Expedition 314 Methods1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modeling Non Newtonian Fluid Invasion Into Reservoir Rocks
Proceedings of COBEM 2005 20th International Congress of Mechanical Engineering Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil MODELING NON NEWTONIAN FLUID INVASION INTO RESERVOIR ROCKS Alex Tadeu de Almeida Waldmann PETROBRAS- Cidade Universitária, Q7 – Ilha do Fundão – Prédio 20 – Sala 1017 – RJ - CEP: 21941-598 [email protected] Cristiano Dannenhauer ESSS – Rua Lauro Müller, 116 – Torre do Rio Sul – 14º Andar, sala 1404 - Botafogo [email protected] Alex Rodrigues de Andrade BAKER HUGHES - Rua Maria Francisca Borges Rêgo Rei, 363, Macaé - RJ, CEP: 27933-260 [email protected] Idvard Pires Jr. BAKER HUGHES - Rua Maria Francisca Borges Rêgo Rei, 363, Macaé - RJ, CEP: 27933-260 [email protected] Andre Leibsohn Martins PETROBRAS- Cidade Universitária, Q7 – Ilha do Fundão – Prédio 20 – Sala 1017 – RJ - CEP: 21941-598 [email protected] Abstract. Minimizing fluid invasion is a major issue while drilling reservoir rocks. Large invasion may create several problems in sampling reservoir fluids in exploratory wells. Unreliable sampling may lead to wrong reservoir evaluation and, in critical cases, to wrong decisions concerning reservoir exploitability. Besides, drilling fluid invasion may also provoke irreversible reservoir damage, reducing its initial and /or its long term productivity (Ladva et al., 2000). Such problem can be critical in heavy oil reservoirs, where oil and filtrate interaction can generate stable emulsions. Invasion in light oil reservoir is less critical due to its good mobility properties. Other critical scenario is the low permeability gas reservoirs where imbibition effects may result in deep invasion. A common practice in the industry is the addition of bridging agents, such as calcium carbonates in the drilling fluid composition. -
Determination of Paleocurrent Directions Based on Well Logging Technology Aiming at the Lower Third Member of the Shahejie Forma
water Article Determination of Paleocurrent Directions Based on Well Logging Technology Aiming at the Lower Third Member of the Shahejie Formation in the Chezhen Depression and Its Implications Yangjun Gao 1,2, Furong Li 2,3, Shilong Shi 2 and Ye Chen 1,4,* 1 School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Shengli Oilfield Branch Company, SINOPEC, Dongying 257001, China; [email protected] (F.L.); [email protected] (S.S.) 3 Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China 4 School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China * Correspondence: [email protected] Abstract: The Bohai Bay basin, mainly formed in the Cenozoic, is an important storehouse of groundwater in the North China Plain. The sedimentary deposits transported by paleocurrents often provided favorable conditions for the enrichment of modern liquid reservoirs. However, due to limited seismic and well logging data, studies focused on the macroscopic directions of paleocurrents L are scarce. In this study, we obtained a series of well logging data for the sedimentary layers of Es3 Formation in the Chezhen depression. The results indicate the sources of paleocurrents from the northeast, northwest, and west to a center of subsidence in the northern Chezhen depression at that Citation: Gao, Y.; Li, F.; Shi, S.; time. Based on the well testing data, the physical properties of the layers from Es L Formation in Chen, Y. Determination of 3 Paleocurrent Directions Based on this region were generally poor, but two abnormal overpressure zones were found at 3700–3800 m Well Logging Technology Aiming at and 4100–4300 m deep intervals, suggesting potential high-quality underground liquid reservoirs. -
Well Logging
University of Kirkuk / Faculty of Science / Applied geology department rd 3 year 2020 WELL LOGGING Dr. Radhwan Khaleel Hayder INTRODUCTION: -What is a “Log” and ‘’Well Logging’’. LOG OR WELL LOGGING (THE BOREHOLE IMAGE): - Data are organized and interpreted by depth and represented on a graph called a log (a record of information about the formations through which a well has been drilled). - Visual inspection of samples brought to the surface (geological logs). Example cuttings and corres. - Study of the physical properties of rocks and the fluids through which the bore hole is drilled. - Traditionally logs are display on girded papers. Now a days the log may be taken as films, images and in digital format. - Some types of well logs can be done during any phase of a well's history: drilling, completing, producing or abandoning. -Well logging is performed in boreholes drilled for the oil and gas, groundwater, mineral, environmental and geotechnical studies. -The first electrical resistivity well log was taken in France, in 1927. THE IMPORTANCE OF WELL LOGGING: 1-Determination of lithology. 2-Determination of reservoir characteristics (e.g. porosity, saturation, permeability). 3-Determination formation dip and hole size. 4-Identification of productive zones, to determine depth and thickness of zones. 5-Distinguish between oil, gas, or water in a reservoir, and to estimate hydrocarbon reserves. 6-Geologic maps developed from log interpretation help with determining facies relationships and drilling locations. 1 ADVANTAGES AND LIMITATIONS OF WELL LOGGING: Advantages: 1- Continuous measurements. 2- Easy and quick to work with. 3- Short time acquisition. 4- Economical. Limitations: 1- Indirect measurements. -
