Small Scale Problems of the CDM Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fuzzy Cold Dark Matter: the Wave Properties of Ultralight Particles
VOLUME 85, NUMBER 6 PHYSICAL REVIEW LETTERS 7AUGUST 2000 Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles Wayne Hu, Rennan Barkana, and Andrei Gruzinov Institute for Advanced Study, Princeton, New Jersey 08540 (Received 27 March 2000) Cold dark matter (CDM) models predict small-scale structure in excess of observations of the cores and abundance of dwarf galaxies. These problems might be solved, and the virtues of CDM models retained, even without postulating ad hoc dark matter particle or field interactions, if the dark matter is composed of ultralight scalar particles ͑m ϳ 10222 eV͒, initially in a (cold) Bose-Einstein condensate, similar to axion dark matter models. The wave properties of the dark matter stabilize gravitational collapse, providing halo cores and sharply suppressing small-scale linear power. PACS numbers: 95.35.+d, 98.80.Cq Introduction.—Recently, the small-scale shortcomings particle horizon, one can employ a Newtonian approxi- of the otherwise widely successful cold dark matter (CDM) mation to the gravitational interaction embedded in the models for structure formation have received much atten- covariant derivatives of the field equation and a nonrela- tion (see [1–4] and references therein). CDM models pre- tivistic approximation to the dispersion relation. It is then dict cuspy dark matter halo profiles and an abundance of convenient to define the wave function c ϵ Aeia, out of low mass halos not seen in the rotation curves and local the amplitude and phase of the field f A cos͑mt 2a͒, population of dwarf galaxies, respectively. Although the which obeys µ ∂ µ ∂ significance of the discrepancies is still disputed and so- ᠨ 3 a 1 2 lutions involving astrophysical processes in the baryonic i ≠t 1 c 2 = 1 mC c , (2) gas may still be possible (e.g., [5]), recent attention has fo- 2 a 2m cused mostly on solutions involving the dark matter sector. -
Galaxy Formation with Ultralight Bosonic Dark Matter
GALAXY FORMATION WITH ULTRALIGHT BOSONIC DARK MATTER Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universit¨atG¨ottingen im Promotionsstudiengang Physik der Georg-August University School of Science (GAUSS) vorgelegt von Jan Veltmaat aus Bietigheim-Bissingen G¨ottingen,2019 Betreuungsausschuss Prof. Dr. Jens Niemeyer, Institut f¨urAstrophysik, Universit¨atG¨ottingen Prof. Dr. Steffen Schumann, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Mitglieder der Pr¨ufungskommission Referent: Prof. Dr. Jens Niemeyer, Institut f¨urAstrophysik, Universit¨atG¨ottingen Korreferent: Prof. Dr. David Marsh, Institut f¨urAstrophysik, Universit¨atG¨ottingen Weitere Mitglieder der Pr¨ufungskommission: Prof. Dr. Fabian Heidrich-Meisner, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Wolfram Kollatschny, Institut f¨urAstrophysik, Universit¨atG¨ottingen Prof. Dr. Steffen Schumann, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Dr. Michael Wilczek, Max-Planck-Institut f¨urDynamik und Selbstorganisation, G¨ottingen Tag der m¨undlichen Pr¨ufung:12.12.2019 Abstract Ultralight bosonic particles forming a coherent state are dark matter candidates with distinctive wave-like behaviour on the scale of dwarf galaxies and below. In this thesis, a new simulation technique for ul- tralight bosonic dark matter, also called fuzzy dark matter, is devel- oped and applied in zoom-in simulations of dwarf galaxy halos. When gas and star formation are not included in the simulations, it is found that halos contain solitonic cores in their centers reproducing previous results in the literature. The cores exhibit strong quasi-normal oscil- lations, which are possibly testable by observations. The results are inconclusive regarding the long-term evolution of the core mass. -
