Dark Matter 1 25
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Overview of Dark Matter Searches with Liquid Nobles
Overview of Dark Matter searches with liquid nobles Marcin Kuźniak [email protected] 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 1 Outline ● Dark matter detection ● Noble liquid technology ● Physics landscape – High mass WIMPs ● Spin-independent ● Spin-dependent – Low mass WIMPs ● Status of experimental Ar and Xe programs ● Target complementarity ● Main challenges moving forward ● (Biased) selection of new ideas ● Summary 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 2 DM direct detection signature Direct detection ● Only through rare interactions with ordinary matter ● After the interaction, recoiling nucleus deposits energy (heat, 100 GeV WIMP light, electric charge, ...) in the detector Nuclear recoil spectrum ● featureless, ~exponential ● lower threshold =>more sensitivity ● natural radioactivity is a background astrophysics detector response particle/nuclear physics 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 3 Backgrounds 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 4 Liquid noble detectors Excitation Heat Nuclear recoils (NR) Ar and Xe are used for WIMP detection. ● Ar inexpensive and advantageous for purification and background rejection Why noble elements? ● High light yield, transparent to their own scintillation ● Easy to purify and scalable to very high masses ● (At least) two available detection channels: scintillation and ionization 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 5 Single or dual phase DEAP gas DarkSide approach approach Detect primary scintillation light (S1) from the original -
Parallel Sessions
Identification of Dark Matter July 23-27, 2012 9th International Conference Chicago, IL http://kicp-workshops.uchicago.edu/IDM2012/ PARALLEL SESSIONS http://kicp.uchicago.edu/ http://www.nsf.gov/ http://www.uchicago.edu/ http://www.fnal.gov/ International Advisory Committee Daniel Akerib Elena Aprile Rita Bernabei Case Western Reserve University, Columbia University, USA Universita degli Studi di Roma, Italy Cleveland, USA Gianfranco Bertone Joakim Edsjo Katherine Freese University of Amsterdam Oskar Klein Centre / Stockholm University of Michigan, USA University Richard Gaitskell Gilles Gerbier Anne Green Brown University, USA IRFU/ CEA Saclay, France University of Nottingham, UK Karsten Jedamzik Xiangdong Ji Lawrence Krauss Universite de Montpellier, France University of Maryland, USA Arizona State University, USA Vitaly Kudryavtsev Reina Maruyama Leszek Roszkowski University of Sheffield University of Wisconsin-Madison University of Sheffield, UK Bernard Sadoulet Pierre Salati Daniel Santos University of California, Berkeley, USA University of California, Berkeley, USA LPSC/UJF/CNRS Pierre Sikivie Daniel Snowden-Ifft Neil Spooner University of Florida, USA Occidental College University of Sheffield, UK Max Tegmark Karl van Bibber Kavli Institute for Astrophysics & Space Naval Postgraduate School Monterey, Research at MIT, USA USA Local Organizing Committee Daniel Bauer Matthew Buckley Juan Collar Fermi National Accelerator Laboratory Fermi National Accelerator Laboratory Kavli Institute for Cosmological Physics Scott Dodelson Aimee -
The PICASSO Dark Matter Physics Program at SNOLAB
33RD INTERNATIONAL COSMIC RAY CONFERENCE,RIO DE JANEIRO 2013 THE ASTROPARTICLE PHYSICS CONFERENCE The PICASSO Dark Matter Physics Program at SNOLAB A.J. NOBLE1 FOR THE PICASSO COLLABORATION: S. ARCHAMBAULT2, E. BEHNKE3, P. BHATTACHARJEE4, S. BHATTACHARYA4, X. DAI1, M. DAS4, A. DAVOUR1, F. DEBRIS2, N. DHUNGANA5, J. FARINE5, S. GAGNEBIN6, G. GIROUX2, E. GRACE3, C. M. JACKSON2, A. KAMAHA1, C. KRAUSS6, S. KUMARATUNGA2, M. LAFRENIRE2, M. LAURIN2, I. LAWSON7, L. LESSARD2, I. LEVINE3, C. LEVY1, R. P. MACDONALD6, D. MARLISOV6, J.-P. MARTIN2, P. MITRA6, A. J. NOBLE1, M.-C. PIRO2, R. PODVIYANUK5, S. POSPISIL8, S. SAHA4, O. SCALLON2, S. SETH4, N. STARINSKI2, I. STEKL8, U. WICHOSKI5, T. XIE1, V. ZACEK2 1 Department of Physics, Queens University, Kingston, K7L 3N6, Canada 2 Departement´ de Physique, Universite´ de Montreal,´ Montreal,´ H3C 3J7, Canada 3 Department of Physics & Astronomy, Indiana University South Bend, South Bend, IN 46634, USA 4 Saha Institute of Nuclear Physics, Centre for AstroParticle Physics (CAPP), Kolkata, 700064, India 5 Department of Physics, Laurentian University, Sudbury, P3E 2C6, Canada 6 Department of Physics, University of Alberta, Edmonton, T6G 2G7, Canada 7 SNOLAB, 1039 Regional Road 24, Lively ON, P3Y 1N2, Canada 8 Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Cz-12800, Czech Republic [email protected] Abstract: PICASSO is a dark matter search experiment currently operational at the SNOLAB International Facility for Astroparticle Physics, located 2 km underground in Sudbury, Canada. PICASSO is based on the superheated bubble technique. With good control of radiological backgrounds and a detector design that stabilizes the superheated liquid even when very close to the critical temperature, PICASSO has achieved very low nuclear recoil thresholds. -