PETE 3036 - Well Logging Craft and Hawkins Department of Petroleum Engineering Louisiana State University Fall 2016
PETE 3036 - Well Logging Craft and Hawkins Department of Petroleum Engineering Louisiana State University Fall 2016 Prerequisites: PETE 2031 (Rock Properties), and either EE 2950 or PHYS 2102. Catalog Description: Qualitative and quantitative formation evaluation by means of electric, acoustic, and radioactive well logs (three credit hours). Lecture: EW 137 Time: Lectures: T-Th 1:30 - 2:50 PM Help Sessions (Not mandatory): will be announced 2427 Patrick Taylor Hall Instructor: Dr. Dahi Office: 139 Old Forestry Building Email: [email protected] Office Hours: Wednesday 2:30 – 3:30, or at other times by appointment Teaching Assistant: Mr. Klimenko Office Hours: TBA (in PETE computer lab) Students are not supposed to meet TA in graduate student office Textbook SPE textbook – Theory, Measurement and Interpretation of Well Logs by Zaki Bassiouni. The cost is approximately $ 90.00. SPE textbook - Openhole Log Analysis and Formation Evaluation, Second Edition by Richard M. Bateman, for SPE members $110 Other References Basic Well Logging Analysis, published by American Association of Petroleum Geologists. PDF copies of the PowerPoint presentations will be posted on the Moodle of the course. Objectives: Impart students with knowledge of conventional well log interpretation including: • The identification of porous and permeable sands from the SP and Gamma Ray Logs • The determination of porosity, lithology, and hydrocarbon type from sonic, density, and neutron logs • An understanding of electrical resisitivity in reservoir rocks and its relationship to porosity and water saturation • The ability to estimate water resistivity from water saturated sands and the SP log • The estimation of water saturation Topics: 1. Introduction to well logging 2. -
DRILLING and TESTING GEOTHERMAL WELLS a Presentation for the World Bank July 2012 Geothermal Training Event Geothermal Resource Group, Inc
DRILLING AND TESTING GEOTHERMAL WELLS A Presentation for The World Bank July 2012 Geothermal Training Event Geothermal Resource Group, Inc. was founded in 1992 to provide drilling engineering and supervision services to geothermal energy operators worldwide. Since it’s inception, GRG has grown to include a variety of upstream geothermal services, from exploration management to resource assessment, and from drilling project management to reservoir engineering. GRG’s permanent and contract supervisory staff is among the most active consulting firms, providing services to nearly every major geothermal operation worldwide. Services and Expertise: Drilling Engineering Drilling Supervision Exploration Geosciences Reservoir Engineering Resource Assessment Project Management Upstream Production Engineering Training Worldwide Experience: United States, Canada, and Mexico Latin America – Nicaragua, El Salvador, and Chile Southeast Asia – Philippines and Indonesia New Zealand Kenya Tu r key Caribbean EXPLORATION PROCESS The exploration process is the initial phase of the project, where the resource is identified, qualified, and delineated. It is the longest phase of the project, taking years or even decades, and it is invariably the most poorly funded. EXPLORATION PROCESS Begins with identification of a potential resource Visible System – identified by surface manifestations, either active or inactive Blind System – identified by the structural setting, geophysical explorations, or by other indicators such as water and mining exploration drilling. EXPLORATION PROCESS Primary personnel Geoscientists Geologists – structural mapping, field reconnaissance, conceptual geological models Geochemists – geothermometry, water & gas chemistry Geophysicists – geophysical exploration, structural modeling Engineers Drilling Engineers – well design, rock mechanics, economic oversight Reservoir Engineers – reservoir modeling, well testing, economic evaluation, power phase determination EXPLORATION METHODS Pre-exploration research. -
Well Logging Requirements
Well Logging Requirements Directive PNG010 February 2018 Revision 1.1 Governing Legislation: Act: The Oil and Gas Conservation Act Regulation: The Oil and Gas Conservation Regulations, 2012 Order: 51/18 Well Logging Requirements Record of Change Revision Date Description 0.0 September, 2015 Draft 1.0 November, 2015 Added Directive Number, updated document 1.1 February, 2018 Update for clarity and inclusion of shallow water source well requirements February 2018 Page 2 of 8 Well Logging Requirements Contents 1. Introduction .......................................................................................................................................... 4 1.1 Governing Legislation.................................................................................................................... 4 1.2 Definitions ..................................................................................................................................... 4 2. Logging Requirements for Vertical and Directional Wells .................................................................... 5 2.1 Single-Well Pads ............................................................................................................................ 5 2.2 Muti-Well Pads .............................................................................................................................. 5 2.3 Re-entry Wells ............................................................................................................................... 6 3. Other Requirements -
