New Lighting—New Leds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
M7 Electroluminescence of Polymers
Universität Potsdam Institute of Physics and Astronomy Advanced Physics Lab Course March 2020 M7 ELECTROLUMINESCENCE OF POLYMERS I. INTRODUCTION The recombination of holes and electrons in a luminescent material can produce light. This emitted light is referred to as electroluminescence (EL) and was discovered in organic single crystals by Pope, Magnante, and Kallmann in 1963.[1] EL from conjugated polymers was first reported by Burroughes et al.[2] The polymer used was poly(p-phenylenevinylene) (PPV). Since then, a variety of other polymers has been investigated. Organic EL devices have applications in a wide field ranging from multi-color displays and optical information processing to lighting. Polymers have the advantage over inorganic and monomolecular materials in the ease with which thin, structurally robust and large area films can be perpared from solutions. Using printing techniques, patterned structures can be produced easily. Even flexible displays can be produced because of the good mechanical properties of polymers. In this lab course, basic optical and electrical properties of conjugated polymers will be investigated. Advanced Lab Course: Electroluminescence of Polymers 2 EXPERIMENTAL TASKS Measure the absorption spectra of your polymers (thin films spin coated onto glass substrates). Characterize the setup used for luminescence measurements. Identify possible sources of error and collect data necessary for their correction. Measure the photoluminescence emission spectra for the polymer films, using suitable excitation wavelengths. Measure the photoluminescence excitation spectra for the polymer films, using suitable detection wavelengths. Measure the current through the OLEDs and the spectral radiant intensity of electroluminescence as a function of applied voltage (the current-radiance-voltage characteristics). -
Design and Fabrication of Evacuated Tube Solar Thermal Collector for Domestic Hot Water
JOURNAL OF COLLEGE OF EDUCATION….. 2016…….NO.3 Design and Fabrication of evacuated tube solar thermal collector for domestic hot water Dr. Alaa H. Shneishil Al-Mustansiriyah University, College of Education, Physics Department ABSTRACT The objective of this research is to design and fabricate solar water heating system by Investment defective materials in Iraq for domestic sector applications in order to encourage national industry. Defective neon light tube with length 120 Cm and diameter 3 Cm has been used as an outer pipe. Copper pipe with length 125 Cm and diameter 1 Cm is placed inside the glass tube and close the space between them by circular shell that is used as an inner absorber material after painting it by black non brightness coating. The space between the outer glass tube and the inner copper pipe is evacuated by using small compressor. The evacuated tubes are connected from the upper side with insulated storage tank and from lower side with circulation pump. The evacuated tubes are placed in the focal line of reflective surfaces. The efficiency of the fabricated solar collector has been measured and compared with uninsulated storage tank which put in the same conditions. These measurements are done with and without reflective surfaces. The results indicated that the temperature of water in the evacuated tube with reflective surfaces reach to 59.5 °C while in the evacuated tube without reflective surfaces reaches to 44.3 °C. The temperature of water in the evacuated tube without circulation pump reach to maximum value which about 85.3 oC. This value is greater than that of the case with circulation pump. -
United States District Court Eastern District of Michigan Southern Division
2:07-cv-13150-GCS-SDP Doc # 38 Filed 08/12/08 Pg 1 of 37 Pg ID 1255 UNITED STATES DISTRICT COURT EASTERN DISTRICT OF MICHIGAN SOUTHERN DIVISION ALTAIR ENGINEERING, INC., Plaintiff, Case No. 07-CV-13150 HON. GEORGE CARAM STEEH vs. LEDdynamics, Inc., Defendant. ___________________________________/ ORDER RESOLVING CLAIM CONSTRUCTION DISPUTE Plaintiff Altair Engineering, Inc. (Altair) has filed suit against defendant LEDdynamics, Inc. (LEDdynamics) for patent infringement arising out of the sale of fluorescent tube replacement lights. Now before the Court are the parties competing briefs regarding claim construction. Both sides have filed lengthy opening briefs, response briefs, and