Probing the Nature of Dark Matter in the Universe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Parallel Sessions
Identification of Dark Matter July 23-27, 2012 9th International Conference Chicago, IL http://kicp-workshops.uchicago.edu/IDM2012/ PARALLEL SESSIONS http://kicp.uchicago.edu/ http://www.nsf.gov/ http://www.uchicago.edu/ http://www.fnal.gov/ International Advisory Committee Daniel Akerib Elena Aprile Rita Bernabei Case Western Reserve University, Columbia University, USA Universita degli Studi di Roma, Italy Cleveland, USA Gianfranco Bertone Joakim Edsjo Katherine Freese University of Amsterdam Oskar Klein Centre / Stockholm University of Michigan, USA University Richard Gaitskell Gilles Gerbier Anne Green Brown University, USA IRFU/ CEA Saclay, France University of Nottingham, UK Karsten Jedamzik Xiangdong Ji Lawrence Krauss Universite de Montpellier, France University of Maryland, USA Arizona State University, USA Vitaly Kudryavtsev Reina Maruyama Leszek Roszkowski University of Sheffield University of Wisconsin-Madison University of Sheffield, UK Bernard Sadoulet Pierre Salati Daniel Santos University of California, Berkeley, USA University of California, Berkeley, USA LPSC/UJF/CNRS Pierre Sikivie Daniel Snowden-Ifft Neil Spooner University of Florida, USA Occidental College University of Sheffield, UK Max Tegmark Karl van Bibber Kavli Institute for Astrophysics & Space Naval Postgraduate School Monterey, Research at MIT, USA USA Local Organizing Committee Daniel Bauer Matthew Buckley Juan Collar Fermi National Accelerator Laboratory Fermi National Accelerator Laboratory Kavli Institute for Cosmological Physics Scott Dodelson Aimee -
The PICASSO Dark Matter Physics Program at SNOLAB
33RD INTERNATIONAL COSMIC RAY CONFERENCE,RIO DE JANEIRO 2013 THE ASTROPARTICLE PHYSICS CONFERENCE The PICASSO Dark Matter Physics Program at SNOLAB A.J. NOBLE1 FOR THE PICASSO COLLABORATION: S. ARCHAMBAULT2, E. BEHNKE3, P. BHATTACHARJEE4, S. BHATTACHARYA4, X. DAI1, M. DAS4, A. DAVOUR1, F. DEBRIS2, N. DHUNGANA5, J. FARINE5, S. GAGNEBIN6, G. GIROUX2, E. GRACE3, C. M. JACKSON2, A. KAMAHA1, C. KRAUSS6, S. KUMARATUNGA2, M. LAFRENIRE2, M. LAURIN2, I. LAWSON7, L. LESSARD2, I. LEVINE3, C. LEVY1, R. P. MACDONALD6, D. MARLISOV6, J.-P. MARTIN2, P. MITRA6, A. J. NOBLE1, M.-C. PIRO2, R. PODVIYANUK5, S. POSPISIL8, S. SAHA4, O. SCALLON2, S. SETH4, N. STARINSKI2, I. STEKL8, U. WICHOSKI5, T. XIE1, V. ZACEK2 1 Department of Physics, Queens University, Kingston, K7L 3N6, Canada 2 Departement´ de Physique, Universite´ de Montreal,´ Montreal,´ H3C 3J7, Canada 3 Department of Physics & Astronomy, Indiana University South Bend, South Bend, IN 46634, USA 4 Saha Institute of Nuclear Physics, Centre for AstroParticle Physics (CAPP), Kolkata, 700064, India 5 Department of Physics, Laurentian University, Sudbury, P3E 2C6, Canada 6 Department of Physics, University of Alberta, Edmonton, T6G 2G7, Canada 7 SNOLAB, 1039 Regional Road 24, Lively ON, P3Y 1N2, Canada 8 Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Cz-12800, Czech Republic [email protected] Abstract: PICASSO is a dark matter search experiment currently operational at the SNOLAB International Facility for Astroparticle Physics, located 2 km underground in Sudbury, Canada. PICASSO is based on the superheated bubble technique. With good control of radiological backgrounds and a detector design that stabilizes the superheated liquid even when very close to the critical temperature, PICASSO has achieved very low nuclear recoil thresholds. -
Dark Matter the Invisible Material
Dark matter The invisible material Our universe holds everything we know and everything we are still figuring out. For years, physicists around the world have studied our universe to better understand its nature and its future. They have found that we only understand about 4% of the matter and energy in our universe (including stars, planets, and hot gas). The other 96% is invisible to us and 23% of this invisible material is named dark matter. If dark matter is invisible, how do we know it exists? To answer this, we go back to the 1930s when physicist Fritz Zwicky Galaxy cluster* coined the term dark matter while studying galaxy clusters. Galaxy clusters have up to thousands of galaxies (like our Milky Way for example) held together by gravity. When Dr. Zwicky calculated the total visible mass of galaxies in the Coma cluster, he found that it was not enough to create the gravity needed to hold the cluster together (mass causes gravity). He concluded that there must be an invisible material causing the extra gravity: dark matter. Now fast forward to the 1970s when Vera Rubin studied galaxy rotation curves. According to Newton’s laws, when objects rotate around a common centre, the ones furthest from the centre move more slowly Gravitational lens – than those near it. Otherwise, the furthest objects would fly off. Dr. Rubin galaxies look long found that stars in galaxies do not follow this rule. In fact, stars at the and distorted* outer edges of galaxies move at about the same rate as those near the centre. -
