DOCUMENT RESUME ED 071 911 SE 015 548 TITLE Project Physics

Total Page:16

File Type:pdf, Size:1020Kb

DOCUMENT RESUME ED 071 911 SE 015 548 TITLE Project Physics DOCUMENT RESUME ED 071 911 SE 015 548 TITLE Project Physics Teacher Guide 6, The Nucleus. INSTITUTION Harvard Univ., Cambridge, Mass. Harvard Project Physics. SPONS AGENCY Office of Education (DHEW) Washington, D.C. Bureau of Research. BUREAU NO BR-5-1038 PUB DATE 68 CONTRACT OEC-5-10-058 NOTE 235p.; Authorized Interim Version EDRS PRICE MF-$0.65 HC-S9.87 DESCRIPTORS Instructional Materials; *Multimedia Instruction; *Nuclear Physics; Physics; *Radiation; Science Activities; Secondary Grades; *Secondary School Science; *Teaching Glides; Teaching Procedures IDENTIFIERS Harvard Project Physics ABSTRACT Teaching procedures of Project Physics Unit 6are presented to help teachers make effectiveuse of learning materials. Unit contents are discussed in connection withteaching aid lists, multi-media schedules, schedule blocks, andresource charts. Brief summaries are made for transparencies, 16mm films, and reader articles. Included is information about the backgroundand development of each unit chapter, procedures in demonstrations, apparatus operations, notes on the student handbook, andan explanation of film loops. Additional articlesare concerned with objects dated by radiocarbon, radiation safety, propertiesof radiations, radioactive sources, radioactivity determinationby electroscopes, and radiation detecting devices.Scalers, counters, Geiger tubes, and cadmium selenide photocellsare analyzed; and a bibliography of references is given, Solutionsto the study guide are provided in detail, and answers to test itemsare suggested. The sixth unit of the text, with marginal commentson each section, is also compiled in the manual. The work of Harvard ProjectPhysics has . been financially supported by: the Carnegie Corporation ofNew York, the Ford Foundation, the National Science Foundation,the Alfred P. Sloan Foundation, the United States office of Education,and Harvard University. (CC) to 11612.0 C13 Alt U S DEPARTMENT OF HEALTH EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO DUCE() EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG iNAPNG IT POINTS OF VIEW OR OPIN IONS STATED 00 NOT NECESSARILY REPRESENT OFFICIAL OFT.CE OF EOU CATION POSITION OR POLICY Project Physics Text An Introduction to Physics6The Nucleus Authorized Interim Version 1968-69 Distributed by Holt, Rinehart and Winston, Inc.New York Toronto ( The Project Physics course was developed through the Directors of Harvard Project Physics contributions of many people; the following is a partial list Gerald Holton, Dept of Physics, Harvard University of those contributors. (The affiliations indicatedare those F. James Rutherford, Capuchino High School, San Bruno, Cahf just prior to or during association with the Project.) Fletcher G. Watson, Harvard Graduate School of Education Advisory Committee E. G Begle, Stanford University, Calif. Paul F. Brandwein, Harcourt, Brace & World, Inc., San Francisco, Calif. Robert Brode, University of California, Berkeley Erwin Hiebert, University of Wisconsin, Madison Harry Kelly, North Carolina State College, Raleigh William C. Kelly, National Research Council, Washington, D. C. Philippe LeCorbeiller, New School for Social Research, New York, N Y. Thomas Miner, Garden City High School, New York, N.Y. Philip Morrison, Massachusetts Institute of Technology, Cambridge Ernest Nagel, Columbia University, New York, N.Y. Leonard K. Nash, Harvard University I. I. Rabi, Columbia University, New York, N.Y. Staff and Consultants Andrew Ahlgren, Maine Township High School, Park Ridge, Ill. L. K. Akers, Oak Ridge Associated Universities, Tenn. Roger A. Albrecht, Osage Community Schools, Iowa David Anderson, Oberlin College, Ohio 90123 69 9875543 Gary Anderson, Harvard University Donald Armstrong, American Science Film Association, Washington, D.C. 03-073460-6 Sam Ascher, Henry Ford High School, Detroit, Mich. Ralph Atherton, Talawanda High School, Oxford, Ohio Albert V. Baez, UNESCO, Paris William G. Banick, Fulton High School, Atlanta, Ga. Arthur Bardige, Nova High School, Fort Lauderdale, Fla. Copyright ©1968, Project Physics Incorporated. Rolland B. Bartholomew, Henry M. Gunn High School, Palo Alto, Calif. 