Gamma Ray Spectroscopy for Logging While Drilling in Mineral Exploration

Total Page:16

File Type:pdf, Size:1020Kb

Gamma Ray Spectroscopy for Logging While Drilling in Mineral Exploration Western Australian School of Mines Department of Exploration Geophysics Gamma Ray Spectroscopy for Logging While Drilling in Mineral Exploration Ida Hooshyari Far This thesis is presented for the Degree of Doctor of Philosophy of Curtin University March 2018 I Declaration “To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgment has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university.” Signature: Date: 19/03/2018 II To my dear mother, for all her love and all her tough love To my great father, for his love, support and his dedication to our family To my life and love partner, for his love, care and being an amazing being III Thesis Abstract Gamma ray spectroscopy has been in use in the mineral exploration industry for decades, with much pioneering work done in the 1970’s to 1980’s, yet many of the techniques used to process the recorded spectrum have not improved significantly in the last 30 years. Technological developments in slim logging tools appear to have not kept pace with other technological developments, such as advances in scintillator materials for better gamma detectors, and neutron generators for electronic control of radiation. Yet the ability to collect good quality gamma-ray energy spectra with 256 or more channels is common and the computational resources for better data processing are now abundant. Despite such advances there hasn’t been much change in the way natural gamma spectra are analysed, in the borehole or in airborne radiometrics, except for noise reduction techniques such as Noise Adjusted Singular Value Decomposition (NASVD) and Maximum Noise Fraction (MNF). Natural gamma-ray logs currently estimate concentrations of natural radioisotopes of uranium, thorium and potassium (U, Th and K) based on analysis of spectral peaks in the gamma-energy spectrum and estimation the decay series is in radioactive equilibrium. However, there is, potentially, other useful lithological information hidden within the recorded gamma-ray spectrum. This extra information lies in the gamma rays scattered by the rock, normally rejected as noise or background to spectral peaks. These gamma rays are the ones that have interacted with elements other than K, U, and Th and provide new physical information about the rock matrix. The research in this thesis principally explores the use of a ratio between photoelectric absorption and Compton scattering and uses a calculation of a ratio (the Heavy Mineral Indicator) of these effects to measure changes in effective atomic number (Zeff) in the formation. Furthermore, it is postulated that as the relative atomic number of iron is greatest amongst the most common crustal elements then the Heavy Mineral Indicator (HMI) is generally an indication of the iron content of the rock in most cases. Simulation, laboratory scale models, and field experiments all demonstrate that the natural gamma-ray spectrum recorded during borehole drilling (Logging-While- Drilling) can be used to track changes in heavy element concentrations with HMI, and HMI correlates well with iron-rich zones. The best regions within the gamma spectrum to be exploited are energies between 50-150 keV and between 200-500 I keV; the ratio of gamma-ray counts in these energy windows provides a good measure of Zeff variation. It was found that the small gamma-ray detectors used in wireline logging collected too few gamma rays to be useful in measuring changes in Zeff with HMI. Wireline logging speeds are too fast (even at 2 m/min) to collect sufficient scattered gamma rays to produce statistically useful results. Thus, it is concluded that logging-while–drilling measurement is the only viable means to detect changes in Zeff because logging speed is much slower. Another novel aspect of looking at the relationship between HMI and iron is the application of this type of analysis to conventional litho-density tools that use an isotope gamma-ray source. Data were analysed from experimental litho-density tools designed to measure density in iron ore deposits in the Pilbara area of Western Australia. The litho-density gamma spectra from iron ore formations provided detectably higher HMI measures as expected due to relatively high Zeff in this environment. Thus, HMI values can act as a proxy for an iron assay to differentiate iron ore from waste rock in near real-time. An opportunity to test HMI measurements on airborne radiometrics represented a slight side-track in the research. Advances in airborne gamma ray spectrometers and the implementation of low-level surveys provide high quality spectra similar to logging while drilling approaches. The