A New Logging-While-Drilling Method for Resistivity Measurement
sensors Article A New Logging-While-Drilling Method for y Resistivity Measurement in Oil-Based Mud Yongkang Wu 1, Baoping Lu 2, Wei Zhang 2,3, Yandan Jiang 1, Baoliang Wang 1,* and Zhiyao Huang 1 1 State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; [email protected] (Y.W.); [email protected] (Y.J.); [email protected] (Z.H.) 2 Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China; [email protected] (B.L.); [email protected] (W.Z.) 3 State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China * Correspondence: [email protected] This paper is an extended version of an earlier conference paper: “Wu, Y.K.; Ni, W.N.; Li, X.; Zhang, W.; y Wang, B.L.; Jiang, Y.D. and Huang, Z.Y. Research on characteristics of a new oil-based logging-while-drilling instrument. In Proceedings of the 11th International Symposium on Measurement Techniques for Multiphase Flow, Zhenjiang, China, 3–7 November 2019.” Received: 21 December 2019; Accepted: 11 February 2020; Published: 16 February 2020 Abstract: Resistivity logging is an important technique for identifying and estimating reservoirs. Oil-based mud (OBM) can improve drilling efficiency and decrease operation risks, and has been widely used in the well logging field. However, the non-conductive OBM makes the traditional logging-while-drilling (LWD) method with low frequency ineffective. In this work, a new oil-based LWD method is proposed by combining the capacitively coupled contactless conductivity detection (C4D) technique and the inductive coupling principle. -
Predicting Heavy Oil and Bitumen Viscosity from Well Logs and Calculated Seismic Properties
Important Notice This copy may be used only for the purposes of research and private study, and any use of the copy for a purpose other than research or private study may require the authorization of the copyright owner of the work in question. Responsibility regarding questions of copyright that may arise in the use of this copy is assumed by the recipient. UNIVERSITY OF CALGARY Predicting heavy oil and bitumen viscosity from well logs and calculated seismic properties by Eric Anthony Rops A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA APRIL, 2017 © Eric Anthony Rops 2017 Abstract Viscosity is the most important parameter influencing heavy oil production and development. While heavy oil viscosities can be measured in the lab from core and wellhead samples, it would be very useful to have a method to reliably estimate heavy oil viscosity directly from well logs. Multi-attribute analysis enables a target attribute (viscosity) to be predicted from other known attributes (the well logs). The viscosity measurements were generously provided by Donor Company, which allowed viscosity prediction equations to be trained. Once the best method of training the prediction was determined, viscosity was successfully predicted from resistivity, gamma-ray, NMR porosity, spontaneous potential, and the sonic logs. The predictions modelled vertical viscosity variations throughout the reservoir interval, while matching the true measurements with a 0.76 correlation. Another set of viscosity predictions were generated using log-derived seismic properties. The top viscosity-predicting seismic properties were found to be P-wave velocity and acoustic impedance. -
Companies Involved in Oilfield Services from Wikipedia, the Free Encyclopedia
Companies Involved in Oilfield Services From Wikipedia, the free encyclopedia Diversified Oilfield Services Companies These companies deal in a wide range of oilfield services, allowing them access to markets ranging from seismic imaging to deep water oil exploration. Schlumberger Halliburton Baker Weatherford International Oilfield Equipment Companies These companies build rigs and supply hardware for rig upgrades and oilfield operations. Yantai Jereh Petroleum Equipment&Technologies Co., Ltd. National-Oilwell Varco FMC Technologies Cameron Corporation Weir SPM Oil & Gas Zhongman Petroleum & Natural Gas Corpration LappinTech LLC Dresser-Rand Group Inc. Oilfield Services Disposal Companies These companies provide saltwater disposal and transportation services for Oil & Gas.. Frontier Oilfield Services Inc. (FOSI) Oil Exploration and Production Services Contractors These companies deal in seismic imaging technology for oil and gas exploration. ION Geophysical Corporation CGG Veritas Brigham Exploration Company OYO Geospace These firms contract drilling rigs to oil and gas companies for both exploration and production. Transocean Diamond Offshore Drilling Noble Hercules Offshore Parker Drilling Company Pride International ENSCO International Atwood Oceanics Union Drilling Nabors Industries Grey Wolf Pioneer Drilling Co Patterson-UTI Energy Helmerich & Payne Rowan Companies Oil and Gas Pipeline Companies These companies build onshore pipelines to transport oil and gas between cities, states, and countries. -
Energy and Security Cooperation in Asia Challenges and Prospects
