Determination of Argon and Xenon Absolute Electroluminescence Yields in Gas Proportional Scintillation Counters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
M7 Electroluminescence of Polymers
Universität Potsdam Institute of Physics and Astronomy Advanced Physics Lab Course March 2020 M7 ELECTROLUMINESCENCE OF POLYMERS I. INTRODUCTION The recombination of holes and electrons in a luminescent material can produce light. This emitted light is referred to as electroluminescence (EL) and was discovered in organic single crystals by Pope, Magnante, and Kallmann in 1963.[1] EL from conjugated polymers was first reported by Burroughes et al.[2] The polymer used was poly(p-phenylenevinylene) (PPV). Since then, a variety of other polymers has been investigated. Organic EL devices have applications in a wide field ranging from multi-color displays and optical information processing to lighting. Polymers have the advantage over inorganic and monomolecular materials in the ease with which thin, structurally robust and large area films can be perpared from solutions. Using printing techniques, patterned structures can be produced easily. Even flexible displays can be produced because of the good mechanical properties of polymers. In this lab course, basic optical and electrical properties of conjugated polymers will be investigated. Advanced Lab Course: Electroluminescence of Polymers 2 EXPERIMENTAL TASKS Measure the absorption spectra of your polymers (thin films spin coated onto glass substrates). Characterize the setup used for luminescence measurements. Identify possible sources of error and collect data necessary for their correction. Measure the photoluminescence emission spectra for the polymer films, using suitable excitation wavelengths. Measure the photoluminescence excitation spectra for the polymer films, using suitable detection wavelengths. Measure the current through the OLEDs and the spectral radiant intensity of electroluminescence as a function of applied voltage (the current-radiance-voltage characteristics). -
Arxiv:1207.2292V3 [Physics.Ins-Det] 29 Apr 2013
Preprint typeset in JINST style - HYPER VERSION Liquid noble gas detectors for low energy particle physics Vitaly Chepela∗ and Henrique Araújob aLIP–Coimbra & Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal Email: [email protected] bHigh Energy Physics Group, Imperial College London, Blackett Laboratory, London SW7 2AZ, United Kingdom ABSTRACT: We review the current status of liquid noble gas radiation detectors with energy thresh- old in the keV range, which are of interest for direct dark matter searches, measurement of coherent neutrino scattering and other low energy particle physics experiments. Emphasis is given to the op- eration principles and the most important instrumentation aspects of these detectors, principally of those operated in the double-phase mode. Recent technological advances and relevant develop- ments in photon detection and charge readout are discussed in the context of their applicability to those experiments. KEYWORDS: Noble liquid detectors (scintillation, ionization, double phase); Dark matter detectors (WIMPs, axions, etc.); Neutrino detectors; Charge transport, multiplication and electroluminescence in rare gases and liquids. arXiv:1207.2292v3 [physics.ins-det] 29 Apr 2013 ∗Corresponding author. Contents 1. Introduction 2 2. Elastic scattering of dark matter particles and neutrinos off nuclei 2 3. Overview of detection principles 4 4. Relevant properties of the liquefied rare gases 13 4.1 Particle energy transfer to the liquid 13 4.2 Primary scintillation 15 4.2.1 Emission mechanism and yields 15 4.2.2 The role of recombination 26 4.2.3 Light propagation 32 4.3 Ionization charge 34 4.3.1 Ionization yields and transport properties in the liquid 34 4.3.2 Liquid purity 38 4.4 Combined signal 39 4.5 Electron emission from liquid to gas 40 4.6 Electrons in the gas phase 43 5. -
European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium
European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium August 2017 European Astroparticle Physics Strategy 2017-2026 www.appec.org Executive Summary Astroparticle physics is the fascinating field of research long-standing mysteries such as the true nature of Dark at the intersection of astronomy, particle physics and Matter and Dark Energy, the intricacies of neutrinos cosmology. It simultaneously addresses challenging and the occurrence (or non-occurrence) of proton questions relating to the micro-cosmos (the world decay. of elementary particles and their fundamental interactions) and the macro-cosmos (the world of The field of astroparticle physics has quickly celestial objects and their evolution) and, as a result, established itself as an extremely successful endeavour. is well-placed to advance our understanding of the Since 2001 four Nobel Prizes (2002, 2006, 2011 and Universe beyond the Standard Model of particle physics 2015) have been awarded to astroparticle physics and and the Big Bang Model of cosmology. the recent – revolutionary – first direct detections of gravitational waves is literally opening an entirely new One of its paths is targeted at a better understanding and exhilarating window onto our Universe. We look of cataclysmic events such as: supernovas – the titanic forward to an equally exciting and productive future. explosions marking the final evolutionary stage of massive stars; mergers of multi-solar-mass black-hole Many of the next generation of astroparticle physics or neutron-star binaries; and, most compelling of all, research infrastructures require substantial capital the violent birth and subsequent evolution of our infant investment and, for Europe to remain competitive Universe. -
Light Dark Matter in a Minimal Extension with Two Additional Real Singlets
PHYSICAL REVIEW D 103, 015010 (2021) Light dark matter in a minimal extension with two additional real singlets Markos Maniatis * Centro de Ciencias Exactas and Departamento de Ciencias Básicas, UBB, Avenida Andres Bello 720, 3780000 Chillán, Chile (Received 24 August 2020; accepted 12 December 2020; published 8 January 2021) The direct searches for heavy scalar dark matter with a mass of order 100 GeV are much more sensitive than for light dark matter of order 1 GeV. The question arises whether dark matter could be light and has escaped detection so far. We study a simple extension of the Standard Model with two additional real singlets. We show that this simple extension may provide the observed relic dark matter density, does neither disturb big bang nucleosynthesis nor the cosmic microwave background radiation observations, and fulfills the conditions of clumping behavior for different sizes of Galaxies. The potential of one Standard Model–like Higgs-boson doublet and the two singlets gives rise to a changed Higgs phenomenology, in particular, an enhanced invisible Higgs-boson decay rate is expected, detectable by missing transversal momentum searches at the ATLAS and CMS experiments at CERN. DOI: 10.1103/PhysRevD.103.015010 I. INTRODUCTION collisions. In particular, in this way a DM candidate may enhance the invisible decay rate of a SM-like Higgs boson. Recently it has been reported [1] that the NGC1052–DF2 Note that in the SM the only invisible decay channel of galaxy with a stellar mass of approximately 2 × 108 solar the Higgs boson (h) is via two electroweak Z bosons masses has a rotational movement in accordance with its which subsequently decay into pairs of neutrinos (ν), that observed mass. -
Dark Matter Direct Detection with Edelweiss-II
Dark matter direct detection with Edelweiss-II Eric Armengaud - CEA / IRFU Blois 2008 http://edelweiss2.in2p3.fr/ 1 Direct detection of dark matter : principles . A well-identified science goal: Detect the nuclear recoil of local WIMPs inside some material Target the electroweak interaction scale, m ~ GeV-TeV At least 3 strategies: Search for a global recoil spectrum V(Earth/Sun): Search for a - small - annual modulation V(Sun/Wimp gaz): Search for a - large - forward/backward asymetry Remove backgrounds!!! Go deep underground Use several passive shields Develop smart detectors to identify the remaining radioactivity interactions 2 Direct detection of dark matter . A well-identified science goal: Detect the nuclear recoil of local WIMPs inside some material Target the electroweak interaction scale, m ~ GeV-TeV At least 3 strategies: Search for a global recoil spectrum • Cryogenic bolometers: CDMS, CRESST, EDELWEISS… • Liquid noble elements: XENON, LUX, ZEPLIN, WARP, ArDM… • Superheated liquids: COUPP, PICASSO, SIMPLE… • Solid scintillator (DAMA, KIMS), low- threshold Ge (TEXONO), gaz detector (DRIFT)… A very active field with both R&D and large-scale setups 3 The XENON10 experiment • Quite easily scalable, « high » temperatures • First scintillation pulse (S1) + Second pulse due to e- extraction to the gaz (S2) ⇒ Nuclear recoil discrimination - especially @ low E • Position measurements ⇒ Fiducial cut (~5kg) • Low-energy threshold + Xe mass ⇒ sensitivity to low-mass Wimps Electronic recoils Nuclear recoil region But : not background-free -