analysis of a well-studied radiometrics data set from Elashgin, Western Australia, show very clearly that iron- rich soils and surface formations are mapped with HMI. Thus, using the same approach in analysing natural gamma rays from boreholes allows maps of Fe and K, U, Th to be made simply by reprocessing legacy data. This work has demonstrated that analysing the scattered gamma rays in the earth may be used to see changes in soils and rocks non-invasively using natural gamma radiation. Additionally, the measure of these changes, the Heavy Mineral Indicator, is generally related to the iron content of the material. In combination, these two findings alone represent a significant advance in how we may use spectral- gamma measurements in the earth sciences. II Acknowledgments Firstly, I would like to thank sincerely my supervisor Anton Kepic for his guidance and his support. It has been a great privilege to work with him and to benefit from his brilliant ideas. I am also very grateful to my co-supervisor Michael Carson for his assistance, enthusiasm and great support. I am also thankful to Anousha Hashemi from BHP Billiton for providing me her time and knowledge. I would like to acknowledge the Deep Exploration Technology Commonwealth Research Centre (DETCRC) for their financial assistance. Additionally I wish to acknowledge Curtin University for my CIPRS scholarship. Last but not least, I thank my family in Iran for supporting me and giving me so much positive energy despite the distance and my beautiful friends in Australia. III List of publications Extended abstracts Hooshyari, I., A. Kepic, M, Carson, 2016, Gamma-ray spectra analysis for Lithology investigation. Near Surface Geoscience 2016 - First Conference on Geophysics for Mineral Exploration and Mining, 4-8 September 2016. Barcelona, Spain: EAGE. Hooshyari, I., A. Kepic, A. Greenwood, A. Podolska, 2015, A New Logging While Drilling Approach for Natural Gamma Spectroscopy with Diamond Drilling. Joint assembly, AGU-GAC-MAC-CGU, 3-7May 2015, Montreal, Canada Hooshyari-Far, I., A. Kepic, and A. Podolska. 2015. A new approach provides opportunities for spectral gamma analysis in boreholes for mineral exploration. ASEG Extended Abstracts 2015: 24th International Geophysical Conference and Exhibition. 1-4 February 2015, Perth, Australia Hooshyari, I., Kepic, A., Javadipour, Sh., 2014. Resistivity and Induced polarization technique for mapping hematite rich areas in Iran: ASEG Conference 2015 Kepic, A., A. Podolska, I. Hooshari-Far, and A. Greenwood, 2015, New scintillators and method for spectral gamma logging in slim boreholes. Near-Surface Asia Pacific Conference, Waikoloa, Hawaii, 7-10 July 2015. 220-223. Journal articles in preparation Hooshyari, I., Kepic, A., Carson, M, Heavy metal indicator in logging while drilling, (Geophysics) Hooshyari, I., Kepic, A., Carson, M, A novel approach in analysing full spectrum airborne radiometric data (Geophysics Research Letters) IV Contents Declaration ................................................................................................... II Thesis Abstract .............................................................................................. I Acknowledgments ....................................................................................... III List of publications...................................................................................... IV List of Figures ............................................................................................. IX Nomenclature ........................................................................................ XVIII Chapter 1. Introduction .................................................................................1 1.1 Motivation .....................................................................................1 1.2 Research aims ................................................................................3 1.3 Thesis outline ................................................................................4 Chapter 2. Introduction to gamma-ray spectroscopy ...................................6 2.1 Nuclear physics for logging application .........................................6 2.1.1 The origin of natural gamma rays............................................6 2.1.2 Radioactivity of the elements in rocks .....................................6 2.1.3 Gamma-ray attenuation ...........................................................7 2.1.4 Fundamentals of gamma-ray interactions ................................9 2.1.5 Gamma-ray spectroscopy ...................................................... 13 2.1.6 Gamma-ray measurement application ................................... 14 2.1.7 Gamma-ray measurement instrumentation ...........................