Cosmological and Astrophysical Structures in the Einstein-De Sitter Universe
Cosmological and astrophysical structures in the Einstein-de Sitter universe A Thesis Submitted to the Faculty of Sciences of Universidad de los Andes In Partial Fulfillment of the Requirements For the Degree of Master of Sciences-Physics by Andres´ Balaguera Antol´ınez Bogot´a D.C Colombia 2006 Universidad de los Andes Cosmological and astrophysical structures in the Einstein-de Sitter universe A thesis submitted to the Faculty of Sciences of Universidad de los Andes In Partial Fulfillment of the Requirements For the Degree of Master of Sciences-Physics c Copyright All rights reserved by Andr´es Balaguera Antol´ınez Bogot´a D.C Colombia 2006 LATEX2006 La tesis escrita por Andres´ Balaguera Antol´ınez cumple con los requerimientos exigidos para aplicar al titulo de Maestr´ıa en Ciencias-F´ısica y ha sido aprobada por el profesor Marek Nowakowski Ph.D, como director y por los profesores Juan Manuel Tejeiro Ph.D. y Rolando Roldan,´ Ph.D., como evaluadores. Marek Nowakowski Ph.D., Director Universidad de los Andes Juan Manuel Tejeiro, Ph.D., Evaluador Universidad Nacional de Colombia Rolando Roldan,´ Ph.D., Evaluador Universidad de los Andes Cosmological and astrophysical structures in the Einstein-de Sitter universe Andr´es Balaguera Antol´ınez, Physicist Director: Marek Nowakowski Ph.D Abstract In this work we explore the consequences of a non zero cosmological constant on cosmological and as- trophysical structures. We find that the effects are associated to the density of the configurations as well as to the geometry. Homogeneous and spherical configurations are slightly affected. For non ho- mogeneous configurations, we calculate the effects on a polytropic configurations and on the isothermal sphere, making special emphasis on the fact that the cosmological constant sets certain scales of length, time, mass and density. -
Self-Interacting Inelastic Dark Matter: a Viable Solution to the Small Scale Structure Problems
Prepared for submission to JCAP ADP-16-48/T1004 Self-interacting inelastic dark matter: A viable solution to the small scale structure problems Mattias Blennow,a Stefan Clementz,a Juan Herrero-Garciaa; b aDepartment of physics, School of Engineering Sciences, KTH Royal Institute of Tech- nology, AlbaNova University Center, 106 91 Stockholm, Sweden bARC Center of Excellence for Particle Physics at the Terascale (CoEPP), University of Adelaide, Adelaide, SA 5005, Australia Abstract. Self-interacting dark matter has been proposed as a solution to the small- scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution to reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schr¨odingerequation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded. -
Prospects for Dark Matter Detection with Inelastic Transitions of Xenon
Prospects for dark matter detection with inelastic transitions of xenon Christopher McCabe GRAPPA Centre for Excellence, Institute for Theoretical Physics Amsterdam (ITFA), University of Amsterdam, Science Park 904, the Netherlands E-mail: [email protected] Abstract. Dark matter can scatter and excite a nucleus to a low-lying excitation in a direct detection experiment. This signature is distinct from the canonical elastic scattering signal because the inelastic signal also contains the energy deposited from the subsequent prompt de-excitation of the nucleus. A measurement of the elastic and inelastic signal will allow a single experiment to distinguish between a spin-independent and spin-dependent interaction. For the first time, we characterise the inelastic signal for two-phase xenon de- tectors in which dark matter inelastically scatters off the 129Xe or 131Xe isotope. We do this by implementing a realistic simulation of a typical tonne-scale two-phase xenon detector and by carefully estimating the relevant background signals. With our