voluminous exhibits. The Court has carefully considered all of the papers filed. Oral argument was heard on July 31, 2008. For the reasons set forth below, the Court adopts the claim construction argued by LEDdynamics. I. INTRODUCTION Altair is the owner by assignment of United States Patent No. 7,049,761 (‘761 patent). The ‘761 patent issued on May 23, 2006. (Doc. 23, Exhibit A). It covers light- emitting diodes (LEDs) based fluorescent tube replacement lights. According to Altair, the invention seeks to replace and improve upon traditional fluorescent light tubes which have as their shortcomings a short life expectancy, a tendency to fail if subjected to vibration, the consumption of high amounts of power to operate, and general 2:07-cv-13150-GCS-SDP Doc # 38 Filed 08/12/08 Pg 2 of 37 Pg ID 1256 unreliability. LEDdynamics, on the other hand, alleges that the invention was intended to mount fluorescent tubes in a conventional fluorescent fixture or socket, not necessarily to produce the same lighting effect. -
Commons House
Commons House Community Features Mailboxes in the lobby (students still have CPO boxes) encourage unintentional bumps when residents pick up mail. Glass doors allow residents to look inside to see what's going on. Community room is for most meetings and programs - for meetings of the entire community, the Folk Center across the street has low rental fees and we felt we didn't need to duplicate a space of that size with a commercial kitchen. The "kid room" allows children to have their own area during meetings or when parents are doing laundry. Laundry room has washers for residents of original apartments and dryers for use by all residents. Newer apartments have washers but not dryers to make using dryers a choice not an automatic assumption. Examples of re-use Barn siding on outside is from an actual barn. Wood for ceilings came from a house. Carpet in kid room and office is from recycled fibers. Energy-saving features Air conditioning in office only - community room has cross-ventilation Compact fluorescent bulbs throughout Ceiling fans in meeting room and kid room Medite I1 cabinets made with formaldehyde-free particleboard Richlite countertops made with cellulose fiber and resin Solar light tube in meeting area Concrete floor for thermal mass Solar panel on south roof for radiant floor heating - to be used for heating hot water in summer Double-paned windows with low-e glazing Dual-flush toilet Front-loading washers use less water and electricity than top-loading washers Moisture-sensors in dryers can reduce drying time - no need to guess how long it will take clothes to dry Kid-friendly blinds without cords Low window in kid room so the littlest children can see out Gas stove provides cleaner, but still nonrenewable fuel) BEREA COLLEGE ECOVILLAGE Design Features Bathroom floor Forbo linoleum Forbo linoleum is made from linseed oils, pigments, pine rosin, and pine flour with a natural jute backmg. -
Sunshine Range New Performances Uses
Solar energy solutions SUNSHINE RANGE NEW PERFORMANCES USES LITTLE Up to Up to 3BRIGHTER HOURS12 WORK SUNSHINESOLAR LIGHT than kerosene of light 360° Head rotation A lamp to read, study, work or get around. RAN R T A Y PRODUCT SPECIFICATIONS W COOK Y E A R Brightness Bright: 30 lumens I Normal: 15 lumens Solar panel Monocrystalline, 65 x 65 mm, 0.4watts, 4.5V Battery 3.2V, 500mAh, LiFePo4, Charging time: 7 Hrs S TUDY INSTRUCTIONS FOR USE NORMAL BRIGHT G E T D AROUN x1 x2 BENEFITS C A M 12 15 6 30 P Cost Robust Portable Two intensity Quick to All-in-one HOURS Lumens HOURS Lumens , HIKE... effective and light levels charge solution: of light of light Integrated panel PERFORMANCES USES FAMILY Up to Up to 30 HOURS21 BRIGHTER W than kerosene ORK of light 360° SUNSHINESOLAR LANTERN Handle rotation + MOBILE PHONE CHARGER PRODUCT SPECIFICATIONS A multi-purpose lamp for the house, COOK also practical to get around and charge phones. Brightness Turbo: 300 lumens I Bright: 170 lumens I Normal: 50 lumens Solar panel Polycrystalline, 190 x 148 mm, 3watts, 5V + 3m cable Battery 3.7V, 4000mAh, Lithium ion, Charging time: 7 Hrs Charge in DC Jack RAN Charge out USB Port R T A Y W Accessories USB to micro USB and 3.5mm DC charging cable S TUDY Y E A R INSTRUCTIONS FOR USE G E T D AROUN 100% 75% 50% 25% NORMAL BRIGHT TURBO* C O M E 20 M AT BENEFITS min UNIC x1 x2 x3 click = 2 seconds Up to Cost Robust Portable Lighting + Quick to Adaptable 21 50 170 3 300 HOURS Lumens HOURS Lumens HOURS Lumens B effective mobile phone charge E of light of light of light T R charger OGETHE PERFORMANCES USES Up to Up to Up to 15,5 10 HOME BRIGHTER20 HOURS HOURS than kerosene of light of sound WORK PRODUCT SPECIFICATIONS SUNSHINESOLAR POWER KIT Light bulb - High: 100 lumens I Normal: 50 lumens Light tube - High: 200 lumens I Normal: 100 lumens Brightness + RADIO Torch - High: 200 lumens I Medium: 100 lumens Normal: 50 lumens CO A complete kit to light the home and extend the day. -