Recommended publications
  • CL Jones, CG Bowles, and KG Bell Released to Open Tiles This Report Is
    EXPEm:MENTAL DRILL HOLE LOGGIlIl IN PO'W!R DEPOSITS OF THE CARISBAD DISTRICT, N»1 MEXICO C. L. Jones, C. G. Bowles, and K. G. Bell TJ. S. GEOLOGICAL SURVEY This report is prelimi:csry\ "-- and has not been edtted or ,,"- Released to open tiles reviewed tor conformity to ~­ /' r- /'-' Geological Survey standards _~(1..~~_'--:_ '~_ ~~~~ .. .. I or nomenclature. / ,I 1- COtll'e:tf!'S; Page Abstract -------------~------------------------------------------1 ~troduct1on -------------------------------------------------7-­ 2 4 Geology -----------------------------------------------------~-­ ---------------------------------------------------~-- 7 Equipment .. 8 Drill hole data ----------------------------------------------~-- Supplementary ~e8ts -~_._----_.------------------------------~--- 10 Gamma-ray logs --~------------------------------------------y----11 Grade aDd th1clc1ess est1mates f'rom gamma-ray logs ---------- 14 l'leutron lop -------------....--------..........---.....------.------------ l5 Electrical resistivity logs ------------------------------------­ 18 21 Literature cited -----------------------------------------._----- ILLUSTRATIONS Figure 1. Generalized columnar section and radioactivity log of potassium-bearing rocks -------------------------- 2. Abridged gamma-ray logs recorded by commercial All companies and the U. S. Geological Survey --------------- figures Lithologie, gamma-ray, neutron, and electrical resistiVity logs .-------~-_.---------------.------------ are in 4. Abridged gamma-ray and graphic logs of a potash
    [Show full text]
  • Experimental Drill Hole Logging in Potash Deposits Op the Cablsbad District, Hew Mexico
    EXPERIMENTAL DRILL HOLE LOGGING IN POTASH DEPOSITS OP THE CABLSBAD DISTRICT, HEW MEXICO By C. L. Jones, C. G. Bovles, and K. G. Bell U. S. GEOLOGICAL SURVEY This report is preliminary and has not been edited or Released to open, files reviewed for conformity to Geological Survey standards or nomenclature. COHTEUTS Page Abstract i Introduction y 2 Geology . .. .. .....-*. k Equipment 7 Drill hole data . - ...... .... ..-. - 8 Supplementary tests 10 Gamma-ray logs -T 11 Grade and thidmess estimates from gamma-ray logs Ik Neutron logs 15 Electrical resistivity logs 18 Literature cited . ........... ........ 21 ILLUSTRATIONS Figure 1. Generalized columnar section and radioactivity log of potassium-bearing rocks 2. Abridged gamma-ray logs recorded by commercial All companies and the U. S. Geological Survey figures 3« Lithologic, gamma-ray, neutron, and electrical resistivity logs ................. are in k. Abridged gamma-ray and graphic logs of a potash envelope deposit at end of 5« Lithologic interpretations derived from gamma-ray and electrical resistivity logs - ...... report. TABLE Table 1. Summary of drill hole data 9 EXPERIMENTAL DRILL HOLE LOGGING Iff POTASH DEPOSITS OP THE CARISBAD DISTRICT, HEW MEXICO By C. L. Jones, C. G. Bowles, and K. G>. Bell ABSTRACT Experimental logging of holes drilled through potash deposits in the Carlsbad district, southeastern Hew Mexico, demonstrate the consider­ able utility of gamma-ray, neutron, and electrical resistivity logging in the search for and identification of mineable deposits of sylvite and langbeinite. Such deposits are strongly radioactive with both gamma-ray and neutron well logging. Their radioactivity serves to distinguish them from clay stone, sandstone, and polyhalite beds and from potash deposits containing carnallite, leonite, and kainite.
    [Show full text]
  • Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation
    PNNL-19867 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation LJ Bond RV Harris KM Denslow TL Moran JW Griffin DM Sheen GE Dale T Schenkel November 2010 PNNL-19867 Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation LJ Bond RV Harris KM Denslow TL Moran JW Griffin DM Sheen GE Dale(a) T Schenkel(b) November 2010 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 ___________________ (a) Los Alamos National Laboratory Los Alamos, New Mexico 87545 (b) Lawrence Berkeley National Laboratory Berkeley, California 94720 Abstract Sealed, chemical isotope radiation sources have a diverse range of industrial applications. There is concern that such sources currently used in the gas/oil well logging industry (e.g., americium-beryllium [AmBe], 252Cf, 60Co, and 137Cs) can potentially be diverted and used in dirty bombs. Recent actions by the U.S. Department of Energy (DOE) have reduced the availability of these sources in the United States. Alternatives, both radiological and non-radiological methods, are actively being sought within the oil- field services community. The use of isotopic sources can potentially be further reduced, and source use reduction made more acceptable to the user community, if suitable non-nuclear or non-isotope–based well logging techniques can be developed. Data acquired with these non-nuclear techniques must be demonstrated to correlate with that acquired using isotope sources and historic records. To enable isotopic source reduction there is a need to assess technologies to determine (i) if it is technically feasible to replace isotopic sources with alternate sensing technologies and (ii) to provide independent technical data to guide DOE (and the Nuclear Regulatory Commission [NRC]) on issues relating to replacement and/or reduction of radioactive sources used in well logging.
