Well Logging

Total Page:16

File Type:pdf, Size:1020Kb

Well Logging University of Kirkuk / Faculty of Science / Applied geology department rd 3 year 2020 WELL LOGGING Dr. Radhwan Khaleel Hayder INTRODUCTION: -What is a “Log” and ‘’Well Logging’’. LOG OR WELL LOGGING (THE BOREHOLE IMAGE): - Data are organized and interpreted by depth and represented on a graph called a log (a record of information about the formations through which a well has been drilled). - Visual inspection of samples brought to the surface (geological logs). Example cuttings and corres. - Study of the physical properties of rocks and the fluids through which the bore hole is drilled. - Traditionally logs are display on girded papers. Now a days the log may be taken as films, images and in digital format. - Some types of well logs can be done during any phase of a well's history: drilling, completing, producing or abandoning. -Well logging is performed in boreholes drilled for the oil and gas, groundwater, mineral, environmental and geotechnical studies. -The first electrical resistivity well log was taken in France, in 1927. THE IMPORTANCE OF WELL LOGGING: 1-Determination of lithology. 2-Determination of reservoir characteristics (e.g. porosity, saturation, permeability). 3-Determination formation dip and hole size. 4-Identification of productive zones, to determine depth and thickness of zones. 5-Distinguish between oil, gas, or water in a reservoir, and to estimate hydrocarbon reserves. 6-Geologic maps developed from log interpretation help with determining facies relationships and drilling locations. 1 ADVANTAGES AND LIMITATIONS OF WELL LOGGING: Advantages: 1- Continuous measurements. 2- Easy and quick to work with. 3- Short time acquisition. 4- Economical. Limitations: 1- Indirect measurements. 2- Limited by tool specification. 3- Affected by environment. WELL LOG “LOGGING OPERATION”: The process of logging involves a number of elements (Figure. 1) 1- Truck and the rig. 2- Mechanical Winches and ordinary driving machine. 3- Cables and Sondes. 4- Drill Bits and Drilling Mud PETROLEUM DRILL BITS (DIAMOND): Core drilling bit shape and number of diamonds depends on the dominant rock type being penetrated. Some types of them:(Figure. 2) - Large teeth for shale. - Short teeth for hard rocks. - Button bit for very hard rocks. 2 Figure. 1. Basic Well Logging Technique Figure. 2. Petroleum Drill Bits types 3 TYPES OF BOREHOLES: According to Casing operation: - The name open hole is applied because these logs are recorded in the uncased portion of the well bore. - The closed hole logs. The name closed hole is applied because these logs are recorded in the cased portion of the well bore. - The various types of logs, the ones used most frequently in hydrocarbon exploration are called open hole logs. According to conductivity of the borehole: Conductive (water base drilling mud) and Non-conductive boreholes (oil base mud, air drilled or cased holes). Figure. 3.Cased holes Open holes PRINCIPAL OF WELL LOGGING: - A well log is a record of certain formation data versus depth. - The appropriate down hole logging tools instrument called ‘sonde’, about 3.5 inches in diameter is lowered into mud filled hole on logging cable. - This tools will measure the electrical, acoustic and radioactive properties of the formation. 4 - The result will be analyzed to determine which of the layers are porous and permeable and likely to contain hydrocarbon. - Survey is normally done from the bottom up. As the sonde is pulled up the hole, a continuous measurement signal is sent to the surface where the data is processed and recorded as a curve. FORMATION EVALUATION: Geological evaluation of the lithology, stratigraphy, fluids and reservoir properties are essential for exploration and field development. -Critical information from a well comes from: 1- The mud log. 2- Cores. 3- Cutting. 4- Geophysical logs. WHAT IS FORMATION EVALUATION: - Formation Evaluation (FE) is the process of interpreting a combination of measurements taken inside a wellbore. - FE data can be gathered by logging while drilling tools . WHY FORMATION EVALUATION: - Provide continuous record of penetration rate, lithology, hydrocarbon shows and determine the ability of a borehole to produce petroleum. - To evaluate hydrocarbons reservoir (oil , gaz) and in petroleum exploration and development. BASIC INFORMATION NEEDED IN LOG INTERPRETATION: - Formation Water: (connate water in the formation) held by capillary pressure in the pores of a rock serves to inhibit the transmission of hydrocarbons. Table. 