Radioluminescence: a Simple Model for Fluorescent Layers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DOCUMENT Mute
DOCUMENT mute ED 124 18 . 88 SE 019 612 TITLEN: Radioactivity .and Man iinicourse, Career Oriented Pre-Technical Physics* , INSTITUTI N Dallas Independent School District, Tex. SPONS AGE CY Bureauvof Ele*entary and Secondary tducat4.0n (D5 HEN/OE),-WashingtOn, D.C. -RUB DATE 7 For rilated 0, NOTE - 78p.; Drawings may not reproduce wel documens, see SE 018 322-333 and SE 019 605-616 , . 4 EDRS PRICE MF-$0.83 HC-$4.67 Plus Postag4. DESCRIPTOR Instructional Materialsi Physics; *Program Guides; *Radiation Effects; *Science Activities; Science .41 Careers; Science Education; *Science Materials; Secondary Zdution;.*Secondary School Science; Technical Educe ion IDENTIFIrRS Elementary Seco dart' VIAlcation ACt Title III; ESEA Title' III 07. 1 ABSTRACT .1j This instructional guide, intended for student use, develops the subject of radioactivity and can through a series. of sequential activities.. `A technical development of the subject is pursued with examples stressing practical aspects'of the concepts. Included in the minicourse are:, (1) the rationale,(2) terminal behavioral objectives, (3) enabling behavioral objectives,(4) activities,(5) resource ,packages, and (6) evaluation materials. The' * benefits as well as the dangers of radiometivity to Ian are considered.,This unit is one of twelve intended for use in.the second year of tv9 year vocationally oriented .physics. program. (CP) j t I J ***********************************************************************. * . Documents acquired by ERIC include many inforgal unpublished * materials not a40.1able.from other sources. ERIC makes every effort * * to obtiit the best copy available. Nevertheless,items of.marginel * *.reproducibility are often encountered and this-affects the quality * - *`of the microfiche and hardcopy reproductions ERIC makes available * *. -
Determination of Argon and Xenon Absolute Electroluminescence Yields in Gas Proportional Scintillation Counters
Cristina Maria Bernardes Monteiro Determination of argon and xenon absolute electroluminescence yields in Gas Proportional Scintillation Counters University of Coimbra 2010 Cristina Maria Bernardes Monteiro Determination of argon and xenon absolute electroluminescence yields in Gas Proportional Scintillation Counters Dissertation submitted to Faculdade de Ciências e Tecnologia da Universidade de Coimbra for the degree of Phylosophiae Doctor in Technological Physics Under the supervision of Prof. Dr. João Filipe Calapez de Albuquerque Veloso and co-supervision of Prof. Dr. Carlos Manuel Bolota Alexandre Correia University of Coimbra 2010 This work was supported by Fundação para a Ciência e Tecnologia and by the European Social Fund, through Programa Operacional Potencial Humano (POHP), through the grant SFRH/BD/25569/2005. To Cristiana to Quim To my parents Acknowledgements To Professor João Filipe Calapez de Albuquerque Veloso for the supervision of the present work and for all the support, suggestions and fruitful discussions along the years. To Professor Carlos Manuel Bolota Alexandre Correia for having accepted the co-supervision of the present work and for all the encouragement provided. To Professor Joaquim Marques Ferreira dos Santos for all the support, suggestions and fruitful discussions. To Hugo Natal da Luz and Carlos Oliveira for the help in data taking and processing with the CAENTM 1728b module and Radix program. To Paulo Gomes for all the informatics support throughout the years. To Fernando Amaro, who always seems to be there when we need a helping hand and, last but not least, for the friendship. To Elisabete Freitas (Beta) for the long years of friendship. To all my colleagues in the Lab, for all the support, collaboration and for the pleasant time we spent working together. -