0 Theodor Benfey, Earlham College, Richmond, Ind. Copyright is claimed until June 1, 1969. After June1, 1969 Richard Berendzen, Harvard College Observatory all portions of this work not identified hereinas the subject Alfred M. Bork, Reed College, Portland, Ore. of previous copyright shall be in the publicdomain. The Alfred Brenner, Harvard University authorized interim version of the Harvard Project Physics Robert Bridgham, Harvard University course is being distributed at cost by Holt, Rinehart and Richard Brinckerhoff, Phillips Exeter Academy, Exeter, N.H. Winston, Inc. by arrangement with Project Physics Incorpo- Donald Brittain, National Film Board of Canada, Montreal rated, a non-profit educational organization. Joan Bromberg, Harvard University Vinson Brinson, Newton South High School, Newton Centre, Mass. All persons making use of any part of these materialsare Stephen G. Brush, Lawrence Radiation Laboratory, University of requested to acknowledge the source and the financialsup- California, Livermore port giver. to Project Physics by the agencies named below, Michael Butler, CIASA Films Mundiales, S.A., Mexico and to include a statement that the publication of suchmate- Leon Callihan, St. Mark's School of Texas, Dallas rial is not necessarily endorsed by Harvard Project Physics Douglas Campbell, Harvard University or any of the authors of this work. Dean R. Casperson, Harvard University The work of Harvard Project Physics has been financially Bobby Chambers, Oak Ridge Associated Universities, Tenn. Robert Chesley, Thacher School, Ojai, Calif. supported by the Carnegie Corporation of New York, the John Christensen, Oak Ridge Associated Universities, Tenn. Ford Foundation, the National Science Foundation, the Al- Dora Clark, W. G. Enloe High School, Raleigh, N.C. fred P. Sloan Foundation, the United States Office of Edu- David Clarke, Browne and Nichols School, Cambridge, Mass. cation, and Harvard University. Robert S. Cohen, Boston University, Mass. Brother Columban Francis, F S C , Mater Christi Diocesan High Glen Mervyn, West Vancouver Secondary School, B C , Canada School, Long Island City, N.Y Franklin Miller, Jr , Kenyon College, Gambier, Ohio Arthur Compton, Phillips Exeter Academy, Exeter, N H Jack C. Miller, Pomona College, Claremont, Calif. David L Cone, Los Altos High School, Calif. Kent D. Miller, Claremont High School, Calif William Cooley, University of Pittsburgh, Pa. James A. Minstrel!, Mercer Island High School, Washington Ann Couch, Harvard University James F Moore, Canton High School, Mass Paul Cowan, Hardin-Simmons University, Abilene, Tex Robert H Mosteller, Princeton High School, Cincinnati, Ohio Charles Davis, Fairfax County School Board, Fairfax, Va William Naison, Jamaica High School, N Y Michael Dentamaro, Senn High School, Chicago, Ill. Henry Nelson, Berkeley High School, Calif. Raymond Dittman, Newton High School, Mass. Joseph D. Novak, Purdue Unn, rsity, Lafay-tte, Ind. Elsa Dorfman, Educational Services Inc , Watertown, Mass Thom Olafsson, Menntaskolinn Ad, Laugarvatni, Iceland Vadim Drozin, Bucknell University, Lewisburg, Pa Jay Orear, Cornell Universilty, Ithaca, N.Y. Neil F. Dunn, Burlington High School, Mass. Paul O'Toole, Dorchester High School, Mass R. T. Ellickson, University of Oregon, Eugene Costas Papaliolios, Harvard University Thomas Embry, Nova High School, Fort Lauderdale, Fla. Jacques Parent, National Film Board of Canada, Montreal Walter Eppenstein, Rensselaer Polytechnic Institute,, Troy, N Y. Eugene A. Platten, San Diego High School, Calif. Herman Epstein, Brandeis University, Waltham, Mass. L. Eugene P-mrman, University High School, Bloomington, Ind. Thomas F. B. Ferguson, National Film Board of Canada, Montreal Gloria Poulos, Harvard University Thomas von Foerster, Harvara University Herbert Priestley, Knox College, Galesburg, Ill. Kenneth Ford, lime. sity of California, Irvine Ed- and M. Purcell, Harvard University Robert Gardner, Harvard University Gerald M. Rees, Arm Arbor High School, Mich. Fred Geis, J-., Harvard University James M. Reid, J. W. Sexton High School, Lansing, Mich. Nichol:s J. Georgis, Staples High School, Westport, Conn. Robert Resnick, Rensselaer Polytechnic Institute, Troy, N.Y. H. Richard Gerfin, Simon s Rock, Great Barrington, Mass Paul I Richards, Technical Operations, Inc., Burlington, Mass Owen Gingench, Smithsonian Astrophysical Observatory,, John Rigden, Eastern Nazarene College, Quincy, Mass Cambridge, Mass Thomas J. Ritzinger, Rice Lake El- gh School, Wisc. Stanley Goldberg, Antioch College, Yellow Springs, Ohio Nickerson Rogers, The