1. Illustrates the distribution of discovered oil and gas fields based on geologic age 5 -Water Saturation (Sw): is the percentage of pore volume in a rock which is occupied by formation water. (Sw) = Formation water occupying pores / Total pore space in the rock * 100 % -Subsurface Temperature: Formation temperature (Tf) is important in log analysis because the resistivity of the drilling mud, mud filtrate, mud cake and formation water change with temperature. The following are needed to determine formation temperature: • Formation depth • Bottom hole temperature (BHT) • Total depth of the well • Surface temperature Formation temperature can be obtained by graphical means (assuming a linear geothermal gradient) or by calculation using the linear regression equation. Y=mx+c where: x = depth Y = temperature m = Geothermal gradient c = constant (surface temperature) G.G = Bottom hole temperature (BHT) = surface temperature / Total depth (TD) For example: Temperature Gradient Calculation. Assume: y = bottom hole temperature (BHT) = 250ᴼF x = total depth (TD) = 15,000 ft c = surface temperature = 70°F Solve form (i.e. slope or temperature gradient) m = y – c / x Therefore: m = 250ᴼ – 70ᴼ / 1500 ft m = 0.012ᴼ/ ft or 1.2ᴼ/100 ft 6 Formation Tmperature Calculation: Assume: m = temperature gradient = 0.012ᴼ/ ft x = formation depth = 8,000 ft c = surface temperature = 70ᴼ Remember: y = mx + c Therefore: y = (0.012) X (8,000)+ 70ᴼ = 166ᴼ formation temperature at 8,000 ft After a formations' temperature is determined either by chart or calculation, the resistivity of the different fluids (Rm, Rmf or Rw) can be corrected to formation temperature. Resistivity values of the drilling mud (Rm), mud filtrate (Rmf) and mudcake (Rmc), and the temperature at which they are measured, are recorded on the log's header. Formation water resistivity (Rw) is obtained by analysis of water samples from a drill stem test, or from a catalog of water resistivity value , and as follows: RTF = Rtemp (Temp+6.77) / (Tf+6.77) Where : RTF: Resistivity at formation temperature. Rtemp: Resistivity at a temperature other than formation temperature. Temp: temperature at which resistivity was measured. RTF: formation temperature. Using a formation temperature of 166° and assuming an Rw of 0.04 measured at 70°. The Rw at 166° will be: Rw166 = 0.04 X (70+6.77)/(166 + 6.77) Rw166 = 0.018 7 Notes: 1- The four most fundamental rock properties used in petrophysical logging are (1) porosity; (2) permeability; (3) water saturation and (4) resistivity. 1/n 2- The Archie equation for water saturation is: Sw= (F x Rw/Rt) Sw = water saturation of uninvaded zone. F = formation factor. Rw = formation water resistivity Rt = formation resistivity (uninvaded zone) 3- Where a porous and permeable formation is penetrated by the drill bit. the drilling mud invades the formation as mud filtrate (Rmf). 4. The invasion of the porous and permeable formation by mud filtrate creates invasion zones (Rxo and Ri) and an uninvaded zone (Rt). Reading resistivity logging tools provide information aboul the invaded and uninvaded zones. 5. -Lithology: The lithology of a formation must be known because: (1) porosity logs require a matrix value sandstone, limestone, or dolomite in order to determine porosity ; (2) the formation factor varies with lithology; (3) the variation in formation factor causes changes in water saturaiion values. 6. The four fluids that affect logging measurements are: (I) drilling mud. Rm; (2) mud filtrate. Rmf; (3) formation water, Rw; and (4) hydrocarbons. 7. The resistivities of the drilling mud (Rm). mudcake (Rmc), mud filtrate (Rmf) and formation water (Rw) all vary with changes in temperature. Consequently, a formations temperature (Tf) must be determined and all resistivities corrected to Tf. 8 .Clay content: (Rock may be clean or it may contain clay) Caly content affects the permeability and log readings 9. Consolidation: A mechanical property in which reduction in volume takes place by expulsion of water under static loads. BOREHOLE ENVIRONMENT: Where a hole is drilled into a formation, the rock plus the fluids in it (the rock-fluid system) are altered in the vicinity of the borehole. The borehole rock and the rock surrounding it are contaminated by the drilling mud, which affects logging measurements. 8 BOREHOLE DIAMETER (DH): -A well’s borehole size is described by the outside diameter of the drill bit . - But, the diameter of the borehole: may be larger or smaller than the bit diameter because of: 1- Wash out and/or collapse of shale and poorly cemented porous rocks. 