New Lighting—New Leds
New Lighting—New LEDs Aspects on light‐emitting diodes from social and material science perspectives Editors Mats Bladh & Mikael Syväjärvi Published by Linköping University Electronic Press, 2010 ISBN: 978‐91‐7393‐270‐7 URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva‐60807 © The Authors Contents Foreword ...................................................................................... 5 Authors ........................................................................................ 7 Introduction: A Paradigmatic Shift? Mats Bladh & Mikael Syväjärvi ................................................................................. 9 Materials and Growth Technologies for Efficient LEDs Mikael Syväjärvi, Satoshi Kamiyama, Rositza Yakimova & Isamu Akasaki ............... 16 Light Excitation and Extraction in LEDs Satoshi Kamiyama, Motoaki Iwaya, Isamu Akasaki, Mikael Syväjärvi & Rositza Yakimova ...................................................................................................... 27 ‘No Blue’ White LED Haiyan Ou, Dennis Corell, Carsten Dam‐Hansen, Paul‐Michael Petersen & Dan Friis .................................................................................................................... 35 User Responses to Energy Efficient Light Sources in Home Environments Monica Säter ............................................................................................................. 43 Prospects for LED from a Historical Perspective Mats Bladh ............................................................................................................... -
Lecture ˮincoherent Light Sources“ Summer Term 2008 Tim Pohle Electroluminescence Light Sources – Table of Contents
Lecture ˮIncoherent Light Sources“ Summer term 2008 Tim Pohle Electroluminescence Light Sources – Table of contents Table of contents . Overview of electroluminescence . LED (Light Emitting Diode) History of development Technical details Applications . OLED (Organic Light Emitting Diode) History of development Technical details Applications . Electroluminescent strings and foils – Light Emitting Capacitor History of development Technical details Applications Incoherent Light Sources 2008 Tim Pohle 2 Electroluminescence Light Sources – Overview of Electroluminescence Overview of Electroluminescence [6] [3] . It depeds on luminescence [1] . It is distinct from fluorescence3/phosphorescence, [2] chemoluminescence2, sonoluminescence5, bioluminescence1, superluminescence6, triboluminescnece4, etc. [4] [5] . It is an optical/electrical phenomenon . Material emits light in response to an electric current passed through it, or to a strong electric field CB . It is result of radiative recombination of electrons and holes in a material VB Incoherent Light Sources 2008 Tim Pohle 3 Electroluminescence Light Sources – LED LED (Light Emitting Diode) History of development 1907 Henry Joseph Round (Marconi Labs) „invents the LED“. He finds out that some inorganic substances glow if a electric voltage is impress on them. He publishted his observation in the journal „Electrical World“ 1921 Ignorant of Round`s invention, Oleg Vladimirovich Losev makes the same observations 1927- Losev investigates this effect 1942 and guesses that it is the inversion of Einstein„s photoelectrical effect Incoherent Light Sources 2008 Tim Pohle 4 Electroluminescence Light Sources – LED 1951 Satisfactory explanation of the light emission due to the semiconductor and transistor development 1961 Bob Biard and Gary Pittman (Texas Instruments) find out that gallium arsenide (GaAs) give off infrared radiation when electric current is applied. -
Properties of Light Library Document