Loomis School, Windsor, Conn. Leon Goutevenier, Paul D. Schreiber High School, Sidney Rosen, University of Illinois, Urbana Port Washington, N.Y. John J. Rosenbaum, Livermore High School, Calif. Albert Gregory, Harvard University William Rosenfeld, Smith College, Northampton, Mass. Julie A. Goetze, Weeks Jr. High School, Newton, Mass. Arthur Rothman State University of New York, Buffalo Robert D. Haas, Clairemont High School, San Diego, Calif. Daniel Rufolo, Clairemont High School, San Diego, Calif. Walter G. Hagenbuch, Plymouth-Whitemarsh Senior High School, Bernhard A. Sachs, Brooklyn Technical High School, N.Y. Plymouth Meeting, Pa. Morton L Schagrin, Denison University, Granville, Ohio John Hams, National Physical Laboratory of Israel, Jerusalem Rudolph Schiller, Valley High School, Las Vegas, Nev.
Recommended publications
  • WINTER 2013 - Volume 60, Number 4 the Air Force Historical Foundation Founded on May 27, 1953 by Gen Carl A
    WINTER 2013 - Volume 60, Number 4 WWW.AFHISTORICALFOUNDATION.ORG The Air Force Historical Foundation Founded on May 27, 1953 by Gen Carl A. “Tooey” Spaatz MEMBERSHIP BENEFITS and other air power pioneers, the Air Force Historical All members receive our exciting and informative Foundation (AFHF) is a nonprofi t tax exempt organization. Air Power History Journal, either electronically or It is dedicated to the preservation, perpetuation and on paper, covering: all aspects of aerospace history appropriate publication of the history and traditions of American aviation, with emphasis on the U.S. Air Force, its • Chronicles the great campaigns and predecessor organizations, and the men and women whose the great leaders lives and dreams were devoted to fl ight. The Foundation • Eyewitness accounts and historical articles serves all components of the United States Air Force— Active, Reserve and Air National Guard. • In depth resources to museums and activities, to keep members connected to the latest and AFHF strives to make available to the public and greatest events. today’s government planners and decision makers information that is relevant and informative about Preserve the legacy, stay connected: all aspects of air and space power. By doing so, the • Membership helps preserve the legacy of current Foundation hopes to assure the nation profi ts from past and future US air force personnel. experiences as it helps keep the U.S. Air Force the most modern and effective military force in the world. • Provides reliable and accurate accounts of historical events. The Foundation’s four primary activities include a quarterly journal Air Power History, a book program, a • Establish connections between generations.
    [Show full text]
  • Chandrayaan-2 Completes a Year Around the Moon
    One-year completion of Chandrayaan-2 Lunar orbit insertion (August 20, 2019) Chandrayaan-2 completes a year around the Moon The Moon provides the best linkage to understand Earth’s early history and offers an undisturbed record of the inner Solar system environment. It could also be a base for future human space exploration of the solar system and a unique laboratory, unlike any on Earth, for fundamental physics investigations. In spite of several missions to the Moon, there remains several unanswered questions. Continued high resolution studies of its surface, sub-surface/interior and its low-density exosphere, are essential to address diversities in lunar surface composition and to trace back the origin and evolution of the Moon. The clear evidence from India’s first mission to the Moon, Chandrayaan-1, on the extensive presence of surface water and the indication for sub- surface polar water-ice deposits, argues for more focused studies on the extent of water on the surface, below the surface and in the tenuous lunar exosphere, to address the true origin and availability of water on Moon. With the goal of expanding the lunar scientific knowledge through detailed studies of topography, mineralogy, surface chemical composition, thermo-physical characteristics and the lunar exosphere, Chandrayaan-2 was launched on 22nd July 2019 and inserted into the lunar orbit on 20th August 2019, exactly one year ago. Though the soft-landing attempt was not successful, the orbiter, which was equipped with eight scientific instruments, was successfully placed in the lunar orbit. The orbiter completed more than 4400 orbits around the Moon and all the instruments are currently performing well.