Lecture ˮincoherent Light Sources“ Summer Term 2008 Tim Pohle Electroluminescence Light Sources – Table of Contents
Lecture ˮIncoherent Light Sources“ Summer term 2008 Tim Pohle Electroluminescence Light Sources – Table of contents Table of contents . Overview of electroluminescence . LED (Light Emitting Diode) History of development Technical details Applications . OLED (Organic Light Emitting Diode) History of development Technical details Applications . Electroluminescent strings and foils – Light Emitting Capacitor History of development Technical details Applications Incoherent Light Sources 2008 Tim Pohle 2 Electroluminescence Light Sources – Overview of Electroluminescence Overview of Electroluminescence [6] [3] . It depeds on luminescence [1] . It is distinct from fluorescence3/phosphorescence, [2] chemoluminescence2, sonoluminescence5, bioluminescence1, superluminescence6, triboluminescnece4, etc. [4] [5] . It is an optical/electrical phenomenon . Material emits light in response to an electric current passed through it, or to a strong electric field CB . It is result of radiative recombination of electrons and holes in a material VB Incoherent Light Sources 2008 Tim Pohle 3 Electroluminescence Light Sources – LED LED (Light Emitting Diode) History of development 1907 Henry Joseph Round (Marconi Labs) „invents the LED“. He finds out that some inorganic substances glow if a electric voltage is impress on them. He publishted his observation in the journal „Electrical World“ 1921 Ignorant of Round`s invention, Oleg Vladimirovich Losev makes the same observations 1927- Losev investigates this effect 1942 and guesses that it is the inversion of Einstein„s photoelectrical effect Incoherent Light Sources 2008 Tim Pohle 4 Electroluminescence Light Sources – LED 1951 Satisfactory explanation of the light emission due to the semiconductor and transistor development 1961 Bob Biard and Gary Pittman (Texas Instruments) find out that gallium arsenide (GaAs) give off infrared radiation when electric current is applied. -
Properties of Light Library Document
Light + Air North America Properties of Light Library Document 2 Properties Library Document of Light Properties of Light Light as energy The other way of representing light is as a wave phenomenon. This is somewhat more difficult for most people to understand, but Light is remarkable. It is something we take for granted every day, perhaps an analogy with sound waves will be useful. When you play but it is not something we stop and think about very often or even a high note and a low note on the piano, they both produce sound, try to define. Let us take a few minutes and try to understand but the main thing that is different between the two notes is the some things about light. Simply stated, light is nature’s way frequency of the vibrating string producing the sound waves--the of transferring energy through space. We can complicate it by faster the vibration the higher the pitch of the note. If we now shift talking about interacting electric and magnetic fields, quantum our focus to the sound waves themselves instead of the vibrating mechanics and all of that, but just remember, light is energy. Light string, we would find that the higher pitched notes have shorter travels very rapidly, but it does have a finite velocity. In vacuum, wavelengths, or distances between each successive wave. Likewise the speed of light is 186,282 miles per second (or nearly 300,000 (and restricting ourselves to optical light for the moment), blue kilometers per second), which is really humming along! However, light and red light are both just light, but the blue light has a higher when we start talking about the incredible distances in astronomy, frequency of vibration (or a shorter wavelength) than the red light. -
Biofluorescence