Light + Air North America Properties of Light Library Document 2 Properties Library Document of Light Properties of Light Light as energy The other way of representing light is as a wave phenomenon. This is somewhat more difficult for most people to understand, but Light is remarkable. It is something we take for granted every day, perhaps an analogy with sound waves will be useful. When you play but it is not something we stop and think about very often or even a high note and a low note on the piano, they both produce sound, try to define. Let us take a few minutes and try to understand but the main thing that is different between the two notes is the some things about light. Simply stated, light is nature’s way frequency of the vibrating string producing the sound waves--the of transferring energy through space. We can complicate it by faster the vibration the higher the pitch of the note. If we now shift talking about interacting electric and magnetic fields, quantum our focus to the sound waves themselves instead of the vibrating mechanics and all of that, but just remember, light is energy. Light string, we would find that the higher pitched notes have shorter travels very rapidly, but it does have a finite velocity. In vacuum, wavelengths, or distances between each successive wave. Likewise the speed of light is 186,282 miles per second (or nearly 300,000 (and restricting ourselves to optical light for the moment), blue kilometers per second), which is really humming along! However, light and red light are both just light, but the blue light has a higher when we start talking about the incredible distances in astronomy, frequency of vibration (or a shorter wavelength) than the red light. -
Biofluorescence
Things That Glow In The Dark Classroom Activities That Explore Spectra and Fluorescence Linda Shore [email protected] “Hot Topics: Research Revelations from the Biotech Revolution” Saturday, April 19, 2008 Caltech-Exploratorium Learning Lab (CELL) Workshop Special Guest: Dr. Rusty Lansford, Senior Scientist and Instructor, Caltech Contents Exploring Spectra – Using a spectrascope to examine many different kinds of common continuous, emission, and absorption spectra. Luminescence – A complete description of many different examples of luminescence in the natural and engineered world. Exploratorium Teacher Institute Page 1 © 2008 Exploratorium, all rights reserved Exploring Spectra (by Paul Doherty and Linda Shore) Using a spectrometer The project Star spectrometer can be used to look at the spectra of many different sources. It is available from Learning Technologies, for under $20. Learning Technologies, Inc., 59 Walden St., Cambridge, MA 02140 You can also build your own spectroscope. http://www.exo.net/~pauld/activities/CDspectrometer/cdspectrometer.html Incandescent light An incandescent light has a continuous spectrum with all visible colors present. There are no bright lines and no dark lines in the spectrum. This is one of the most important spectra, a blackbody spectrum emitted by a hot object. The blackbody spectrum is a function of temperature, cooler objects emit redder light, hotter objects white or even bluish light. Fluorescent light The spectrum of a fluorescent light has bright lines and a continuous spectrum. The bright lines come from mercury gas inside the tube while the continuous spectrum comes from the phosphor coating lining the interior of the tube. Exploratorium Teacher Institute Page 2 © 2008 Exploratorium, all rights reserved CLF Light There is a new kind of fluorescent called a CFL (compact fluorescent lamp). -
Top- and Bottom-Emission-Enhanced Electroluminescence of Deep-UV
OPEN Top- and bottom-emission-enhanced SUBJECT AREAS: electroluminescence of deep-UV INORGANIC LEDS NANOPHOTONICS AND light-emitting diodes induced by PLASMONICS localised surface plasmons Received 26 November 2013 Kai Huang, Na Gao, Chunzi Wang, Xue Chen, Jinchai Li, Shuping Li, Xu Yang & Junyong Kang Accepted 27 February 2014 Department of Physics, Fujian Provincial Key Laboratory of Semiconductor Materials and Application, Xiamen University, Xiamen, 361005, P. R. China. Published 14 March 2014 We report localised-surface-plasmon (LSP) enhanced deep-ultraviolet light-emitting diodes (deep-UV LEDs) using Al nanoparticles for LSP coupling. Polygonal Al nanoparticles were fabricated on the top surfaces of the deep-UV LEDs using the