2- Build-up of mud cake on porous and permeable formations (Fig4 ). - Borehole sizes normally vary from 7 inches to 12 inches. The size of the borehole is measured by a caliper log. DRILLING MUD (RM): - The mud helps remove cuttings from the well bore, -The lubricate and cool the drill rotary bits - The maintain an excess of borehole pressure over formation pressure and prevents blowouts. Note: The Resistivity values for drilling mud, mud cake and mud filtrate are recorded on a log’s header (Figure 2) and are used in log interpretation. 9 Figure. 4. is a schematic illustration of a porous and permeable formation that is penetrated by a borehole filled with drilling mud. This schematic diagram illustrates an idealized version of what happens when fluids from the borehole invade the surrounding rock. Dotted lines indicate the cylindrical nature of the invasion. - Invaded Zone: The zone which is invaded by mud filtrate is called the invaded zone. It consists o f a flushed zone (Rw) and a transition or annulus (Ri) zone.
Recommended publications
  • 6. the BOREHOLE ENVIRONMENT 6.1 Introduction 6.2 Overburden
    Petrophysics MSc Course Notes The Borehole Environment 6. THE BOREHOLE ENVIRONMENT 6.1 Introduction Wireline logging has a single clearly defined purpose: to give accurate and representative data on the physical properties of the rock formations and fluids encountered in a borehole. The tools used to take these readings have to cope with extremely tough conditions downhole, particularly, high temperatures and pressures, inhospitable chemical conditions and the physical constraints imposed by the physics of the measurements and the borehole geometry. It should also be remembered that we are interested in the properties of the rocks in undisturbed conditions, and the act of drilling the borehole is the single most disturbing thing that we can do to a formation. 6.2 Overburden Pressures The formations in the sub-surface are at raised pressure, and are occupied by fluids which are also at high pressure. The pressure that a rock is subjected to at a given depth is determined by the weight of the rock above it, and hence the density of that rock. This is called the overburden pressure or sometimes the lithostatic pressure (note that, to a first approximation, the overburden pressure is the same in all directions (isotropic)). We can write an equation to describe the overburden pressure (6.1) Pover = rrock g h where, Pover = the overburden pressure at depth h rrock = the mean rock density above the depth in question g = the acceleration due to gravity h = the depth to the measurement point. Clearly the rock above a given depth will have a varied lithology and porosity and hence a varying density.
    [Show full text]
  • Determination of Paleocurrent Directions Based on Well Logging Technology Aiming at the Lower Third Member of the Shahejie Forma
    water Article Determination of Paleocurrent Directions Based on Well Logging Technology Aiming at the Lower Third Member of the Shahejie Formation in the Chezhen Depression and Its Implications Yangjun Gao 1,2, Furong Li 2,3, Shilong Shi 2 and Ye Chen 1,4,* 1 School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Shengli Oilfield Branch Company, SINOPEC, Dongying 257001, China; [email protected] (F.L.); [email protected] (S.S.) 3 Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China 4 School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China * Correspondence: [email protected] Abstract: The Bohai Bay basin, mainly formed in the Cenozoic, is an important storehouse of groundwater in the North China Plain. The sedimentary deposits transported by paleocurrents often provided favorable conditions for the enrichment of modern liquid reservoirs. However, due to limited seismic and well logging data, studies focused on the macroscopic directions of paleocurrents L are scarce. In this study, we obtained a series of well logging data for the sedimentary layers of Es3 Formation in the Chezhen depression. The results indicate the sources of paleocurrents from the northeast, northwest, and west to a center of subsidence in the northern Chezhen depression at that Citation: Gao, Y.; Li, F.; Shi, S.; time. Based on the well testing data, the physical properties of the layers from Es L Formation in Chen, Y. Determination of 3 Paleocurrent Directions Based on this region were generally poor, but two abnormal overpressure zones were found at 3700–3800 m Well Logging Technology Aiming at and 4100–4300 m deep intervals, suggesting potential high-quality underground liquid reservoirs.