DOCUMENT RESUME ED 071 911 SE 015 548 TITLE Project Physics
DOCUMENT RESUME ED 071 911 SE 015 548 TITLE Project Physics Teacher Guide 6, The Nucleus. INSTITUTION Harvard Univ., Cambridge, Mass. Harvard Project Physics. SPONS AGENCY Office of Education (DHEW) Washington, D.C. Bureau of Research. BUREAU NO BR-5-1038 PUB DATE 68 CONTRACT OEC-5-10-058 NOTE 235p.; Authorized Interim Version EDRS PRICE MF-$0.65 HC-S9.87 DESCRIPTORS Instructional Materials; *Multimedia Instruction; *Nuclear Physics; Physics; *Radiation; Science Activities; Secondary Grades; *Secondary School Science; *Teaching Glides; Teaching Procedures IDENTIFIERS Harvard Project Physics ABSTRACT Teaching procedures of Project Physics Unit 6are presented to help teachers make effectiveuse of learning materials. Unit contents are discussed in connection withteaching aid lists, multi-media schedules, schedule blocks, andresource charts. Brief summaries are made for transparencies, 16mm films, and reader articles. Included is information about the backgroundand development of each unit chapter, procedures in demonstrations, apparatus operations, notes on the student handbook, andan explanation of film loops. Additional articlesare concerned with objects dated by radiocarbon, radiation safety, propertiesof radiations, radioactive sources, radioactivity determinationby electroscopes, and radiation detecting devices.Scalers, counters, Geiger tubes, and cadmium selenide photocellsare analyzed; and a bibliography of references is given, Solutionsto the study guide are provided in detail, and answers to test itemsare suggested. The sixth unit of the text, with marginal commentson each section, is also compiled in the manual. The work of Harvard ProjectPhysics has . been financially supported by: the Carnegie Corporation ofNew York, the Ford Foundation, the National Science Foundation,the Alfred P. Sloan Foundation, the United States office of Education,and Harvard University. -
Worldwide Light Sources and Fluorescent Light Market
Presentation on Worldwide Light sources and Fluorescent light Presented by: M. M. Ahtashom market Contents • Introduction • Classification of light source • Lighting efficiency comparison • Fluorescent lamp • History background • How light produced • Types of Fluorescent lamp • About Ballast • Operating Charecteristic • Applications • Advantages and Disadvantages • Commercial Prospect • CFL Recycling project • Reference Introduction A typical "light source" emits electromagnetic radiation in the visible spectrum. The list is oriented towards visible light: nearly everything emits photons through blackbody radiation. Classification of Light sources 1. Combustion 2. Natural 2.1 Celestial and atmospheric light 2.2 Terrestrial 3. Direct Chemical 4. Electric Powered 4.1 Electron simulated 4.2 Incandescent lamp 4.3 Electroluminescent (EL) lamp 4.4 Gas discharge lamps 4.4.1 High-intensity discharge lamp 5. Other 1. Combustion •Fire 2. Natural 2.1 Celestial and atmospheric light • Astronomical objects – Sun (Sunlight (solar radiation)) – Starlight (Stars forming groups such as Star clusters and galaxies and indirectly lighting nebulae) • Lightning (Plasma) – Sprite (lightning) – Ball lightning – Upper-atmospheric lightning – Dry lightning • Aurorae • Cherenkov radiation (from cosmic rays hitting atmosphere) • 2.2 Terrestrial • Bioluminescence – Luciferase - found in glowworms, fireflies, and certain bacteria – Aequorea victoria (a type of jellyfish) – Antarctic krill – Parchment worm (Chaetopterus), which exhibits blue bioluminescence despite -
Lighting Design Basics