oblique-angle deposition method. Both the top- and Correspondence and bottom-emission electroluminescence of deep-UV LEDs with 279 nm multiple-quantum-well emissions requests for materials can be effectively enhanced by the coupling with the LSP generated in the Al nanoparticles. The primary should be addressed to bottom-emission wavelength is longer than the primary top-emission wavelength. This difference in K.H. (k_huang@xmu. wavelength can be attributed to the substrate-induced Fano resonance effect. For resonance modes with edu.cn) or J.C.L. shorter wavelengths, the radiation fraction directed back into the LEDs is largest in the direction that is nearly parallel to the surface of the device and results in total reflection and re-absorption in the LEDs. ([email protected]) emiconductor deep-ultraviolet (deep-UV) light sources based on III-nitride light-emitting diodes (LEDs) have been intensively investigated because of their potential applications, including air and water purifica- tion, germicidal and biomedical instrumentation systems, and ophthalmic surgery tools1–3. -
Jianglai Liu Shanghai Jiao Tong University
Jianglai Liu Shanghai Jiao Tong University Jianglai Liu Pheno 2017 1 If DM particles have non-gravitational interaction with normal matter, can be detected in “laboratories”. DM DM Collider Search Indirect Search ? SM SM Direct Search Pheno 2017 Jianglai Liu Pheno 2017 2 Galactic halo . The solar system is cycling the center of galaxy with on average 220 km/s speed (annual modulation in earth movement) . DM local density around us: 0.3(0.1) GeV/cm3 Astrophys. J. 756:89 Inclusion of new LAMOST survey data: 0.32(0.02), arXiv:1604.01216 Jianglai Liu Pheno 2017 3 1973: discovery of neutral current Gargamelle detector in CERN neutrino beam Dieter Haidt, CERN Courier Oct 2004: “The searches for neutral currents in previous neutrino experiments resulted in discouragingly low limits (@1968), and it was somehow commonly concluded that no weak neutral currents existed.” leptonic NC hadronic NC v beam Jianglai Liu Pheno 2017 4 Direct detection A = m2/m1 . DM: velocity ~1/1500 c, mass ~100 GeV, KE ~ 20 keV . Nuclear recoil (NR, “hadronic”): recoiling energy ~10 keV . Electron recoil (ER, “leptonic”): 10-4 suppression in energy, very difficult to detect New ideas exist, e.g. Hochberg, Zhao, and Zurek, PRL 116, 011301 Jianglai Liu Pheno 2017 5 Elastic recoil spectrum . Energy threshold mass DM . SI: coherent scattering on all nucleons (A2 Ge Xe enhancement) . Note, spin-dependent Si effect can be viewed as scattering with outer unpaired nucleon. No luxury of A2 enhancement Gaitskell, Annu. Rev. Nucl. Part. Sci. 2004 Jianglai Liu Pheno 2017 6 Neutrino “floor” Goodman & Witten Ideas do exist Phys. -
Science Vision Draft
A Science Vision for European Astronomy ASTRONET SVWG DRAFT December 19, 2006 ii Contents 1 Introduction 1 1.1 The role of science in society . ............................. 1 1.2 Astronomy . ........................................ 3 1.3 Predicting the future .................................... 5 1.4 This document ........................................ 6 2 Do we understand the extremes of the Universe? 7 2.1 How did the Universe begin? . ............................. 8 2.1.1 Background . .................................... 8 2.1.2 Key observables . ............................. 9 2.1.3 Future experiments . ............................. 9 2.2 What is dark matter and dark energy? . ......................... 10 2.2.1 Current status .................................... 10 2.2.2 Experimental signatures . ............................. 11 2.2.3 Future strategy . ............................. 12 2.3 Can we observe strong gravity in action? . ..................... 13 2.3.1 Background . .................................... 13 2.3.2 Experiments . .................................... 15 2.4 How do supernovae and gamma-ray bursts work? . ................. 17 2.4.1 Current status .................................... 17 2.4.2 Key questions .................................... 18 2.4.3 Future experiments . ............................. 19 2.5 How do black hole accretion, jets and outflows operate? . .......... 20 2.5.1 Background . .................................... 20 2.5.2 Experiments . .................................... 21 2.6 What do we learn