    [Show full text]
  • Drilling Fluid Systems & Products
    Drilling Fluid Systems & Products Drilling Solutions Version 6 Table of contents Overview 2 Integrated Solutions 6 Integrated Borehole Strengthening Solutions (I-BOSS) 6 OPTI-STRESS 8 Drilling Fluid Simulation Software 9 OPTIBRIDGE 9 PRESS PRO RT 10 VIRTUAL HYDRAULICS 12 Drilling Fluid Systems & Products 13 Water-Base Systems DRILPLEX 13 DRILPLEX AR PLUS 14 DURATHERM 15 ENVIROTHERM NT 16 GLYDRIL 18 K-MAG 19 KLA-SHIELD 20 POLY-PLUS 21 ULTRADRIL 22 Oil-base Systems ECOGREEN 24 ENVIROVERT 25 MEGADRIL 26 RHADIANT 27 RHELIANT 28 VERSACLEAN/VERSADRIL 29 Synthetic-Base Systems PARALAND 30 PARATHERM/VERSATHERM 31 Non-Aqueous Systems WARP Advanced Fluids Technology 32 Drilling Fluid Products 34 Product Summaries 34 Drilling Fluid Systems & Products Version 6 1 Overview The M-I SWACO solutions mindset permeates our company and positively influences the problem-solving orientation we have toward our clients, the solutions we deliver, our new-technology advancement, people development within our company and our future strategies. Starting with the basic building blocks of Before people work for M-I SWACO, training for the job at hand, M-I SWACO instructors quickly bring new specialists a Schlumberger company, we screen up to speed in the disciplines required for them to deliver maximum value them not only for current skills from our products and services. M-I SWACO ensures customers around and experience, but also for their the world get the highest level of service by standardizing training courses to willingness to learn new things, solve meet the universal expectations of all operators. Where locale dictates problems and help others. Once they certain specialized practices, M-I SWACO trainers prepare field join the M-I SWACO organization, personnel for those details as well.
    [Show full text]
  • Characterisation and Management of Drilling Fluids and Cuttings in the Petroleum Industry
    Information sheet Environmental Protection Act 1994 Characterisation and management of drilling fluids and cuttings in the petroleum industry 1 Introduction This information sheet describes the process for petroleum and gas operators to: assess and characterise waste drilling fluids and cuttings (which for this information sheet also includes rock materials, solids and fines); and develop ways to manage wastes produced from drilling activities that address environmental risks and are consistent with the requirements of Queensland's environmental legislation. There are various drilling fluid systems used in the petroleum industry including freshwater, saltwater, oil, synthetic-based and pneumatic (e.g. air, foam) fluid systems (West et al., 2006). The term 'mud' is frequently used interchangeably with the term 'fluid'. The term 'mud' is used because of the thick consistency of the fluid system (Caenn, 2011). In general, drilling fluids in the petroleum industry are used to aid tools during the drilling of wells. The main functions of drilling fluids are: carrying cuttings from the hole cooling and cleaning the drill bit reducing friction maintaining the stability of the bore maintaining down-hole hydrostatic pressure to be non-damaging to the formation. Drilling fluids contain a variety of specialty chemicals (called ‘additives’) each having a different purpose. For example: killing bacteria and adjusting pH (West et al., 2006) controlling viscosity, reducing fluid loss to the formation and inhibiting equipment corrosion (Ghazia, 2011). The additives in drilling fluids are adjusted according to the physicochemical conditions of geological formations which invariably change with depth (Ghazia, 2011). In addition, drilling fluids are to be non-hazardous to the environment and personnel.