*KAR_FM(i-x)2ndpas 2/10/04 8:32 PM Page iii (Black plate) LIGHTING DESIGN BASICS MARK KARLEN JAMES R.BENYA JOHN WILEY & SONS, INC. *KAR_FM(i-x)2ndpas 2/10/04 8:32 PM Page ii (Black plate) *KAR_FM(i-x)2ndpas 2/10/04 8:32 PM Page i (Black plate) LIGHTING DESIGN BASICS *KAR_FM(i-x)2ndpas 2/10/04 8:32 PM Page ii (Black plate) *KAR_FM(i-x)2ndpas 2/10/04 8:32 PM Page iii (Black plate) LIGHTING DESIGN BASICS MARK KARLEN JAMES R.BENYA JOHN WILEY & SONS, INC. *KAR_FM(i-x)2ndpas 2/10/04 8:32 PM Page iv (Black plate) This book is printed on acid-free paper. o Copyright © 2004 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: [email protected]. -
Alpha Radiation-Induced Luminescence by Am-241 in Aqueous Nitric Acid Solution
sensors Article Alpha Radiation-Induced Luminescence by Am-241 in Aqueous Nitric Acid Solution Thomas Kerst 1,2,*, Rikard Malmbeck 3, Nidhu lal Banik 3 and Juha Toivonen 1 1 Photonics Laboratory, Physics Unit, Tampere University, P.O. Box 692, 33101 Tampere, Finland; juha.toivonen@tuni.fi 2 Helsinki Institute of Physics, Helsinki University, P.O. Box 64, 00014 Helsinki, Finland 3 European Commission, Joint Research Centre (JRC), Directorate G–Nuclear Safety and Security, Advanced Nuclear Knowledge, 76125 Karlsruhe, Germany; [email protected] (R.M.); [email protected] (N.B.) * Correspondence: thomas.kerst@tuni.fi; Tel.: +358-50-300-5968 Received: 13 February 2019; Accepted: 28 March 2019; Published: 2 April 2019 Abstract: When exposed to air, alpha particles cause the production of light by exciting the molecules surrounding them. This light, the radioluminescence, is indicative of the presence of alpha radiation, thus allowing for the optical sensing of alpha radiation from distances larger than the few centimeters an alpha particle can travel in air. While the mechanics of radioluminescence in air and other gas compositions is relatively well understood, the same cannot be said about the radioluminescence properties of liquids. Better understanding of the radioluminescence properties of liquids is essential to design methods for the detection of radioactively contaminated liquids by optical means. In this article, we provide radioluminescence images of Am-241 dissolved in aqueous nitric acid (HNO3) solution and present the recorded radioluminescence spectrum with a maximum between 350 nm and 400 nm, and a steep decrease at the short wavelength side of the maximum. -
Tritium:Tritium: AA Micropowermicropower Sourcesource Forfor Onon--Chipchip Applicationsapplications
Tritium:Tritium: AA MicroPowerMicroPower SourceSource forfor OnOn--ChipChip ApplicationsApplications Nazir P. Kherani1, Baojun Liu2, Stefan Zukotynski1, Kevin P. Chen2 1Department of Electrical & Computer Engineering 2Department of Electrical and Computer Engineering and Department of Materials Science & Engineering University of Pittsburgh, Pittsburgh, PA, 15261 University of Toronto, Toronto, Ontario, M5S 3G4 Invited Presentation at Materials Innovations in an Emerging Hydrogen Economy February 24-27, 2008, Cocoa Beach, Florida Organized by the American Ceramic Society and ASM International Endorsed by National Hydrogen Association and Society for Advancement of Material and Process Engineering 1 OutlineOutline z Tritium: Basics z Tritium: A MicroPower Source – Beta-Voltaics – Beta-Powered MEMS – Beta-Luminescence – Cold Electron Source z Tritium: A Characterization/Diagnostic Tool – Tritium Tracer Studies – Tritium Effusion Studies – Defect Dynamics – Particle Sensor Applications z Summary 2 TritiumTritium z Isotope of Hydrogen 3 3 + − z H Æ He + β + νe + 18.6 keV z Nuclear Half-life: t ½ = 12.32 years λ = 1.78 x 10-9 s-1 z Activities: 1 Ci = 3.7 x 1010 Bq 1 Ci = 0.39 std cc 1 Ci = 33.7 μW z Biological: Half-life: 10 days ALI*: 80 mCi *Annual Limit on Intake z Chemically: Identical to 1H Mass effect (~3amu) Beta catalysis z Range (max): 4.5 – 6 mm in air 5 – 7 micron in water 3 ProducersProducers && UsersUsers CANDU z Producers of Tritium – Ontario Power Generation (OPG) • ~1 kg/year – Korean Electric Power Company (KEPCO) – USA • -
Functionalization of Single-Walled Carbon Nanotubes with Bis-Astraphloxin