    [Show full text]
  • Expedition 314 Methods1
    Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallema nt, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists Proceedings of the Integrated Ocean Drilling Program, Volume 314/315/316 Expedition 314 methods1 Expedition 314 Scientists2 Chapter contents Introduction Introduction . 1 Integrated Ocean Drilling Program (IODP) Expedition 314 is the first step in a multiexpedition, multiyear project to carry out the Logging while drilling . 1 Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). The Onboard data flow and quality check . 6 three expeditions that make up Stage 1 of the project focus on Log characterization and lithologic coring and logging operations at high-priority riserless sites on interpretation . 7 the Kumano transect. During Expedition 314, we focused exclu- Physical properties . 8 sively on in situ measurements of subseafloor physical properties, Structural geology and geomechanics . 9 lithology, stress, and geomechanics using logging-while-drilling Log-seismic correlation . 11 (LWD) techniques, including real-time uphole data transmission References . 13 (commonly referred to as measurement while drilling [MWD]). In Figures . 15 this chapter, we explain the operation of LWD instruments and Tables. 29 the physical principles behind the geophysical measurements ob- tained. In addition, we describe the methods used by shipboard scientists to arrive at the data analyses and interpretations re- ported in the site chapters of this volume. Logging while drilling During Expedition 314, six LWD and MWD tools were deployed under the contract by the Global Ocean Development Inc. with Schlumberger Drilling and Measurements Services. LWD surveys have been successfully conducted during previous Ocean Drilling Program (ODP) and IODP expeditions on the JOIDES Resolution with various tools of different generations, focusing on density, porosity, resistivity, gamma ray, and sonic velocity measurements.
    [Show full text]
  • Chapter 1: Introduction of the Data Transmission Technology Of
    1. Introduction of the Data Transmission Technology of MWD 1. INTRODUCTION OF THE DATA TRANSMISSION TECHNOLOGY OF MWD Measurement While Drilling (MWD) is an advanced technique in directional drilling, which can measure the information about the bottom of the drill hole without inter- ruption, and send the information to the surface instantly. With the development of technology, modern drilling measurement has been developed into Logging While Drilling (LWD), which can not only monitor directional drilling, but also carry out comprehensive logging. The main difference between MWD and conventional logging or storage logging lies in the real-time data transmission. The logging curve is obtained in the case of a slight invasion or even no invasion of the ground fluid, so it is closer to the real situa- tion of the ground. Through the field analysis, processing and interpretation of the data underground, it is helpful to evaluate the comprehensive strata in time, and to adjust the drilling tra- jectory. Therefore, signal transmission is a key link of MWD technology, and it is also a “bottleneck” that restricts the development of MWD technology. The three major international petroleum technology services companies (i.e. Schlumberger, Halliburton, and Baker Hughes), represent the front of the world's logging technology. For ground and underground communication systems, their work is closely related to the two aspects of wired transmission and wireless transmission. Compared with the foreign technology, China is still in the stage of introducing and digesting foreign MWD technology. Some units and research institutions have successfully developed a MWD system, using wireless mud pressure wave based on a positive pulse.
    [Show full text]
  • A Correlation for Reservoir Characterization Using Recorded Real-Time Surface Drilling Parameters and Well Log Data
    A CORRELATION FOR RESERVOIR CHARACTERIZATION USING RECORDED REAL-TIME SURFACE DRILLING PARAMETERS AND WELL LOG DATA by Simone Steinecker c Copyright by Simone Steinecker, 2014 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Petroleum Engineering). Golden, Colorado Date Signed: Simone Steinecker Signed: Dr. Alfred Eustes Thesis Advisor Signed: Dr. Mark Miller Thesis Advisor Golden, Colorado Date Signed: Dr. Will Fleckenstein Professor and Head Department of Petroleum Engineering ii ABSTRACT Recent economic developments of the US gas market and enhanced technological im- provements lead towards an increase of future operations in the sector of shale gas plays. The Eagle Ford field in Texas, being amongst the youngest US shale plays, serves as a good example of how correlating recorded real-time surface drilling parameters and well log data can be used to improve reservoir characterization. Variations of properties occurring hor- izontally and vertically, across the entire play or even along the wellbore are regarded as a major challenge directly affecting the economic development of shale gas reservoirs. An enormous amount of data is collected at present but not analyzed and evaluated in detail. Instead the trend is evolving that more data is generated, resulting in the incapability to integrate the data. Regression analysis is used to determine quantitative relationships be- tween a real-time surface drilling parameter and petrophysical logging data for wells located in the same geographic and geologic area. This research describes how the rate of penetration correlates with the gamma and acoustic log (slowness of elastic waves) for the predominant shale section of each well and how the regression outputs contribute to optimize reservoir characterization.