Dark Matter and the Early Universe: a Review Arxiv:2104.11488V1 [Hep-Ph
Dark matter and the early Universe: a review A. Arbey and F. Mahmoudi Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, 69622 Villeurbanne, France Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France Abstract Dark matter represents currently an outstanding problem in both cosmology and particle physics. In this review we discuss the possible explanations for dark matter and the experimental observables which can eventually lead to the discovery of dark matter and its nature, and demonstrate the close interplay between the cosmological properties of the early Universe and the observables used to constrain dark matter models in the context of new physics beyond the Standard Model. arXiv:2104.11488v1 [hep-ph] 23 Apr 2021 1 Contents 1 Introduction 3 2 Standard Cosmological Model 3 2.1 Friedmann-Lema^ıtre-Robertson-Walker model . 4 2.2 A quick story of the Universe . 5 2.3 Big-Bang nucleosynthesis . 8 3 Dark matter(s) 9 3.1 Observational evidences . 9 3.1.1 Galaxies . 9 3.1.2 Galaxy clusters . 10 3.1.3 Large and cosmological scales . 12 3.2 Generic types of dark matter . 14 4 Beyond the standard cosmological model 16 4.1 Dark energy . 17 4.2 Inflation and reheating . 19 4.3 Other models . 20 4.4 Phase transitions . 21 5 Dark matter in particle physics 21 5.1 Dark matter and new physics . 22 5.1.1 Thermal relics . 22 5.1.2 Non-thermal relics . -
A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation Within a Modified ΛCDM Framework J
Astronomy & Astrophysics manuscript no. theory_dark_universe_arxiv c ESO 2018 November 5, 2018 A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework J. S. Farnes1; 2 1 Oxford e-Research Centre (OeRC), Department of Engineering Science, University of Oxford, Oxford, OX1 3QG, UK. e-mail: [email protected]? 2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands. Received February 23, 2018 ABSTRACT Dark energy and dark matter constitute 95% of the observable Universe. Yet the physical nature of these two phenomena remains a mystery. Einstein suggested a long-forgotten solution: gravitationally repulsive negative masses, which drive cosmic expansion and cannot coalesce into light-emitting structures. However, contemporary cosmological results are derived upon the reasonable assumption that the Universe only contains positive masses. By reconsidering this assumption, I have constructed a toy model which suggests that both dark phenomena can be unified into a single negative mass fluid. The model is a modified ΛCDM cosmology, and indicates that continuously-created negative masses can resemble the cosmological constant and can flatten the rotation curves of galaxies. The model leads to a cyclic universe with a time-variable Hubble parameter, potentially providing compatibility with the current tension that is emerging in cosmological measurements. In the first three-dimensional N-body simulations of negative mass matter in the scientific literature, this exotic material naturally forms haloes around galaxies that extend to several galactic radii. These haloes are not cuspy. The proposed cosmological model is therefore able to predict the observed distribution of dark matter in galaxies from first principles. -
Letter of Interest Cosmic Probes of Ultra-Light Axion Dark Matter
Snowmass2021 - Letter of Interest Cosmic probes of ultra-light axion dark matter Thematic Areas: (check all that apply /) (CF1) Dark Matter: Particle Like (CF2) Dark Matter: Wavelike (CF3) Dark Matter: Cosmic Probes (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe (CF5) Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities (CF7) Cosmic Probes of Fundamental Physics (TF09) Astro-particle physics and cosmology Contact Information: Name (Institution) [email]: Keir K. Rogers (Oskar Klein Centre for Cosmoparticle Physics, Stockholm University; Dunlap Institute, University of Toronto) [ [email protected]] Authors: Simeon Bird (UC Riverside), Simon Birrer (Stanford University), Djuna Croon (TRIUMF), Alex Drlica-Wagner (Fermilab, University of Chicago), Jeff A. Dror (UC Berkeley, Lawrence Berkeley National Laboratory), Daniel Grin (Haverford College), David J. E. Marsh (Georg-August University Goettingen), Philip Mocz (Princeton), Ethan Nadler (Stanford), Chanda Prescod-Weinstein (University of New Hamp- shire), Keir K. Rogers (Oskar Klein Centre for Cosmoparticle Physics, Stockholm University; Dunlap Insti- tute, University of Toronto), Katelin Schutz (MIT), Neelima Sehgal (Stony Brook University), Yu-Dai Tsai (Fermilab), Tien-Tien Yu (University of Oregon), Yimin Zhong (University of Chicago). Abstract: Ultra-light axions are a compelling dark matter candidate, motivated by the string axiverse, the strong CP problem in QCD, and possible tensions in the CDM model. They are hard to probe experimentally, and so cosmological/astrophysical observations are very sensitive to the distinctive gravitational phenomena of ULA dark matter. There is the prospect of probing fifteen orders of magnitude in mass, often down to sub-percent contributions to the DM in the next ten to twenty years. -