    [Show full text]
  • Chemistry: the Molecular Nature of Matter and Change
    REVISED CONFIRMING PAGES The Components of Matter 2.1 Elements, Compounds, and 2.5 The Atomic Theory Today 2.8 Formula, Name, and Mass of Mixtures: An Atomic Overview Structure of the Atom a Compound 2.2 The Observations That Led to Atomic Number, Mass Number, and Binary Ionic Compounds an Atomic View of Matter Atomic Symbol Compounds That Contain Polyatomic Mass Conservation Isotopes Ions Definite Composition Atomic Masses of the Elements Acid Names from Anion Names Multiple Proportions 2.6 Elements: A First Look at the Binary Covalent Compounds The Simplest Organic Compounds: Dalton’s Atomic Theory Periodic Table 2.3 Straight-Chain Alkanes Postulates of the Atomic Theory Organization of the Periodic Table Masses from a Chemical Formula How the Atomic Theory Explains Classifying the Elements Representing Molecules with a the Mass Laws Compounds: An Introduction 2.7 Formula and a Model to Bonding 2.4 The Observations That Led to Mixtures: Classification and the Nuclear Atom Model The Formation of Ionic Compounds 2.9 Separation Discovery of the Electron and The Formation of Covalent An Overview of the Components of Its Properties Compounds Matter Discovery of the Atomic Nucleus (a) (b) (right) ©Rudy Umans/Shutterstock IN THIS CHAPTER . We examine the properties and composition of matter on the macroscopic and atomic scales. By the end of this chapter, you should be able to • Relate the three types of matter—elements or elementary substances, compounds, and mixtures—to the simple chemical entities that they comprise—atoms, ions, and molecules;
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Pp-03-25-New Dots.Qxd 10/23/02 2:41 PM Page 778
    pp-03-25-new dots.qxd 10/23/02 2:41 PM Page 778 778 PRAESODYMIUM PRAESODYMIUM [7440–10–0] Symbol Pr; atomic number 59; atomic weight 140.908; a lanthanide–series rare earth element; belongs to the cerium group of rare earths; electron con- figuration [Xe] 4f36s2; partially filled f subshell; valence states +3, +4; most 3+ stable oxidation state +3; electrode potential E°/V (aq) for Pr + 3e¯ ↔ Pr is –2.35 V; atomic radius 1.828 Å; first ionization potential 5.46 eV; one natu- rally–occurring isotope, Pr–141; twenty–nine artificial radioactive isotopes known in the mass range 124, 126–140 and 142–154; the longest–lived isotope Pr–143, t1/2 13.57 day, and the shortest–lived isotope Pr–124, t1/2 1.2 second. History, Occurrence, and Uses Mosander extracted from the mineral lanthana a rare earth fraction, named didymia in 1841. In 1879, Boisbaudran separated a rare earth oxide called samaria (samarium oxide) from the didymia fraction obtained from the mineral samarskite. Soon after that in 1885, Baron Auer von Welsbach iso- lated two other rare earths from didymia. He named them as praseodymia (green twin) and neodymia (new twin) after their source didymia (twin). The name praseodymium finally was assigned to this new element, derived from the two Greek words, prasios meaning green and didymos meaning twin. Praseodymium occurs in nature associated with other rare earths in a rel- atively high abundance. It is more abundant than some common metals such as silver, gold, or antimony. The average concentration of this metal in the earth’s crust is estimated to be 8.2 mg/kg.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) ^i e I !emote sousing sad eeolegio Studies of the llaistary Crusts Bernard Ray Hawke Prince-1 Investigator a EL r Z^ .99 University of Hawaii Hawaii Institute of Geophysics Planetary Geosciences Division Honolulu, Hawaii 96822 ^y 1i i W. December 1983 (NASA —CR-173215) REMOTE SENSING AND N84-17092 GEOLOGIC STUDIES OF THE PLANETARY CRUSTS Final Report ( Hawaii Inst. of Geophysics) 14 p HC A02/MF 101 CSCL 03B Unclas G3/91 11715 Gy -2- ©R1GNAL OF POOR QUALITY Table of Contents Page I. Remote Sensing and Geologic Studies cf Volcanic Deposits . • . 3 A. Spectral reflectance studies of dark-haloed craters. • . 3 B. Remote s^:sing studies of regions which were sites of ancient volcanisa . 3 C. [REEP basalt deposits in the Imbrium Region.