FUNCTIONALIZATIONSSI OF SINGLE- WALLED CARBON NANOTUBES WITH BIS-ASTRAPHLOXIN EBRIMA SAHO APPLIED PHYSICS BSC 2019 ASTON UNIVERSITY © Ebrima Saho, 2019 Ebrima Saho asserts his moral right to be identified as the author of this thesis. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without appropriate permission or acknowledgement. Summary This dissertation aims to demonstrate that photoluminescence spectroscopy could be an efficient technique of functionalized carbon nanotube detection and imaging. The advances in nanotechnology and the potential growth in carbon nanotubes production, in which if control mechanisms not in place for safely disposing off nanotubes, these nanotubes could pose as an environmental pollutant, due to the severe, persistent and bio-accumulative nature of these compounds. Therefore, the need for this scientific research is timely in case of some technological disaster. Besides, the study on interaction of carbon nanotubes with various organic materials provide a new knowledge and opportunities for potential application of the nanotubes. The dissertation starts by exploring and conducting an in-depth literature survey on the functionalization of carbon nanotubes, energy transfer and photoluminescence imaging and the project develops upon the previous work by P. Lutsyk et al. in Light Sci Appl. 5 (2016) e16028 entitled “A Sensing Mechanism for the Detection of Carbon Nanotubes Using Selective Photoluminescent Probes Based on Ionic Complexes with Organic Dyes.” The literature is followed by comprehensive experimental studies by optical spectroscopy techniques on a new system of carbon nanotubes with bis-astraphloxin, which is promising to provide a new insight into non- covalent functionalization of carbon nanotubes. -
Pros and Cons Controversy on Molecular Imaging and Dynamic
Open Access Archives of Biotechnology and Biomedicine Research Article Pros and Cons Controversy on Molecular Imaging and Dynamics of Double- ISSN Standard DNA/RNA of Human Preserving 2639-6777 Stem Cells-Binding Nano Molecules with Androgens/Anabolic Steroids (AAS) or Testosterone Derivatives through Tracking of Helium-4 Nucleus (Alpha Particle) Using Synchrotron Radiation Alireza Heidari* Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA *Address for Correspondence: Dr. Alireza Abstract Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, In the current study, we have investigated pros and cons controversy on molecular imaging and dynamics USA, Email: of double-standard DNA/RNA of human preserving stem cells-binding Nano molecules with Androgens/ [email protected]; Anabolic Steroids (AAS) or Testosterone derivatives through tracking of Helium-4 nucleus (Alpha particle) using [email protected] synchrotron radiation. In this regard, the enzymatic oxidation of double-standard DNA/RNA of human preserving Submitted: 31 October 2017 stem cells-binding Nano molecules by haem peroxidases (or heme peroxidases) such as Horseradish Peroxidase Approved: 13 November 2017 (HPR), Chloroperoxidase (CPO), Lactoperoxidase (LPO) and Lignin Peroxidase (LiP) is an important process from Published: 15 November 2017 both the synthetic and mechanistic point of view. Copyright: 2017 Heidari A. This is an open access article distributed under the Creative -
Main Attributes of Nuclides Presented in This Book
Appendix A Main Attributes of Nuclides Presented in This Book Data given in TableA.1 can be used to determine the various decay energies for the specific radioactive decay examples as well as for the nuclear activation examples presented in this book. M stands for the nuclear rest mass; M stands for the atomic rest mass. The data were obtained from the NIST and are based on CODATA 2010 as follows: 1. Data for atomic masses M are given in atomic mass constants u and were obtained from the NIST at: (http://www.physics.nist.gov/pml/data/comp.cfm). 