European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium
European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium August 2017 European Astroparticle Physics Strategy 2017-2026 www.appec.org Executive Summary Astroparticle physics is the fascinating field of research long-standing mysteries such as the true nature of Dark at the intersection of astronomy, particle physics and Matter and Dark Energy, the intricacies of neutrinos cosmology. It simultaneously addresses challenging and the occurrence (or non-occurrence) of proton questions relating to the micro-cosmos (the world decay. of elementary particles and their fundamental interactions) and the macro-cosmos (the world of The field of astroparticle physics has quickly celestial objects and their evolution) and, as a result, established itself as an extremely successful endeavour. is well-placed to advance our understanding of the Since 2001 four Nobel Prizes (2002, 2006, 2011 and Universe beyond the Standard Model of particle physics 2015) have been awarded to astroparticle physics and and the Big Bang Model of cosmology. the recent – revolutionary – first direct detections of gravitational waves is literally opening an entirely new One of its paths is targeted at a better understanding and exhilarating window onto our Universe. We look of cataclysmic events such as: supernovas – the titanic forward to an equally exciting and productive future. explosions marking the final evolutionary stage of massive stars; mergers of multi-solar-mass black-hole Many of the next generation of astroparticle physics or neutron-star binaries; and, most compelling of all, research infrastructures require substantial capital the violent birth and subsequent evolution of our infant investment and, for Europe to remain competitive Universe. -
Dark Matter the Invisible Material
Dark matter The invisible material Our universe holds everything we know and everything we are still figuring out. For years, physicists around the world have studied our universe to better understand its nature and its future. They have found that we only understand about 4% of the matter and energy in our universe (including stars, planets, and hot gas). The other 96% is invisible to us and 23% of this invisible material is named dark matter. If dark matter is invisible, how do we know it exists? To answer this, we go back to the 1930s when physicist Fritz Zwicky Galaxy cluster* coined the term dark matter while studying galaxy clusters. Galaxy clusters have up to thousands of galaxies (like our Milky Way for example) held together by gravity. When Dr. Zwicky calculated the total visible mass of galaxies in the Coma cluster, he found that it was not enough to create the gravity needed to hold the cluster together (mass causes gravity). He concluded that there must be an invisible material causing the extra gravity: dark matter. Now fast forward to the 1970s when Vera Rubin studied galaxy rotation curves. According to Newton’s laws, when objects rotate around a common centre, the ones furthest from the centre move more slowly Gravitational lens – than those near it. Otherwise, the furthest objects would fly off. Dr. Rubin galaxies look long found that stars in galaxies do not follow this rule. In fact, stars at the and distorted* outer edges of galaxies move at about the same rate as those near the centre. -
Dark Matter and the Early Universe: a Review Arxiv:2104.11488V1 [Hep-Ph
Dark matter and the early Universe: a review A. Arbey and F. Mahmoudi Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, 69622 Villeurbanne, France Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France Abstract Dark matter represents currently an outstanding problem in both cosmology and particle physics. In this review we discuss the possible explanations for dark matter and the experimental observables which can eventually lead to the discovery of dark matter and its nature, and demonstrate the close interplay between the cosmological properties of the early Universe and the observables used to constrain dark matter models in the context of new physics beyond the Standard Model. arXiv:2104.11488v1 [hep-ph] 23 Apr 2021 1 Contents 1 Introduction 3 2 Standard Cosmological Model 3 2.1 Friedmann-Lema^ıtre-Robertson-Walker model . 4 2.2 A quick story of the Universe . 5 2.3 Big-Bang nucleosynthesis . 8 3 Dark matter(s) 9 3.1 Observational evidences . 9 3.1.1 Galaxies . 9 3.1.2 Galaxy clusters . 10 3.1.3 Large and cosmological scales . 12 3.2 Generic types of dark matter . 14 4 Beyond the standard cosmological model 16 4.1 Dark energy . 17 4.2 Inflation and reheating . 19 4.3 Other models . 20 4.4 Phase transitions . 21 5 Dark matter in particle physics 21 5.1 Dark matter and new physics . 22 5.1.1 Thermal relics . 22 5.1.2 Non-thermal relics . -
