 I Declaration “To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgment has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university.” Signature: Date: 19/03/2018 II To my dear mother, for all her love and all her tough love To my great father, for his love, support and his dedication to our family To my life and love partner, for his love, care and being an amazing being III Thesis Abstract Gamma ray spectroscopy has been in use in the mineral exploration industry for decades, with much pioneering work done in the 1970’s to 1980’s, yet many of the techniques used to process the recorded spectrum have not improved significantly in the last 30 years. Technological developments in slim logging tools appear to have not kept pace with other technological developments, such as advances in scintillator materials for better gamma detectors, and neutron generators for electronic control of radiation. Yet the ability to collect good quality gamma-ray energy spectra with 256 or more channels is common and the computational resources for better data processing are now abundant. Despite such advances there hasn’t been much change in the way natural gamma spectra are analysed, in the borehole or in airborne radiometrics, except for noise reduction techniques such as Noise Adjusted Singular Value Decomposition (NASVD) and Maximum Noise Fraction (MNF).
    [Show full text]
  • From Particle Physics to Astroparticle Physics: Proton Decay and the Rise of Non-Accelerator Physics
    From Ultra Rays to Astroparticles Brigitte Falkenburg r Wolfgang Rhode Editors From Ultra Rays to Astroparticles A Historical Introduction to Astroparticle Physics Editors Brigitte Falkenburg Wolfgang Rhode Philosophy and Political Science, Faculty 14 Physics, Faculty 2 Technische Universitaet Dortmund Technische Universitaet Dortmund Dortmund, Germany Dortmund, Germany ISBN 978-94-007-5421-8 ISBN 978-94-007-5422-5 (eBook) DOI 10.1007/978-94-007-5422-5 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012954697 © Springer Science+Business Media Dordrecht 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Detecting and Measuring Ionizing Radiation - a Short History by F.N
    Radiation detection Detecting and measuring ionizing radiation - a short history by F.N. Flakus* Ionizing radiation causes neutral atoms or molecules Emergence of radiation detectors to acquire either a positive or negative electrical charge. from the early discoveries The most commonly known types of ionizing radiation are alpha, beta, gamma, X, and neutron rays. On the evening of 8 November 1895, while working Charged-particle radiation, such as alpha or beta rays, in a carefully darkened room, Rontgen noticed that a has a direct ionizing effect; whereas neutral radiation, piece of a cardboard coated with barium platinocyanide such as X, gamma, or neutron rays, have an indirect showed a faint, flickering, greenish light (fluorescence) ionizing effect, i.e. these radiations first generate charged when electrical discharges took place in a Hittorf-Crookes particles which then have the ionizing effect. tube near the screen. The tube itself was carefully covered with a black shield impervious to any visible light. Radiation is a form of energy. This energy can be Rontgen verified that the tube was the source of a new partly or wholly deposited in a suitable medium and kind of radiation, which was invisible but which revealed thus produce an effect. The detection and measurement its existence when hitting the luminescent screen. of radiation is based upon the detection and Rontgen subsequently performed many careful experiments measurement of its effects in a medium, and the history on the radiation which he named X-rays. His first of the emergence of radiation detectors is closely important step was to replace the fluorescent screen by a related to the discovery of radiation and radiation photographic plate- this was susceptible to X-rays and effects.
    [Show full text]
  • Radioluminescence: a Simple Model for Fluorescent Layers
    Linköping Studies in Health Sciences Thesis No. 117 Radioluminescence: A simple model for fluorescent layers Jan Lindström Division of Radiological Sciences, Radiation Physics Department of Medical and Health Sciences Faculty of Health Sciences Linköping University, Sweden, 2011 Abstract The aim of this thesis is to present a simple model for the radiation to light conversion processes in fluorescent layers as an aid in future developments and applications. Optimisation between sensitivity and spatial resolution for fluorescent layers in digital radiology is a delicate task where the extrinsic efficiency for various phosphors needs to be established for varying parameters. The extrinsic efficiency of a fluorescent layer can be expressed as the ratio of the light energy per unit area at the screen surface to the incident x- ray energy fluence. Particle size is a critical factor in determining the value of the extrinsic efficiency, but in most models it is not treated as an independent variable. Based on the definition of a light extinction factor (ξ), a model is proposed such that, knowing the intrinsic efficiency η, the particle size and the thickness of a certain make of screen, the extrinsic efficiency can be calculated for an extended range of particle sizes and / or screen thicknesses. The light extinction factor ξ is an optical parameter determined from experimental data on extrinsic efficiency. The proposed model is compared to established methods. Further experiments have confirmed the validity of the model. Monte-Carlo simulations have been utilised to refine the calculations of energy imparted to the phosphor by taking into account the escape of scattered and K-radiation generated in the screen and interface effects at the surfaces.
    [Show full text]