detector simulation, we explore whether the inelastic signal from the axial-vector interaction is detectable with upcoming tonne-scale detectors. We find that two-phase detectors allow for some discrim- ination between signal and background so that it is possible to detect dark matter that inelastically scatters off either the 129Xe or 131Xe isotope for dark matter particles that are heavier than approximately 100 GeV. If, after two years of data, the XENON1T search for elastic scattering nuclei finds no evidence for dark matter, the possibility of ever detecting arXiv:1512.00460v2 [hep-ph] 23 May 2016 an inelastic signal from the axial-vector interaction will be almost entirely excluded. -
Isospin Violating Dark Matter
Isospin Violating Dark Matter David Sanford Work with J.L. Feng, J. Kumar, and D. Marfatia UC Irvine Pheno 2011 - Tuesday May 10, 2011 Current State of Light Dark Matter I Great recent interest in CoGeNT light dark matter DAMA (Savage et. al.) CDMS-Si (shallow-site) I Major inconsistencies CDMS-Ge(shallow-site) CDMS-Ge (Soudan) between experimental XENON1 (! 11) XENON10 (! 11) results I DAMA and CoGeNT regions do not agree I XENON10/XENON100 rule out DAMA and CoGeNT I CDMS-Ge (Soudan) rules out much of CoGeNT and all of DAMA I Both DAMA and CoGeNT report annual modulation signals Possible Explanations of the Discrepancy Many theories have been put forward I Inelastic dark matter I Tucker-Smith and Weiner (2001) I Details of Leff in liquid xenon at low recoil energy I Collar and McKinsey (2010) I Channeling in NaI at DAMA I Bernabei et. al. [DAMA] (2007); Bozorgnia, Gelmini, Gondolo (2010) We propose to rescind the assumption of isospin conservation I Unfounded theoretical assumption I Simple resolution of several discrepancies I Also considered by Chang, Liu, Pierce, Weiner, Yavin (2010) I For fp 6= fn, this result must be altered Z I In fact, for fn=fp = − A−Z , σA vanishes from completely destructive interference Z I A−Z decreases for higher Z isotopes Isospin Conservation and Violation I DM-nucleus scattering is Dark Matter Compton Wavelength coherent I The single atom SI scattering cross-section is Nucleus 2 σA / [fpZ + fn(A − Z)] 2 2 / fp A (fp = fn) Z : atomic number A: number of nucleons 2 I Well-known A fp: coupling to protons -
Astrophysical Issues in Indirect DM Detection
Astrophysical issues in indirect DM detection Julien Lavalle CNRS Lab. Univers & Particules de Montpellier (LUPM), France Université Montpellier II – CNRS-IN2P3 (UMR 5299) Max-Planck-Institut für Kernphysik Heidelberg – 1st VII 2013 Outline * Introduction * Practical examples of astrophysical issues (at the Galactic scale) => size of the GCR diffusion zone: relevant to antiprotons, antideuterons, (diffuse gamma-rays) => positron fraction: clarifying the role of local astrophysical sources => impact of DM inhomogeneities: boost + reinterpreting current constraints => diffuse gamma-rays * Perspectives Julien Lavalle, MPIK, Heidelberg, 1st VII 2013 Indirect dark matter detection in the Milky Way Main arguments: But: ● Annihilation final states lead to: gamma-rays + antimatter ● Do we control the backgrounds? ● -rays : lines, spatial + spectral distribution of signals vs bg ● γ Antiprotons are secondaries, not necessarily positrons ● Antimatter cosmic rays: secondary, therefore low bg ● Do the natural DM particle models provide clean signatures? ● DM-induced antimatter has specific spectral properties Julien Lavalle, MPIK, Heidelberg, 1st VII 2013 Indirect dark matter detection in the Milky Way Main arguments: But: ● Annihilation final states lead to: gamma-rays + antimatter ● Do we control the backgrounds? ● -rays : lines, spatial + spectral distribution of signals vs bg ● γ Antiprotons are secondaries, not necessarily positrons ● Antimatter cosmic rays: secondary, therefore low bg ● Do the natural DM particle models provide clean signatures? -