    [Show full text]
  • Po and Pb in the Terrestrial Environment
    Current Advances in Environmental Science (CAES) 210Po and 210Pb in the Terrestrial Environment Bertil R.R. Persson Medical Radiation Physics, Lund University S-22185 LUND, Sweden [email protected] Abstract- The natural sources of 210Po and 210Pb in the meat at high northern latitudes. This was, however, of terrestrial environment are from atmospheric deposition, soil natural origin and no evidence of significant contributions and ground water. The uptake of radionuclides from soil to of 210Po from the atomic bomb test was found. The most plant given as the soil transfer factor, varies widely between significant radionuclides in the fallout from the atmospheric various types of crops with an average about ± atomic bomb-test of importance for human exposure were The atmospheric deposition of 210Pb and 210Po also affect the 137Cs and 90Sr [4]. activity concentrations in leafy plants with a deposition th 210 210 transfer factor for Pb is in the order of 0.1-1 (m2.Bq-1) plants During the 1960 century the presence of Pb and and for root fruits it is < 0.003, Corresponding values for 210Po 210Po was extensively studied in human tissues and are about a factor 3 higher. particularly in Arctic food chains [4-20]. The activity concentration ratios between milk and various types of forage for 210Pb were estimated to ± and for In December of 2006, former Russian intelligence 210Po to ±By a daily food intake of 16 kg dry matter operative Alexander Litvinenko died from ingestion of a 210 210 per day the transfer coefficient Fm. for Pb was estimated to few g of Po.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Copyright by Paul Harold Rubinson 2008
    Copyright by Paul Harold Rubinson 2008 The Dissertation Committee for Paul Harold Rubinson certifies that this is the approved version of the following dissertation: Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War Committee: —————————————————— Mark A. Lawrence, Supervisor —————————————————— Francis J. Gavin —————————————————— Bruce J. Hunt —————————————————— David M. Oshinsky —————————————————— Michael B. Stoff Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War by Paul Harold Rubinson, B.A.; M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Acknowledgements Thanks first and foremost to Mark Lawrence for his guidance, support, and enthusiasm throughout this project. It would be impossible to overstate how essential his insight and mentoring have been to this dissertation and my career in general. Just as important has been his camaraderie, which made the researching and writing of this dissertation infinitely more rewarding. Thanks as well to Bruce Hunt for his support. Especially helpful was his incisive feedback, which both encouraged me to think through my ideas more thoroughly, and reined me in when my writing overshot my argument. I offer my sincerest gratitude to the Smith Richardson Foundation and Yale University International Security Studies for the Predoctoral Fellowship that allowed me to do the bulk of the writing of this dissertation. Thanks also to the Brady-Johnson Program in Grand Strategy at Yale University, and John Gaddis and the incomparable Ann Carter-Drier at ISS.