Small Scale Problems of the CDM Model
galaxies Article Small Scale Problems of the LCDM Model: A Short Review Antonino Del Popolo 1,2,3,* and Morgan Le Delliou 4,5,6 1 Dipartimento di Fisica e Astronomia, University of Catania , Viale Andrea Doria 6, 95125 Catania, Italy 2 INFN Sezione di Catania, Via S. Sofia 64, I-95123 Catania, Italy 3 International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59012-970 Natal, Brazil 4 Instituto de Física Teorica, Universidade Estadual de São Paulo (IFT-UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2 - Barra Funda, 01140-070 São Paulo, SP Brazil; [email protected] 5 Institute of Theoretical Physics Physics Department, Lanzhou University No. 222, South Tianshui Road, Lanzhou 730000, Gansu, China 6 Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Faculdade de Ciências, Ed. C8, Campo Grande, 1769-016 Lisboa, Portugal † [email protected] Academic Editors: Jose Gaite and Antonaldo Diaferio Received: 30 May 2016; Accepted: 9 December 2016; Published: 16 February 2017 Abstract: The LCDM model, or concordance cosmology, as it is often called, is a paradigm at its maturity. It is clearly able to describe the universe at large scale, even if some issues remain open, such as the cosmological constant problem, the small-scale problems in galaxy formation, or the unexplained anomalies in the CMB. LCDM clearly shows difficulty at small scales, which could be related to our scant understanding, from the nature of dark matter to that of gravity; or to the role of baryon physics, which is not well understood and implemented in simulation codes or in semi-analytic models. -
Light Dark Matter in a Minimal Extension with Two Additional Real Singlets
PHYSICAL REVIEW D 103, 015010 (2021) Light dark matter in a minimal extension with two additional real singlets Markos Maniatis * Centro de Ciencias Exactas and Departamento de Ciencias Básicas, UBB, Avenida Andres Bello 720, 3780000 Chillán, Chile (Received 24 August 2020; accepted 12 December 2020; published 8 January 2021) The direct searches for heavy scalar dark matter with a mass of order 100 GeV are much more sensitive than for light dark matter of order 1 GeV. The question arises whether dark matter could be light and has escaped detection so far. We study a simple extension of the Standard Model with two additional real singlets. We show that this simple extension may provide the observed relic dark matter density, does neither disturb big bang nucleosynthesis nor the cosmic microwave background radiation observations, and fulfills the conditions of clumping behavior for different sizes of Galaxies. The potential of one Standard Model–like Higgs-boson doublet and the two singlets gives rise to a changed Higgs phenomenology, in particular, an enhanced invisible Higgs-boson decay rate is expected, detectable by missing transversal momentum searches at the ATLAS and CMS experiments at CERN. DOI: 10.1103/PhysRevD.103.015010 I. INTRODUCTION collisions. In particular, in this way a DM candidate may enhance the invisible decay rate of a SM-like Higgs boson. Recently it has been reported [1] that the NGC1052–DF2 Note that in the SM the only invisible decay channel of galaxy with a stellar mass of approximately 2 × 108 solar the Higgs boson (h) is via two electroweak Z bosons masses has a rotational movement in accordance with its which subsequently decay into pairs of neutrinos (ν), that observed mass. -
Direct Dark Matter Searches: the Experimental Context
Conseil Scientifique de l’IN2P3, 25-26 octobre 2018 Direct Dark Matter searches: the experimental context Alessandra Tonazzo (APC, Université Paris-Diderot) Direct search for WIMPs : current status ���������� ��������� -�� -� �� ����-� �� - ] ��� ] � ����� -�� -� �� �� �� [ �� [ ������ ������ �� �� σ σ -�� -��� -� �� ����� �� - -�� �� �������� � �� -���� ��� ���� -�� - �������� ������� -�� � -� ������� �� �� - - ��� ��-�� ������� ��-�� ���� ������ ���� ������ ��-�� ��-�� ���� ����� ������� ������� �� ����� ����� ���������� �� ������� ��� �������� ��������� ������������ ���������� ������� ��������� �� ��������� coherent ν scattering on Xe ��-�� � �� ��� ���� A personal selection ���� ������ ���� [���/��] CS IN2P3, 25/10/2018 A. Tonazzo - World context for direct dark matter searches 2 Direct detection of WIMPs WIMP <v>˜220 km/s Nuclear Recoil detectable signal ER < 100 keV Rate: ~1 evt/(ton*year) for σ~10-47cm2 in noble liquids CS IN2P3, 25/10/2018 A. Tonazzo - World context for direct dark matter searches 3 Backgrounds WIMP • Cosmic rays and cosmogenic neutron neutrons/isotopes neutrino • Radioactivity, natural (238U,232Th,235U,222Rn,...) or anthropogenic Nuclear Recoil (85Kr,137Cs,...), from detector elements e, γ • Neutrinos (solar, atmospheric, diffuse SN) scattering coherently off nuclei (”neutrino floor”) Electron Recoil Possibility for background discrimination CS IN2P3, 25/10/2018 A. Tonazzo - World context for direct dark matter searches 4 Direct detection of WIMPs : signatures • Anomalous rate of low-energy nuclear recoils • -