Low-Mass Dark Matter Search with the Darkside-50 Experiment
Low-Mass Dark Matter Search with the DarkSide-50 Experiment P. Agnes,1 I. F. M. Albuquerque,2 T. Alexander,3 A. K. Alton,4 G. R. Araujo,2 D. M. Asner,5 M. Ave,2 H. O. Back,3 B. Baldin,6,a G. Batignani,7, 8 K. Biery,6 V. Bocci,9 G. Bonfini,10 W. Bonivento,11 B. Bottino,12, 13 F. Budano,14, 15 S. Bussino,14, 15 M. Cadeddu,16, 11 M. Cadoni,16, 11 F. Calaprice,17 A. Caminata,13 N. Canci,1, 10 A. Candela,10 M. Caravati,16, 11 M. Cariello,13 M. Carlini,10 M. Carpinelli,18, 19 S. Catalanotti,20, 21 V. Cataudella,20, 21 P. Cavalcante,22, 10 S. Cavuoti,20, 21 R. Cereseto,13 A. Chepurnov,23 C. Cical`o,11 L. Cifarelli,24, 25 A. G. Cocco,21 G. Covone,20, 21 D. D'Angelo,26, 27 M. D'Incecco,10 D. D'Urso,18, 19 S. Davini,13 A. De Candia,20, 21 S. De Cecco,9, 28 M. De Deo,10 G. De Filippis,20, 21 G. De Rosa,20, 21 M. De Vincenzi,14, 15 P. Demontis,18, 19, 29 A. V. Derbin,30 A. Devoto,16, 11 F. Di Eusanio,17 G. Di Pietro,10, 27 C. Dionisi,9, 28 M. Downing,31 E. Edkins,32 A. Empl,1 A. Fan,33 G. Fiorillo,20, 21 K. Fomenko,34 D. Franco,35 F. Gabriele,10 A. Gabrieli,18, 19 C. Galbiati,17, 36 P. Garcia Abia,37 C. Ghiano,10 S. Giagu,9, 28 C. -
Jianglai Liu Shanghai Jiao Tong University
Jianglai Liu Shanghai Jiao Tong University Jianglai Liu Pheno 2017 1 If DM particles have non-gravitational interaction with normal matter, can be detected in “laboratories”. DM DM Collider Search Indirect Search ? SM SM Direct Search Pheno 2017 Jianglai Liu Pheno 2017 2 Galactic halo . The solar system is cycling the center of galaxy with on average 220 km/s speed (annual modulation in earth movement) . DM local density around us: 0.3(0.1) GeV/cm3 Astrophys. J. 756:89 Inclusion of new LAMOST survey data: 0.32(0.02), arXiv:1604.01216 Jianglai Liu Pheno 2017 3 1973: discovery of neutral current Gargamelle detector in CERN neutrino beam Dieter Haidt, CERN Courier Oct 2004: “The searches for neutral currents in previous neutrino experiments resulted in discouragingly low limits (@1968), and it was somehow commonly concluded that no weak neutral currents existed.” leptonic NC hadronic NC v beam Jianglai Liu Pheno 2017 4 Direct detection A = m2/m1 . DM: velocity ~1/1500 c, mass ~100 GeV, KE ~ 20 keV . Nuclear recoil (NR, “hadronic”): recoiling energy ~10 keV . Electron recoil (ER, “leptonic”): 10-4 suppression in energy, very difficult to detect New ideas exist, e.g. Hochberg, Zhao, and Zurek, PRL 116, 011301 Jianglai Liu Pheno 2017 5 Elastic recoil spectrum . Energy threshold mass DM . SI: coherent scattering on all nucleons (A2 Ge Xe enhancement) . Note, spin-dependent Si effect can be viewed as scattering with outer unpaired nucleon. No luxury of A2 enhancement Gaitskell, Annu. Rev. Nucl. Part. Sci. 2004 Jianglai Liu Pheno 2017 6 Neutrino “floor” Goodman & Witten Ideas do exist Phys. -
Relation Between the Turnaround Radius and Virial Mass in F(R) Model
Prepared for submission to JCAP Relation between the Turnaround radius and virial mass in f(R) model Rafael C. C. Lopes,a;b Rodrigo Voivodic,a L. Raul Abramo,a Laerte Sodré Jrc aInstituto de Física, Universidade de São Paulo, Rua do Matão, 1371, São Paulo, SP 05508- 090, Brazil bInstituto Federal de Educação, Ciência e Tecnologia do Maranhão, Campus Santa Inês, BR-316, s/n, Santa Inês, MA 65304-770, Brazil cInstituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, São Paulo, SP 05508-090, Brazil E-mail: [email protected], [email protected], [email protected], [email protected] Abstract. We investigate the relationship between the turnaround radius Rt and the virial mass Mv of cosmic structures in the context of ΛCDM model and in an f(R) model of modified gravity – namely, the Hu-Sawicki model. The turnaround radius is the distance from the center of the cosmic structure to the shell that is detaching from the Hubble flow at a given time, while the virial mass