Things That Glow In The Dark Classroom Activities That Explore Spectra and Fluorescence Linda Shore [email protected] “Hot Topics: Research Revelations from the Biotech Revolution” Saturday, April 19, 2008 Caltech-Exploratorium Learning Lab (CELL) Workshop Special Guest: Dr. Rusty Lansford, Senior Scientist and Instructor, Caltech Contents Exploring Spectra – Using a spectrascope to examine many different kinds of common continuous, emission, and absorption spectra. Luminescence – A complete description of many different examples of luminescence in the natural and engineered world. Exploratorium Teacher Institute Page 1 © 2008 Exploratorium, all rights reserved Exploring Spectra (by Paul Doherty and Linda Shore) Using a spectrometer The project Star spectrometer can be used to look at the spectra of many different sources. It is available from Learning Technologies, for under $20. Learning Technologies, Inc., 59 Walden St., Cambridge, MA 02140 You can also build your own spectroscope. http://www.exo.net/~pauld/activities/CDspectrometer/cdspectrometer.html Incandescent light An incandescent light has a continuous spectrum with all visible colors present. There are no bright lines and no dark lines in the spectrum. This is one of the most important spectra, a blackbody spectrum emitted by a hot object. The blackbody spectrum is a function of temperature, cooler objects emit redder light, hotter objects white or even bluish light. Fluorescent light The spectrum of a fluorescent light has bright lines and a continuous spectrum. The bright lines come from mercury gas inside the tube while the continuous spectrum comes from the phosphor coating lining the interior of the tube. Exploratorium Teacher Institute Page 2 © 2008 Exploratorium, all rights reserved CLF Light There is a new kind of fluorescent called a CFL (compact fluorescent lamp). -
Top- and Bottom-Emission-Enhanced Electroluminescence of Deep-UV
OPEN Top- and bottom-emission-enhanced SUBJECT AREAS: electroluminescence of deep-UV INORGANIC LEDS NANOPHOTONICS AND light-emitting diodes induced by PLASMONICS localised surface plasmons Received 26 November 2013 Kai Huang, Na Gao, Chunzi Wang, Xue Chen, Jinchai Li, Shuping Li, Xu Yang & Junyong Kang Accepted 27 February 2014 Department of Physics, Fujian Provincial Key Laboratory of Semiconductor Materials and Application, Xiamen University, Xiamen, 361005, P. R. China. Published 14 March 2014 We report localised-surface-plasmon (LSP) enhanced deep-ultraviolet light-emitting diodes (deep-UV LEDs) using Al nanoparticles for LSP coupling. Polygonal Al nanoparticles were fabricated on the top surfaces of the deep-UV LEDs using the oblique-angle deposition method. Both the top- and Correspondence and bottom-emission electroluminescence of deep-UV LEDs with 279 nm multiple-quantum-well emissions requests for materials can be effectively enhanced by the coupling with the LSP generated in the Al nanoparticles. The primary should be addressed to bottom-emission wavelength is longer than the primary top-emission wavelength. This difference in K.H. (k_huang@xmu. wavelength can be attributed to the substrate-induced Fano resonance effect. For resonance modes with edu.cn) or J.C.L. shorter wavelengths, the radiation fraction directed back into the LEDs is largest in the direction that is nearly parallel to the surface of the device and results in total reflection and re-absorption in the LEDs. ([email protected]) emiconductor deep-ultraviolet (deep-UV) light sources based on III-nitride light-emitting diodes (LEDs) have been intensively investigated because of their potential applications, including air and water purifica- tion, germicidal and biomedical instrumentation systems, and ophthalmic surgery tools1–3. -
Fabrication of Organic Light Emitting Diodes in an Undergraduate Physics Course
AC 2011-79: FABRICATION OF ORGANIC LIGHT EMITTING DIODES IN AN UNDERGRADUATE PHYSICS COURSE Robert Ross, University of Detroit Mercy Robert A. Ross is a Professor of Physics in the Department of Chemistry & Biochemistry at the University of Detroit Mercy. His research interests include semiconductor devices and physics pedagogy. Ross received his B.S. and Ph.D. degrees in Physics from Wayne State University in Detroit. Meghann Norah Murray, University of Detroit Mercy Meghann Murray has a position in the department of Chemistry & Biochemistry at University of Detroit Mercy. She received her BS and MS degrees in Chemistry from UDM and is certified to teach high school chemistry and physics. She has taught in programs such as the Detroit Area Pre-College