    [Show full text]
  • Application of Borehole Geophysics to Water-Resourcesinvestigations
    Tec hniques of Water-Resources Investigations of the United States Geological Survey Chapter EI 0 APPLICATION OF BOREHOLE GEOPHYSICS TO WATER-RESOURCESINVESTIGATIONS By W. Scott Keys and L. M. MacCary Book2 COLLECTION OF ENVIRONMENTAL DATA DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director First printing 1971 Second printing 1976 Third printing 1981 Fourth printing 1985 UNITED STATES GOVERNMENT PRINTING OFFICE: 1971 For sole by the Branch of Distribution, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 PREFACE The series of manuals on techniques describes procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called “Books” and further subdivided into sections and chapters. Section E of Book 2 is on subsurface geophysical methods. Provisional drafts of chapt,ers are distributed to field offices of the U.S. Geological Survey for their use. These drafts are subject to revision because of experience in use or becauseof advancement in knolvledge, techniques, or equipment. After the technique described in a chapter is sufficiently developed, the chapter is published and is sold by the U.S. Geological Survey, 1200 South Esds Street, A.rlington, VA 22202 (authorized agent of Superintendent of Documents, Government Printing Office). l CONTENTS Page Page Preface. ........................................................................... III Resistivity logging.. .........................................
    [Show full text]
  • Application of Electrical and Radioactive Well Logging to Ground-Water Hydrology
    Application of Electrical and Radioactive Well Logging to Ground-Water Hydrology GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1544-D Prepared in cooperation with the Pennsylvania Geological Survey Department of Internal Affairs Commonwealth of Pennsylvania Application of Electrical and Radioactive Well Logging to Ground-Water Hydrology By EUGENE P. PATTEN, JR., and GORDON D. BENNETT GENERAL GROUND-WATER TECHNIQUES GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1544-D Prepared in cooperation with the Pennsylvania Geological Survey Department of Internal Affairs Commonwealth of Pennsylvania UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director First printing 1963 Second printing 1967 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents (paper cover) CONTENTS Page Abstract___ __________-____-______-..--__-_-_-________--_____,___ D-1 Introduction..,.________ ___-___-_-_--_----___-_-___-_______-___ 1 Resistivity logging________ -__----_____---__-____--__-_--_-_ 2 Instrumentation and theory__________________________________ 2 Calibration and zones of investigation______________________ 6 Borehole effect__________________________________________._ 7 Mechanism of electrical conduction in earth materials._____________ 9 General lithologic interpretation...........______________________ 10 Interpretation based upon the relative magnitudes of the normal curves.. _ _______________________________________ 11 Interpretative practices in the oil industry.___________________ 11 Conditions in a mud-filled borehole...-...-----..--.-------.. 13 Conditions in a water-filled borehole......-..---------------- 14 Summary of interpretation of the relative magnitude of normal curves______________.___-_____-___.____-_____-_-_--_ 18 Relation of porosity to formation factor_______-_______-._ __.. 18 Recognition of secondary porosity in limestone and crystalline rocks.