is defined, for this work, as the mass enclosed within the volume where the density is 200 times the background density. We employ a new approach by considering that, on average, gravitationally bound astrophysical systems (e.g., galaxies, groups and clusters of galaxies) follow, in their innermost region, a Navarro-Frenk-White density profile, while beyond the virial radius (Rv) the profile is well approximated by the 2-halo term of the matter correlation function. By combining these two properties together with the information drawn from solving the spherical collapse for the structures, we are able to connect two observables that can be readily measured in cosmic structures: the turnaround radius and the virial mass. -
Problems with the Standard Model of Cosmology
Problems with the Standard Model of Cosmology Initial Conditions Dark Matter Dark Energy The Standard Model of Cosmology 1. The hot big bang + expansion of the Universe – explains nucleosynthesis and the CMB 2. + dark matter and dark energy – explain the growth of structures and distances to bright objects The LCDM Model • The standard cosmological model, LCDM, explains observations consistently in a simple framework – but we do not understand its components – Need inflation or some other theory to explain flatness of geometry and smoothness of CMB – We haven’t detected dark matter and don’t know what it is (it’s outside the standard model of particle physics) – We don’t know what dark energy is or why the value of the cosmological constant is 120 orders of magnitude off Initial Conditions Problems The Flatness Problem The Horizon Problem LSS Density Perturbations 1. The hot big bang model does not account for origin of small initial density perturbations 2. There are CMB perturbations whose wavelengths are larger than the horizon at last scattering (thus acausal) LSS Inflation dH H 1 Inflation Some extra scalar field required to start (and stop) inflation Expansion Inflation Structures enter the Structures leave the Hubble radius “horizon” “horizon” LSS ti t f • Density perturbations: 1. Inflation gives the natural primordial perturbations: quantum fluctuations 2. It is natural to have super-horizon perturbations LSS Dark Matter • WIMP = weakly interacting massive particle – SUSY predicts as lightest super-symmetric particle – But SUSY -
The Stellar Mass Content of Groups and Clusters of Galaxies
MNRAS 000, 000–000 (0000) Preprint 1 February 2018 Compiled using MNRAS LATEX style file v3.0 First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies Annalisa Pillepich1;2?, Dylan Nelson3, Lars Hernquist2, Volker Springel4;5, Rudiger¨ Pakmor4, Paul Torrey6y, Rainer Weinberger4, Shy Genel7;8, Jill P. Naiman2, Federico Marinacci6, and Mark Vogelsberger6z 1Max-Planck-Institut fur¨ Astronomie, Konigstuhl¨ 17, 69117 Heidelberg, Germany 2Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 3Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany 4Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany 5Zentrum fur¨ Astronomie der Universitat¨ Heidelberg, ARI, Monchhofstr.¨ 12-14, D-69120 Heidelberg, Germany 6Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 7Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA 8Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA 1 February 2018 ABSTRACT The IllustrisTNG project is a new suite of cosmological magneto-hydrodynamical simula- tions of galaxy formation performed with the AREPO code and updated models for feedback physics. Here we introduce the first two simulations of the series, TNG100 and TNG300, and quantify the stellar mass content of about 4000 massive galaxy groups and clusters 13 15 (10 6 M200c=M 6 10 ) at recent times (z 6 1). The richest clusters have half of their to- tal stellar mass bound to satellite galaxies, with the other half being associated with the central 14 galaxy and the diffuse intra-cluster light.