Self-Interacting Inelastic Dark Matter: a Viable Solution to the Small Scale Structure Problems
Prepared for submission to JCAP ADP-16-48/T1004 Self-interacting inelastic dark matter: A viable solution to the small scale structure problems Mattias Blennow,a Stefan Clementz,a Juan Herrero-Garciaa; b aDepartment of physics, School of Engineering Sciences, KTH Royal Institute of Tech- nology, AlbaNova University Center, 106 91 Stockholm, Sweden bARC Center of Excellence for Particle Physics at the Terascale (CoEPP), University of Adelaide, Adelaide, SA 5005, Australia Abstract. Self-interacting dark matter has been proposed as a solution to the small- scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution to reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schr¨odingerequation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded. -
Arxiv:2107.12380V1 [Astro-Ph.CO] 26 Jul 2021
UTTG-04-2021 Observational constraints on dark matter scattering with electrons David Nguyen,1 Dimple Sarnaaik,1 Kimberly K. Boddy,2 Ethan O. Nadler,3, 4, 1 and Vera Gluscevic1 1Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90007, USA 2Department of Physics, University of Texas at Austin, Austin, TX, 78712, USA 3Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Stanford, CA 94305, USA 4Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA We present new observational constraints on the elastic scattering of dark matter with electrons for dark matter masses between 10 keV and 1 TeV. We consider scenarios in which the momentum- transfer cross section has a power-law dependence on the relative particle velocity, with a power-law index n 2 {−4; −2; 0; 2; 4; 6g. We search for evidence of dark matter scattering through its sup- pression of structure formation. Measurements of the cosmic microwave background temperature, polarization, and lensing anisotropy from Planck 2018 data and of the Milky Way satellite abundance measurements from the Dark Energy Survey and Pan-STARRS1 show no evidence of interactions. We use these data sets to obtain upper limits on the scattering cross section, comparing them with exclusion bounds from electronic recoil data in direct detection experiments. Our results provide the strongest bounds available for dark matter{electron scattering derived from the distribution of matter in the Universe, extending down to sub-MeV dark matter masses, where current direct detection experiments lose sensitivity. I. INTRODUCTION effective field theory operators [24{26]; in a cosmologi- cal context, these operators produce momentum-transfer Cosmological observations are a powerful tool for cross sections with a power-law dependence on the rela- studying the fundamental particle properties of dark tive velocity between scattering DM particles and nucle- matter (DM). -
Astrophysical Uncertainties of Direct Dark Matter Searches
Technische Universit¨atM¨unchen Astrophysical uncertainties of direct dark matter searches Dissertation by Andreas G¨unter Rappelt Physik Department, T30d & Collaborative Research Center SFB 1258 “Neutrinos and Dark Matter in Astro- and Particlephysics” Technische Universit¨atM¨unchen Physik Department T30d Astrophysical uncertainties of direct dark matter searches Andreas G¨unter Rappelt Vollst¨andigerAbdruck der von der Fakult¨atf¨urPhysik der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. Lothar Oberauer Pr¨uferder Dissertation: 1. Prof. Dr. Alejandro Ibarra 2. Prof. Dr. Bj¨ornGarbrecht Die Dissertation wurde am 12.11.2019 bei der Technischen Universit¨at M¨unchen eingereicht und durch die Fakult¨atf¨urPhysik am 24.01.2020 angenommen. Abstract Although the first hints towards dark matter were discovered almost 100 years ago, little is known today about its properties. Also, dark matter has so far only been inferred through astronomical and cosmological observations. In this work, we therefore investi- gate the influence of astrophysical assumptions on the interpretation of direct searches for dark matter. For this, we assume that dark matter is a weakly interacting massive particle. First, we discuss the development of a new analysis method for direct dark matter searches. Starting from the decomposition of the dark matter velocity distribu- tion into streams, we present a method that is completely independent of astrophysical assumptions. We extend this by using an effective theory for the interaction of dark matter with nucleons. This allows to analyze experiments with minimal assumptions on the particle physics of dark matter. Finally, we improve our method so that arbitrarily strong deviations from a reference velocity distribution can be considered. -