    [Show full text]
  • DOCUMENT Mute
    DOCUMENT mute ED 124 18 . 88 SE 019 612 TITLEN: Radioactivity .and Man iinicourse, Career Oriented Pre-Technical Physics* , INSTITUTI N Dallas Independent School District, Tex. SPONS AGE CY Bureauvof Ele*entary and Secondary tducat4.0n (D5 HEN/OE),-WashingtOn, D.C. -RUB DATE 7 For rilated 0, NOTE - 78p.; Drawings may not reproduce wel documens, see SE 018 322-333 and SE 019 605-616 , . 4 EDRS PRICE MF-$0.83 HC-$4.67 Plus Postag4. DESCRIPTOR Instructional Materialsi Physics; *Program Guides; *Radiation Effects; *Science Activities; Science .41 Careers; Science Education; *Science Materials; Secondary Zdution;.*Secondary School Science; Technical Educe ion IDENTIFIrRS Elementary Seco dart' VIAlcation ACt Title III; ESEA Title' III 07. 1 ABSTRACT .1j This instructional guide, intended for student use, develops the subject of radioactivity and can through a series. of sequential activities.. `A technical development of the subject is pursued with examples stressing practical aspects'of the concepts. Included in the minicourse are:, (1) the rationale,(2) terminal behavioral objectives, (3) enabling behavioral objectives,(4) activities,(5) resource ,packages, and (6) evaluation materials. The' * benefits as well as the dangers of radiometivity to Ian are considered.,This unit is one of twelve intended for use in.the second year of tv9 year vocationally oriented .physics. program. (CP) j t I J ***********************************************************************. * . Documents acquired by ERIC include many inforgal unpublished * materials not a40.1able.from other sources. ERIC makes every effort * * to obtiit the best copy available. Nevertheless,items of.marginel * *.reproducibility are often encountered and this-affects the quality * - *`of the microfiche and hardcopy reproductions ERIC makes available * *.
    [Show full text]
  • Effects of Intravenous Injections of Radium Bromide. by R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central EFFECTS OF INTRAVENOUS INJECTIONS OF RADIUM BROMIDE. BY R. BURTON-OPITZ AND GUSTAVE M. MEYER. (From the Laboratories of Physiology and Physiological Chemistry of Colum- bia University, at the College of Physicians and Surgeons, New York.) PLATE XVI. The present study was undertaken with a view of determining in a general way the effects of intravenous administration of ra- dium upon the circulation and respiration. The problem was sug- gested to us by Dr. William J. Gies, under whose guidance a number of researches, dealing with the more extensive question of the action of radium upon animal and vegetable cells, have re- cently been carried on in the laboratories of Columbia University.1 For the radium used in these experiments we are greatly in- debted to Mr. Hugo Lieber. It was supplied to us in the form of the bromide, in preparations of 240 , iooo, and io,ooo activities. The strength of the solution used was the same in all cases. It contained 45 rag. of the dry substance in 25 c. c. of the solvent; each cubic centimeter of the solution, therefore, contained 1.8 rag. of the radium preparation. The amount of the radium present varies directly with the ra- dio-activity. Preparations of ~,5oo,ooo activity are said to repre- sent pure radium bromide3 Taking this figure as the standard of purity, ~ .8 rag. of the radium preparation of io,ooo activity contained approximately only o.o~ 26 mg., the same quantity of the preparation of ~ooo activity contained o.ooi26 rag.
    [Show full text]
  • Integrated M.Sc. Chemistry (CBCS) SYLLABUS Department of Chemistry Central University of Tamil Nadu Thiruvarur 610
    Integrated M.Sc. Chemistry (CBCS) SYLLABUS Department of Chemistry Central University of Tamil Nadu Thiruvarur 610 101 Name of the course : Integrated M. Sc. (Chemistry) Duration : 10 semesters Intake : 30 Eligibility : Plus two examination or equivalent of any recognized board in India with 60% marks (Chemistry, Mathematics, Physics and Computer Science/Biology) for general category, 55% marks for OBC (Non-creamy layer) and 50% marks for SC/ST candidates. The candidates should not have completed 20 years of age as on 01-07-2015. Course Structure The five year program is spread into ten semesters where in first four semesters are designed for broad subject based understanding. Later six semesters will have increased focus on chemistry. The subject courses in the early stage of iM.Sc programme are simplified and of basic level that bolsters the inter-disciplinary way of learning. The third and subsequent year courses have been designed on advanced theories in chemistry with emphasis on concurrent modern laboratory techniques. Further the iM.Sc (Chemistry) programme has been included with experiments that provide exhaustive hands on experience on various sophisticated instruments, experimental techniques to enable the students secure jobs in corporate. The final semester is dedicated to specialization within the subject with research level training. The rules and regulations of Choice Based Credit System (CBCS) are applicable to this program. Generally, a student takes ten semesters to complete the program. The courses offered under CBCS, has certain credit number (2, 3 or 4). Core requirements of the programs are clearly defined. In the first two years of the program, a student has common course load with students from other departments.
    [Show full text]