    [Show full text]
  • PETE 3036 - Well Logging Craft and Hawkins Department of Petroleum Engineering Louisiana State University Fall 2016
    PETE 3036 - Well Logging Craft and Hawkins Department of Petroleum Engineering Louisiana State University Fall 2016 Prerequisites: PETE 2031 (Rock Properties), and either EE 2950 or PHYS 2102. Catalog Description: Qualitative and quantitative formation evaluation by means of electric, acoustic, and radioactive well logs (three credit hours). Lecture: EW 137 Time: Lectures: T-Th 1:30 - 2:50 PM Help Sessions (Not mandatory): will be announced 2427 Patrick Taylor Hall Instructor: Dr. Dahi Office: 139 Old Forestry Building Email: [email protected] Office Hours: Wednesday 2:30 – 3:30, or at other times by appointment Teaching Assistant: Mr. Klimenko Office Hours: TBA (in PETE computer lab) Students are not supposed to meet TA in graduate student office Textbook SPE textbook – Theory, Measurement and Interpretation of Well Logs by Zaki Bassiouni. The cost is approximately $ 90.00. SPE textbook - Openhole Log Analysis and Formation Evaluation, Second Edition by Richard M. Bateman, for SPE members $110 Other References Basic Well Logging Analysis, published by American Association of Petroleum Geologists. PDF copies of the PowerPoint presentations will be posted on the Moodle of the course. Objectives: Impart students with knowledge of conventional well log interpretation including: • The identification of porous and permeable sands from the SP and Gamma Ray Logs • The determination of porosity, lithology, and hydrocarbon type from sonic, density, and neutron logs • An understanding of electrical resisitivity in reservoir rocks and its relationship to porosity and water saturation • The ability to estimate water resistivity from water saturated sands and the SP log • The estimation of water saturation Topics: 1. Introduction to well logging 2.
    [Show full text]
  • A Review of Recent Research on Contamination of Oil Well Cement with Oil-Based Drilling Fluid and the Need of New and Accurate Correlations
    chemengineering Review A Review of Recent Research on Contamination of Oil Well Cement with Oil-based Drilling Fluid and the Need of New and Accurate Correlations Nachiket Arbad and Catalin Teodoriu * Mewbourne School of Petroleum and Geological Engineering, University of Oklahoma, Norman, OK 73019, USA; [email protected] * Correspondence: [email protected] Received: 19 February 2020; Accepted: 11 April 2020; Published: 14 April 2020 Abstract: Drilling fluids and oil well cement are important well barriers. Their compatibility affects the long-term integrity of the well. The mixing of drilling fluid with the oil well cement causes contamination of oil well cement. If the contamination is due to diesel/oil-based drilling fluid (OBF) it adversely affects the rheological and mechanical properties of oil well cement—in other words, the long-term integrity of the well. An initial study on OBF contamination of oil well cement was carried out two decades ago. In recent years, several research projects were carried out on the same topic to understand the reason for changes in the properties of oil well cement with OBF contamination. This literature review shows that using OBF eliminates several drilling problems, as the long-term integrity of the well depends on the amount of OBF contamination in the cement slurry. This paper compares the experiments performed, results and conclusions drawn from selected research studies on OBF contamination of oil well cement. Their shortcomings and a way forward are discussed in detail. A critical review of these research studies highlights the need for new and accurate correlations for OBF-contaminated oil well cement to predict the long-term integrity of wells.
    [Show full text]
  • DRILLING and TESTING GEOTHERMAL WELLS a Presentation for the World Bank July 2012 Geothermal Training Event  Geothermal Resource Group, Inc
    DRILLING AND TESTING GEOTHERMAL WELLS A Presentation for The World Bank July 2012 Geothermal Training Event Geothermal Resource Group, Inc. was founded in 1992 to provide drilling engineering and supervision services to geothermal energy operators worldwide. Since it’s inception, GRG has grown to include a variety of upstream geothermal services, from exploration management to resource assessment, and from drilling project management to reservoir engineering. GRG’s permanent and contract supervisory staff is among the most active consulting firms, providing services to nearly every major geothermal operation worldwide. Services and Expertise: Drilling Engineering Drilling Supervision Exploration Geosciences Reservoir Engineering Resource Assessment Project Management Upstream Production Engineering Training Worldwide Experience: United States, Canada, and Mexico Latin America – Nicaragua, El Salvador, and Chile Southeast Asia – Philippines and Indonesia New Zealand Kenya Tu r key Caribbean EXPLORATION PROCESS The exploration process is the initial phase of the project, where the resource is identified, qualified, and delineated. It is the longest phase of the project, taking years or even decades, and it is invariably the most poorly funded. EXPLORATION PROCESS Begins with identification of a potential resource Visible System – identified by surface manifestations, either active or inactive Blind System – identified by the structural setting, geophysical explorations, or by other indicators such as water and mining exploration drilling. EXPLORATION PROCESS Primary personnel Geoscientists Geologists – structural mapping, field reconnaissance, conceptual geological models Geochemists – geothermometry, water & gas chemistry Geophysicists – geophysical exploration, structural modeling Engineers Drilling Engineers – well design, rock mechanics, economic oversight Reservoir Engineers – reservoir modeling, well testing, economic evaluation, power phase determination EXPLORATION METHODS Pre-exploration research.