Modified Baryonic Dynamics: Two-Component Cosmological
Preprint typeset in JHEP style - HYPER VERSION Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos G. W. Angus1,∗ A. Diaferio2,3, B. Famaey4, and K. J. van der Heyden5 1Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium 2Dipartimento di Fisica, Universita` di Torino, Via P. Giuria 1, I-10125, Torino, Italy 3Istituto Nazionale di Fisica Nucleare, Via P. Giuria 1, I-10125, Torino, Italy 4Observatoire Astronomique de Strasbourg, CNRS UMR 7550, France 5Astrophysics, Cosmology & Gravity Centre, Dept. of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa ABSTRACT: In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified grav- itational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two component cosmolog- ical simulations to separate the baryonic N-body particles from the sterile neutrino ones. arXiv:1407.1207v1 [astro-ph.CO] 4 Jul 2014 The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reason- able value of the primordial power spectrum normalisation. -
Probing Cosmology at Different Scales
PROBING COSMOLOGY AT DIFFERENT SCALES by Daniel Pfeffer A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore, Maryland October, 2019 ⃝c 2019 Daniel Pfeffer All rights reserved Abstract Although we are in an era of precision cosmology, there is still much about our Universe that we do not know. Moreover, the concordance ΛCDM model of cosmology faces many challenges at all scales relevant to cosmology. Either discrepancies have been discovered with ΛCDM predictions or the model has simply broken down and is not a useful predictor. The current rate of expansion is incorrectly predicted by ΛCDM, as are the size and distribution of dwarf halo galaxies for Milky Way like galaxies. Obtaining the observed cores in galaxies with the standard description of dark matter is troublesome and requires more than the base ΛCDM model, as does understanding star formation and how it impacted galaxy evolution requires much more than base ΛCDM knowledge and many more. My work focuses on probing different scales in cosmology with different techniques to extract information about our Universe and its history. I use ultra-high-energy cosmic-rays (UHECRs) as a probe of the local universe and tested tidal disruption events (TDES) as a possible source of the UHECRs. By analyzing energy require- ii ABSTRACT ments, source densities and observed fluxes, I find that TDEs can explain the observed UHECR flux. The assumption of TDEs as the source of UHECRs can leadtoa measurement of the density of super massive black holes which reside in the center of galaxies. -
Arxiv:2007.14720V3 [Astro-Ph.CO] 13 Jul 2021
MNRAS 000,1–22 (XXX) Preprint 14 July 2021 Compiled using MNRAS LATEX style file v3.0 The Uchuu Simulations: Data Release 1 and Dark Matter Halo Concentrations Tomoaki Ishiyama,1¢ Francisco Prada,2 Anatoly A. Klypin,3,4 Manodeep Sinha,5,6 R. Benton Metcalf,7 Eric Jullo,8 Bruno Altieri,9 Sofía A. Cora,10,11 Darren Croton,5,6 Sylvain de la Torre, 8 David E. Millán-Calero,2 Taira Oogi,1 José Ruedas,2 Cristian A. Vega-Martínez12,13 1Institute of Management and Information Technologies, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan 2Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, E-18080 Granada, Spain 3Astronomy Department, New Mexico State University, Las Cruces, NM, USA 4Department of Astronomy, University of Virginia, Charlettesville, VA, USA 5Centre for Astrophysics & Supercomputing, Swinburne University of Technology, 1 Alfred St., Hawthorn, VIC 3122, Australia 6ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) 7Dipartimento di Fisica & Astronomia, Università di Bologna, via Gobetti 93/2, 40129 Bologna, Italy 8 Aix Marseille Univ, CNRS, CNES, LAM, F-13388 Marseille, France 9 European Space Astronomy Centre, ESA, Villanueva de la Cañada, E-28691 Madrid, Spain 10 Instituto de Astrofísica de La Plata (CCT La Plata, CONICET, UNLP), Observatorio Astronómico, Paseo del Bosque, B1900FWA La Plata, Argentina 11 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Observatorio Astronómico Paseo del Bosque, B1900FWA La Plata, Argentina 12 Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile 13 Departamento de Astronomía, Universidad de La Serena, Av.