    [Show full text]
  • Mechanical Well-Logging Methods
    Vol. 16 NOVEMBER, 19170 No. 4 MECHANICAL WELL-LOGGING METHODS Marshall S. Miller INTRODUCTION nation or caving from overlying strata is the primary problem. Uncertainties also arise because Mechanical well logging, mainly used by the the samples are collected at 10- or 20-foot inter- petroleum industry, has progressed tremendously vals during rotary drilling or at irregular inter- in scope and usefulness since the turn of the vals during bailing of cable-tool tests. The elec- century. The greatest development of logging trical well log, using downhole instruments to instruments has occurred in the past 20 to 25 record continuous data, was therefore developed years, resulting largely from intensive efforts of to supply more-specific and much-needed informa- logging-company research centers. The tools and tion. technology have evolved so rapidly that many methods are unfamiliar in areas of limited petro- FIELD UNIT AND WELL LOG leum production such as parts of the Appalachian region. A typical well-logging unit (Figure 1) consists of a truck that contains a winch and cable, sondes, The word "log" was first used in a geological power sources for AC and DC, a recorder with sense by well drillers who kept a record of the paper or film drive coupled to the cable motion, rocks penetrated in a well as drilling progressed. and developing and printing facilities. The sondes The records, called drillers' logs, were usually vary from simple insulated mandrels, with plain very simple and often consisted of only a one- or electrodes, to cartridges containing complicated two-word description for several hundred feet of electronic devices.
    [Show full text]
  • Borehole Logging for Uranium Exploration
    TECHNICAL REPORTS SERIES No. 212 Borehole Logging for Uranium Exploration A Manual c # INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1982 BOREHOLE LOGGING FOR URANIUM EXPLORATION A Manual The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE'S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world".
    [Show full text]
  • Different Types of Logging
    Types of Logging Well Logging Mud logging, also known as hydrocarbon well logging, is the creation of a detailed record (well log) of a borehole by examining the bits of rock or sediment brought to the surface by the circulating drilling medium (most commonly mud). Mud logging is usually performed by a third-party mud logging company. This provides well owners and producers with information about the lithology and fluid content of the borehole while drilling. Historically it is the earliest type of well log. Under some circumstances compressed air is employed as a circulating fluid, rather than mud. Although most commonly used in petroleum exploration, mud logging is also sometimes used when drilling water wells and in other mineral exploration, where drilling fluid is the circulating medium used to lift cuttings out of the hole. In hydrocarbon exploration, hydrocarbon surface gas detectors record the level of natural gas brought up in the mud. A mobile laboratory is situated by the mud logging company near the drilling rig or on deck of an offshore drilling rig, or on a drill ship. A mud logging technician in the modern oil field drilling operation determines positions of hydrocarbons with respect to depth, identifies downhole lithology, monitors natural gas entering the drilling mud stream, and draws well logs for use by oil company geologists. Rock cuttings circulated to the surface in drilling mud are sampled and analyzed. © 2012 All Star Training, Inc. 1 The mud logging company is normally contracted by the Oil Company (or operator). They then organize this information in the form of a graphic log, showing the data charted on a representation of the wellbore.
    [Show full text]
  • Lithostratigraphic and Petrophysical Analysis of the Middle Devonian Marcellus Shale at the Mamont Prospect, Westmoreland County
    Clemson University TigerPrints All Theses Theses 12-2013 Lithostratigraphic and Petrophysical Analysis of the Middle Devonian Marcellus Shale at the Mamont Prospect, Westmoreland County, Pennsylvania Ty Taylor Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Geophysics and Seismology Commons Recommended Citation Taylor, Ty, "Lithostratigraphic and Petrophysical Analysis of the Middle Devonian Marcellus Shale at the Mamont Prospect, Westmoreland County, Pennsylvania" (2013). All Theses. 1775. https://tigerprints.clemson.edu/all_theses/1775 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. LITHOSTRATIGRAPHIC AND PETROPHYSICAL ANALYSIS OF THE MIDDLE DEVONIAN MARCELLUS SHALE AT THE MAMONT PROSPECT, WESTMORELAND COUNTY, PENNSYLVANIA A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Hydrogeology By Ty M. Taylor December 2013 Accepted by: Dr. James W. Castle, Committee Chair Dr. Ronald Falta Dr. George M. Huddleston III ABSTRACT The organic-rich Middle Devonian Marcellus Shale of the Appalachian basin is a rapidly developing natural gas play. Stratigraphic boundaries of the Marcellus Shale in Westmoreland County, Pennsylvania were identified using geophysical logs from 10 vertical gas-producing wells in a 23 sq. km area. Gamma-ray, bulk density, and resistivity well logs were examined to assess hydrocarbon potential. Values of porosity, total organic carbon (TOC), and water saturation (SW) were derived and mapped by incorporating well-log data into Marcellus-specific formulas.
    [Show full text]