    [Show full text]
  • Riser Operations and the Future of Scientific Ocean
    Th or collective redistirbution of any portion article of any by of this or collective redistirbution SPECIAL ISSUE FEATURE articleis has been published in Oceanography D/V Chikyu 19, Number journal of Th 4, a quarterly , Volume RISER OPERATIONS AND THE FUTURE permitted photocopy machine, only is reposting, means or other OF SCIENTIFIC OCEAN DRILLING e Oceanography Society. 2006 by Th Copyright BY DANIEL CUREWITZ AND ASAHIKO TAIRA Earth science disciplines focused on the geological record. erational means by which core recovery, investigation of climatic, ecological, or Advances in scientifi c drilling over the core preservation, borehole stability, with the approval of Th tectonic change as recorded in geological last decade have enabled progressively geophysical measurement, and borehole deposits (e.g., paleoceanography, marine better recovery and greater confi dence in monitoring operations are enhanced us- micropaleontology, paleoclimatology, the fi delity and coherence of recovered ing riser drilling (Sawyer, 1996; Kerr and gran is e Oceanography All rights Society. reserved. Permission paleomagnetism) require high-resolu- sections. The resulting interpretations Normile, 1998; Normile and Kerr, 2003). or Th e Oceanography [email protected] Send Society. to: all correspondence tion, continuous, well-preserved records and analyses have enhanced the high- for accurate analysis. Recovery of long, resolution short- and long-term records RISER DRILLING BASICS uninterrupted, relatively undisturbed of changes in the Earth system (Brewer Riser drilling involves several steps that sections has long been a primary techni- et al., 2005). are accomplished in a variety of ways de- cal challenge for any drilling operation. The adaptation of riser drilling tech- pending on specifi c technological pack- Recovered cores and geophysical mea- nology for scientifi c ocean drilling pur- ages, water depths, and bottom condi- surements form the backbone for any poses on board the D/V Chikyu (Fig- tions.
    [Show full text]
  • Well Logging Requirements
    Well Logging Requirements Directive PNG010 February 2018 Revision 1.1 Governing Legislation: Act: The Oil and Gas Conservation Act Regulation: The Oil and Gas Conservation Regulations, 2012 Order: 51/18 Well Logging Requirements Record of Change Revision Date Description 0.0 September, 2015 Draft 1.0 November, 2015 Added Directive Number, updated document 1.1 February, 2018 Update for clarity and inclusion of shallow water source well requirements February 2018 Page 2 of 8 Well Logging Requirements Contents 1. Introduction .......................................................................................................................................... 4 1.1 Governing Legislation.................................................................................................................... 4 1.2 Definitions ..................................................................................................................................... 4 2. Logging Requirements for Vertical and Directional Wells .................................................................... 5 2.1 Single-Well Pads ............................................................................................................................ 5 2.2 Muti-Well Pads .............................................................................................................................. 5 2.3 Re-entry Wells ............................................................................................................................... 6 3. Other Requirements
    [Show full text]
  • Hydraulic Fracturing
    natural gas industrial Livestock domestic Well Well Well Well doing things right Wellhead Cement Soil Conductor Pipe • Set across surface Aquifer soils and shallow rocks. Cement Surface Casing • Cemented at appropriate depth to protect shallow fresh water aquifers. Hydraulic Production Casing • Drilling fluid stays fracturing: inside this pipe. your T h o u sa n d S o F F e e T / h u n d r e d S o F m e T e r S questions answered r s In formations where natural gas is trapped very tightly in tiny pores (rather than accumulated in large pools C K L A Y E or more porous rock), if we simply drill through the rock the gas won’t flow easily, r o making it impossible to extract enough gas to make the well economical. After we drill a tight gas T A r g e T F o r m ati o n well, to complete it we stim­ ulate the gas flow from the formation using a technique called hydraulic fracturing. STAGE | STAGE | STAGE This often­misunderstood technique has raised some Note: This image illustrates hydraulic fracturing used with horizontal drilling. In some formations, the well remains vertical within the tight gas formation and the fractures extend horizontally from the wellbore. For each well, casing questions that we would and cementing designs are approved by applicable regulatory agencies. Illustration is not to scale. like to answer. Hydraulic fracturing is a valuable technique for stimulating production from tight gas and shale gas wells. combined with the low permeability of the tight gas formations themselves, keep the natural gas and other hydro- carbons contained within the target for- mation, and also help prevent migration of any hydraulic fracturing fluids that may be pumped into such formations.