Engineering Program. She has been a judge with the Science and Engineering Fair of Metropolitan Detroit and FIRST Lego League. She was also a mentor and judge for FIRST high school robotics. She is currently the chair of the Younger Chemists Committee and Treasurer of the Detroit Local Section of the American Chemical Society and is conducting research at UDM. Page 22.696.1 Page c American Society for Engineering Education, 2011 Fabrication of Organic Light-Emitting Diodes in an Undergraduate Physics Course Abstract Thin film organic light-emitting diodes (OLEDs) represent the state-of-the-art in electronic display technology. Their use ranges from general lighting applications to cellular phone displays. The ability to produce flexible and even transparent displays presents an opportunity for a variety of innovative applications. Science and engineering students are familiar with displays but typically lack understanding of the underlying physical principles and device technologies. -
Light and Ultraviolet Radiation
Light and Ultraviolet Radiation Objectives page 3 Introduction page 3 Why worry about light and UV radiation? page 3 What materials are most sensitive to damage? page 4 Can the damage be prevented? page 5 Light sources in museums, galleries and libraries page 6 What lighting levels are acceptable? page 7 What do these levels mean? page 7 Measuring light and UV radiation page 9 MORE ABOUT LIGHT AND UV RADIATION Light and UV radiation are types of energy page 9 The electromagnetic spectrum page 10 How does the energy cause damage? page 11 Sources of light and UV radiation page 12 The brightness of light page 14 Additional information about the units used to measure light page 14 For further reading page 15 Self-evaluation quiz page 15 Answers to self-evaluation quiz page 17 Objectives Why worry about light and UV radiation? At the end of this chapter you should: • understand the adverse effects that visible Although we could not do without light in light and ultraviolet—UV—radiation can have museums, galleries and libraries, it is important to on museum objects; remember light is an environmental factor that contributes to the deterioration of our valued • be able to identify the items in your collections. collections that are most susceptible to damage caused by exposure to visible light It is vital to be aware that visible light is often and UV radiation; accompanied by: • know steps to take to control the lighting and UV radiation levels, and so minimise damage • UV radiation, which can cause more damage to your collections; faster than visible light; and • be aware of the sources of visible light, UV • infrared radiation, which heats materials. -
That You Want to Know About the Light Emitting Diodes Or Leds
ALL THAT YOU WANT TO KNOW ABOUT THE LIGHT EMITTING DIODES OR LEDS LED=LIGHT EMITTING DIODE IS A SEMICONDUCTOR DEVICE WHICH EMITS LIGHT WHEN PROPERLY BIASED. LIKE THE BASIC SEMICONDUCTOR DIODE IN FORWARD BIAS, THE ELECTRONS AND THE HOLES IN THE LED COMBINE TO RELEASE ENERGY BY A PROCESS CALLED ELECTROLUMINESCENCE. THE COLOUR OF THE LIGHT IS DETERMINED BY THE ENERGY GAP OF THE SEMICONDUCTOR. A LIGHT EMITTING DIODE CONSISTS OF MULTIPLE LAYERS OF SEMI-CONDUCTING MATERIAL. WHEN THE DIODE IS BEING USED WITH DIRECT CURRENT, LIGHT IS PRODUCED IN THE ACTIVE LAYER. THE LIGHT PRODUCED IS DECOUPLED DIRECTLY OR BY REFLECTIONS. IN CONTRAST TO INCANDESCENT REFLECTOR LAMPS, WHICH EMIT A CONTINUOUS SPECTRUM, AN LED EMITS LIGHT IN A PARTICULAR COLOR. THE LIGHT'S COLOR DEPENDS ON THE SEMICONDUCTOR MATERIAL USED. TWO MATERIAL SYSTEMS ARE MAINLY USED, IN ORDER TO PRODUCE LEDS WITH A HIGH DEGREE OF BRIGHTNESS IN ALL COLORS FROM BLUE TO RED AND, BY MEANS OF LUMINESCENCE CONVERSION, ALSO IN WHITE. DIFFERENT VOLTAGES ARE NECESSARY, TO OPERATE THE DIODE IN FORWARD BIAS. LEDS ARE SEMICONDUCTOR CRYSTALS. DEPENDING ON THE COMPOSITION OF THE CRYSTAL COMPOUNDS, THEY EMIT LIGHT IN THE COLORS OF RED, GREEN, YELLOW OR BLUE, WHEN CURRENT FLOWS THROUGH THEM. WITH THE THREE RGB COLORS, ANY NUMBER OF COLOR TONES MAY BE MIXED BY VARYING THE PROPORTIONS OF THE INDIVIDUAL COLORS. IN THIS WAY, THE LED LIGHTING CAN CREATE FASCINATING WORLDS OF EXPERIENCE. HISTORY THE FIRST LED WAS INVENTED BY OLEG LOSE (1927), JAMES R. BIARD (1961), NICK HOLONYAK (1962) SEPARATELY. EARLY LEDS EMITTED LOW INTENSITY RED LIGHT, MODERN ONES ARE AVAILABLE ACROSS THE VISIBLE, ULTRAVIOLET AND INFRARED WAVELENGTHS WITH VERY HIGH BRIGHTNESS.