Dark Matter Direct Detection with Edelweiss-II
Dark matter direct detection with Edelweiss-II Eric Armengaud - CEA / IRFU Blois 2008 http://edelweiss2.in2p3.fr/ 1 Direct detection of dark matter : principles . A well-identified science goal: Detect the nuclear recoil of local WIMPs inside some material Target the electroweak interaction scale, m ~ GeV-TeV At least 3 strategies: Search for a global recoil spectrum V(Earth/Sun): Search for a - small - annual modulation V(Sun/Wimp gaz): Search for a - large - forward/backward asymetry Remove backgrounds!!! Go deep underground Use several passive shields Develop smart detectors to identify the remaining radioactivity interactions 2 Direct detection of dark matter . A well-identified science goal: Detect the nuclear recoil of local WIMPs inside some material Target the electroweak interaction scale, m ~ GeV-TeV At least 3 strategies: Search for a global recoil spectrum • Cryogenic bolometers: CDMS, CRESST, EDELWEISS… • Liquid noble elements: XENON, LUX, ZEPLIN, WARP, ArDM… • Superheated liquids: COUPP, PICASSO, SIMPLE… • Solid scintillator (DAMA, KIMS), low- threshold Ge (TEXONO), gaz detector (DRIFT)… A very active field with both R&D and large-scale setups 3 The XENON10 experiment • Quite easily scalable, « high » temperatures • First scintillation pulse (S1) + Second pulse due to e- extraction to the gaz (S2) ⇒ Nuclear recoil discrimination - especially @ low E • Position measurements ⇒ Fiducial cut (~5kg) • Low-energy threshold + Xe mass ⇒ sensitivity to low-mass Wimps Electronic recoils Nuclear recoil region But : not background-free -
1.1 the XMASS Project 1.2 XMASS-I
STATUS OF XMASS Y. KISIMOTO forXMASS collaboration Kamioka Observatory, Institute for Cosmic Ray Research, the University of To kyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205, JAPAN, Kavli Institute for Physics and Mathematics of the Universe (WPI) , the University of Tokyo, Kashiwa, Chiba 217-8582, JA PAN The XMASS experiment is a multi-purpose detector for rare events, such as direct detection of dark matter, using single-phase liquid xenon. The current phase of the XMASS(XMASS I) is focused on direct dark-matter detection with the largest target mass (835kg). In this paper, we report results of searches carried out with commissioning runs of the XMASS-I and current status of XMASS-I after hardware modification to reduce background followed by the commissioning runs. 1 The XMASS experiment 1.1 The XMASS project The XMASS project was proposed to observe rare events such as elastic scattering of electron by pp solar neutrinos, neutrinoless double beta decay, and elastic scattering of nuclei by dark matter particles with a large liquid-Xe detector 1. In the XMASS detector, scintillation lights from liquid xenon are observed by photo-multiplier tubes PMTs arranged around the liquid xenon volume. This simple configuration is very much suitable( for) observing the rare events because liquid xenon is an efficient scintillator and attenuation of scintillation light is quite small and also because liquid xenon has hight atomic number and high density and so it is worked as shield material against radiation from outside. We can, therefor, search for the rate events by extracting events in a low-background volume. -
Self-Interacting Inelastic Dark Matter: a Viable Solution to the Small Scale Structure Problems
Prepared for submission to JCAP ADP-16-48/T1004 Self-interacting inelastic dark matter: A viable solution to the small scale structure problems Mattias Blennow,a Stefan Clementz,a Juan Herrero-Garciaa; b aDepartment of physics, School of Engineering Sciences, KTH Royal Institute of Tech- nology, AlbaNova University Center, 106 91 Stockholm, Sweden bARC Center of Excellence for Particle Physics at the Terascale (CoEPP), University of Adelaide, Adelaide, SA 5005, Australia Abstract. Self-interacting dark matter has been proposed as a solution to the small- scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution to reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schr¨odingerequation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.