    [Show full text]
  • Periscope HD Service Helps Lukoil Achieve 82% NTG in 2.5-M-Thick
    CASE STUDY LUKOIL-Nizhnevolzhskneft Achieves 82% NTG in 2.5-m-Thick Sweet Spot with PeriScope HD Service Integrated drilling system achieves 3,694-m section in 9½-in horizontal section in one run, lands wellbore in thin target 6 days ahead of section AFE, Caspian Sea CHALLENGE Place long horizontal section within thin reservoir Maximize reservoir exposure and ROP while The 9½-in horizontal section of Well P-120, an offshore extended-reach well LUKOIL-Nizhnevolzhskneft placing long horizontal section of extended- was drilling in the Korchagina field of the Caspian Sea, had to be placed within a reservoir with reach well within thin reservoir. a gross vertical thickness of 4 to 6 m—thinner than any reservoir targeted by previous extended- reach wells in the project. The upper part of the reservoir was interbedded with high-density SOLUTIONS laminated intervals, the lower part gradually transitioned from shale to sand, and the sweet zone ■ Optimize drilling parameters and trajectory within the reservoir was only 2–2.5 m thick. control using PowerDrive Xceed* RSS and TeleScope* high-speed telemetry-while- In addition, the 3,694-m long section had to be kept 5 m above the oil/water contact, which was drilling services. very close to this targeted interval in the reservoir; a lack of vertical offset data in the drilling direction ■ Increase drilling efficiency using a PDC created great uncertainty about formation properties and structural dip; collision with nearby wells bit with ONYX II* premium PDC cutters had to be avoided; and maximum dogleg severity was limited by the need for smooth completion matched to RSS using the IDEAS* integrated operations.
    [Show full text]
  • A New Logging-While-Drilling Method for Resistivity Measurement
    sensors Article A New Logging-While-Drilling Method for y Resistivity Measurement in Oil-Based Mud Yongkang Wu 1, Baoping Lu 2, Wei Zhang 2,3, Yandan Jiang 1, Baoliang Wang 1,* and Zhiyao Huang 1 1 State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; [email protected] (Y.W.); [email protected] (Y.J.); [email protected] (Z.H.) 2 Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China; [email protected] (B.L.); [email protected] (W.Z.) 3 State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China * Correspondence: [email protected] This paper is an extended version of an earlier conference paper: “Wu, Y.K.; Ni, W.N.; Li, X.; Zhang, W.; y Wang, B.L.; Jiang, Y.D. and Huang, Z.Y. Research on characteristics of a new oil-based logging-while-drilling instrument. In Proceedings of the 11th International Symposium on Measurement Techniques for Multiphase Flow, Zhenjiang, China, 3–7 November 2019.” Received: 21 December 2019; Accepted: 11 February 2020; Published: 16 February 2020 Abstract: Resistivity logging is an important technique for identifying and estimating reservoirs. Oil-based mud (OBM) can improve drilling efficiency and decrease operation risks, and has been widely used in the well logging field. However, the non-conductive OBM makes the traditional logging-while-drilling (LWD) method with low frequency ineffective. In this work, a new oil-based LWD method is proposed by combining the capacitively coupled contactless conductivity detection (C4D) technique and the inductive coupling principle.
    [Show full text]