!"#$%&'(")'*#+,$-.&' /001#$(.-0"'-"'23-(' /4(55#"%#3'(")'6$031#+.3' !)-.#)'7&' /4$-3.014#$'8#"' 259-"'/4#:' Energy and Security Cooperation in Asia Challenges and Prospects Christopher Len Alvin Chew Editors Institute for Security and Development Policy Västra Finnbodavägen 2, 13130 Stockholm-Nacka, Sweden www.isdp.eu Energy and Security Cooperation in Asia: Challenges and Prospects is a Monograph published by the Institute for Security and Development Policy. Monographs provide comprehensive analyses of key issues presented by leading experts. The Institute is based in Stockholm, Sweden, and cooperates closely with research centers worldwide. Through its Silk Road Studies Program, the Institute runs a joint Transatlantic Research and Policy Center with the Central Asia-Caucasus Institute of Johns Hopkins Universi- ty’s School of Advanced International Studies. The Institute is firmly established as a leading research and policy center, serving a large and diverse community of analysts, scholars, policy-watchers, business leaders, and journalists. It is at the forefront of re- search on issues of conflict, security, and development. Through its applied research, publications, research cooperation, public lectures, and seminars, it functions as a focal point for academic, policy, and public discussion. This publication is kindly made possible by support from the Swedish Ministry for For- eign Affairs. The opinions and conclusions expressed are those of the author/s and do not necessarily reflect the views of the Institute for Security and Development Policy or its sponsors. © Institute for Security and Development Policy, 2009 ISBN: 978-91-85937-59-2 Printed in Singapore Cover Photo Credit: Data courtesy of Marc Imhoff of NASA GSFC and Christopher El- vidge of NOAA NGDC. -
Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation
PNNL-19867 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation LJ Bond RV Harris KM Denslow TL Moran JW Griffin DM Sheen GE Dale T Schenkel November 2010 PNNL-19867 Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation LJ Bond RV Harris KM Denslow TL Moran JW Griffin DM Sheen GE Dale(a) T Schenkel(b) November 2010 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 ___________________ (a) Los Alamos National Laboratory Los Alamos, New Mexico 87545 (b) Lawrence Berkeley National Laboratory Berkeley, California 94720 Abstract Sealed, chemical isotope radiation sources have a diverse range of industrial applications. There is concern that such sources currently used in the gas/oil well logging industry (e.g., americium-beryllium [AmBe], 252Cf, 60Co, and 137Cs) can potentially be diverted and used in dirty bombs. Recent actions by the U.S. Department of Energy (DOE) have reduced the availability of these sources in the United States. Alternatives, both radiological and non-radiological methods, are actively being sought within the oil- field services community. The use of isotopic sources can potentially be further reduced, and source use reduction made more acceptable to the user community, if suitable non-nuclear or non-isotope–based well logging techniques can be developed. Data acquired with these non-nuclear techniques must be demonstrated to correlate with that acquired using isotope sources and historic records. To enable isotopic source reduction there is a need to assess technologies to determine (i) if it is technically feasible to replace isotopic sources with alternate sensing technologies and (ii) to provide independent technical data to guide DOE (and the Nuclear Regulatory Commission [NRC]) on issues relating to replacement and/or reduction of radioactive sources used in well logging. -
Experimental Study of Formation Damage During Underbalanced-Drilling in Naturally Fractured Formations
Energies 2011, 4, 1728-1747; doi:10.3390/en4101728 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Review Experimental Study of Formation Damage during Underbalanced-Drilling in Naturally Fractured Formations Siroos Salimi 1,* and Ali Ghalambor 2 1 Norwegian University of Science and Technology (NTNU)/N-7491, Trondheim, Norway 2 Oil Center Research International, Louisiana/P.O. Box 44408 Lafayette, LA 70504, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +47-48124949; Fax: +47-73944472. Received: 2 June 2011; in revised form: 1 September 2011 / Accepted: 17 October 2011 / Published: 24 October 2011 Abstract: This paper describes an experimental investigation of formation damage in a fractured carbonate core sample under underbalanced drilling (UBD) conditions. A major portion of this study has concentrated on problems which are often associated with UBD and the development of a detailed protocol for proper design and execution of an UBD program. Formation damage effects, which may occur even if the underbalanced pressure condition is maintained 100% of the time during drilling operation, have been studied. One major concern for formation damage during UBD operations is the loss of the under- balanced pressure condition. Hence, it becomes vital to evaluate the sensitivity of the formation to the effect of an overbalanced pulse situation. The paper investigates the effect of short pulse overbalance pressure during underbalanced conditions in a fractured chalk core sample. Special core tests using a specially designed core holder are conducted on the subject reservoir core. Both overbalance and underbalanced tests were conducted with four UBD drilling fluids.