2. Rest mass of proton mp, neutron mn, electron me, and of the atomic mass constant u are from the NIST (http://www.physics.nist.gov/cuu/constants/index. html) as follows: −27 2 mp = 1.672 621 777×10 kg = 1.007 276 467 u = 938.272 046 MeV/c (A.1) −27 2 mn = 1.674 927 351×10 kg = 1.008 664 916 u = 939.565 379 MeV/c (A.2) −31 −4 2 me = 9.109 382 91×10 kg = 5.485 799 095×10 u = 0.510 998 928 MeV/c (A.3) − 1u= 1.660 538 922×10 27 kg = 931.494 060 MeV/c2 (A.4) 3. For a given nuclide, its nuclear rest energy was determined by subtracting the 2 rest energy of all atomic orbital electrons (Zmec ) from the atomic rest energy M(u)c2 as follows 2 2 2 Mc = M(u)c − Zmec = M(u) × 931.494 060 MeV/u − Z × 0.510 999 MeV. -
And -Ray Scintillators
crystals Article Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and g-ray Scintillators Francesco Maddalena 1,2 , Liliana Tjahjana 1,2 , Aozhen Xie 1,2,3 , Arramel 4 , Shuwen Zeng 5, Hong Wang 1,2,*, Philippe Coquet 1,2,6, Winicjusz Drozdowski 7, Christophe Dujardin 8,* , Cuong Dang 1,2,3,* and Muhammad Danang Birowosuto 1,* 1 CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Level 6, Border X Block, Singapore 637553, Singapore; [email protected] (F.M.); [email protected] (L.T.); [email protected] (A.X.); [email protected] (P.C.) 2 School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore 3 Energy Research Institute @NTU (ERI@N), Nanyang Technological University, Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore 637553, Singapore 4 Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore; [email protected] 5 XLIM Research Institute, UMR 7252 CNRS/University of Limoges, 123, avenue Albert Thomas, 87060 Limoges CEDEX, France; [email protected] 6 Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520-Université de Lille, 59650 Villeneuve d’Ascq, France 7 Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland; wind@fizyka.umk.pl 8 Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière UMR 5306, F-69622 Villeurbanne, France * Correspondence: [email protected] (H.W.); [email protected] (C.D.); [email protected] (C.Dang); [email protected] (M.D.B.); Tel.: +65-6790-6595 (M.D.B.) Received: 31 December 2018; Accepted: 4 February 2019; Published: 8 February 2019 Abstract: Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. -
Chapter 20 Detectors in Medicine and Biology
Chapter 20 Detectors in Medicine and Biology P. Lecoq 20.1 Dosimetry and Medical Imaging The invention by Crookes at the end of the nineteenth century of a device called spinthariscope, which made use of the scintillating properties of Lead Sulfide allowed Rutherford to count α particles in an experiment, opening the way towards modern dosimetry. When at the same time Wilhelm C. Roentgen, also using a similar device, was able to record the first X-ray picture of his wife’s hand 2 weeks only after the X-ray discovery, he initiated the first and fastest technology transfer between particle physics and medical imaging and the beginning of a long and common history. Since that time, physics, and particularly particle physics has contributed to a significant amount to the development of instrumentation for research, diagnosis and therapy in the biomedical area. This has been a direct consequence, one century ago, of the recognition of the role of ionizing radiation for medical imaging as well as for therapy. 20.1.1 Radiotherapy and Dosimetry The curative role of ionizing radiation for the treatment of skin cancers has been exploited in the beginning of the twentieth century through the pioneering work of some physicists and medical doctors in France and in Sweden. This activity has very much progressed with the spectacular developments in the field of accelerators, P. Lecoq () CERN, Geneva, Switzerland e-mail: [email protected] © The Author(s) 2020 913 C. W. Fabjan, H. Schopper (eds.), Particle Physics Reference Library, https://doi.org/10.1007/978-3-030-35318-6_20 914 P.