3D Puzzles of Thessaloniki Landmarks: Introducing a New Line of Souvenirs for the City
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Baguenaudier - Wikipedia, the Free Encyclopedia
Baguenaudier - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Baguenaudier You can support Wikipedia by making a tax-deductible donation. Baguenaudier From Wikipedia, the free encyclopedia Baguenaudier (also known as the Chinese Rings, Cardan's Suspension, or five pillars puzzle) is a mechanical puzzle featuring a double loop of string which must be disentangled from a sequence of rings on interlinked pillars. The puzzle is thought to have been invented originally in China. Stewart Culin provided that it was invented by the Chinese general Zhuge Liang in the 2nd century AD. The name "Baguenaudier", however, is French. In fact, the earliest description of the puzzle in Chinese history was written by Yang Shen, a scholar in 16th century in his Dan Qian Zong Lu (Preface to General Collections of Studies on Lead). Édouard Lucas, the inventor of the Tower of Hanoi puzzle, was known to have come up with an elegant solution which used binary and Gray codes, in the same way that his puzzle can be solved. Variations of the include The Devil's Staircase, Devil's Halo and the Impossible Staircase. Another similar puzzle is the Giant's Causeway which uses a separate pillar with an embedded ring. See also Disentanglement puzzle Towers of Hanoi External links A software solution in wiki source (http://en.wikisource.org/wiki/Baguenaudier) Eric W. Weisstein, Baguenaudier at MathWorld. The Devil's Halo listing at the Puzzle Museum (http://www.puzzlemuseum.com/month/picm05/200501d-halo.htm) David Darling - encyclopedia (http://www.daviddarling.info/encyclopedia/C/Chinese_rings.html) Retrieved from "http://en.wikipedia.org/wiki/Baguenaudier" Categories: Chinese ancient games | Mechanical puzzles | Toys | China stubs This page was last modified on 7 July 2008, at 11:50. -
C-Space Tunnel Discovery for Puzzle Path Planning
C-Space Tunnel Discovery for Puzzle Path Planning XINYA ZHANG, The University of Texas at Austin ROBERT BELFER, McGill University PAUL G. KRY, McGill University ETIENNE VOUGA, The University of Texas at Austin Fig. 1. Puzzles we solve using our approach, roughly ordered by difficulty from left to right. Top row: alpha, alpha-z, alpha-j, alpha-g, double-alpha, claw, and enigma. Bottom row: duet (with 4 different grid sizes), Mobius, ABC, and Key. All but the alpha variants are Hanayama puzzles. Rigid body disentanglement puzzles are challenging for both humans and 1 INTRODUCTION motion planning algorithms because their solutions involve tricky twisting The Piano Mover’s Problem asks whether one can move a piano and sliding moves that correspond to navigating through narrow tunnels in between rooms through a sequence of rigid-body motions. This the puzzle’s configuration space (C-space). We propose a tunnel-discovery problem has inspired a great deal of work in computational geometry and planning strategy for solving these puzzles. First, we locate important features on the pieces using geometric heuristics and machine learning, and and robotics because it has a vast number of practical applications, then match pairs of these features to discover collision free states in the from collision-free navigation in automated warehouses, to path puzzle’s C-space that lie within the narrow tunnels. Second, we propose planning in pharmaceutical drug design. Rigid disentanglement a Rapidly-exploring Dense Tree (RDT) motion planner variant that builds puzzles are an interesting variant of the problem because they are tunnel escape roadmaps and then connects these roadmaps into a solution specifically designed to be difficult to take apart: they are notoriously path connecting start and goal states. -
PDF Download Shape and Space: Includes 12 Interactive Card Pages
SHAPE AND SPACE: INCLUDES 12 INTERACTIVE CARD PAGES OF FUN PRESS-OUT GAME AND PUZZLE PIECES PDF, EPUB, EBOOK Adrian Pinel,Jeni Pinel | 44 pages | 30 Aug 2008 | Haldane Mason Ltd | 9781905339204 | English | London, United Kingdom Shape and Space: Includes 12 Interactive Card Pages of Fun Press-Out Game and Puzzle Pieces PDF Book Like a 2-D puzzle, a globe puzzle is often made of plastic and the assembled pieces form a single layer. In , the German company Ravensburger released their biggest puzzle. Players have to use spatial reasoning to visualize the path and draw where they need to go on the board. Some fully interlocking puzzles have pieces all of a similar shape, with rounded tabs out on opposite ends, with corresponding blanks cut into the intervening sides to receive the tabs of adjacent pieces. A jigsaw puzzle is a tiling puzzle that requires the assembly of often oddly shaped interlocking and mosaiced pieces. Why would the following stand no chance of being approved as official names for British racehorses? It costs a fraction of a penny per day over its lifetime, and if you lose it, its inherent unbreakable security will leave no trace of confidential files or personal history. A slashed 'equals' sign is the mathematical symbol for 'does not equal'. Deep Grey. The Wishing Well. Tower of Hanoi Solver. Amazingly the first puzzle can still fool people when all the Fs are coloured red. Please note that the answer to this question was corrected 17 Oct A new street is built with one hundred new houses, numbered 1 to Next draw an equilateral triangle three sides same length and divide into three equal parts. -
The Procedural Generation of Interesting Sokoban Levels
THE PROCEDURAL GENERATION OF INTERESTING SOKOBAN LEVELS Joshua Taylor, B.S., M.S. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS May 2015 APPROVED: Ian Parberry, Major Professor Robert Akl, Committee Member Armin R. Mikler, Committee Member Robert Renka, Committee Member Barrett R. Bryant, Chair of the Department of Computer Science and Engineering Costas Tsatsoulis, Dean of the College of Engineering and Interim Dean of the Toulouse Graduate School Taylor, Joshua. The Procedural Generation of Interesting Sokoban Levels. Doctor of Philosophy (Computer Science and Engineering), May 2015, 69 pp., 32 tables, 11 figures, references, 46 titles. As video games continue to become larger, more complex, and more costly to produce, research into methods to make game creation easier and faster becomes more valuable. One such research topic is procedural generation, which allows the computer to assist in the creation of content. This dissertation presents a new algorithm for the generation of Sokoban levels. Sokoban is a grid-based transport puzzle which is computational interesting due to being PSPACE-complete. Beyond just generating levels, the question of whether or not the levels created by this algorithm are interesting to human players is explored. A study was carried out comparing player attention while playing hand made levels versus their attention during procedurally generated levels. An auditory Stroop test was used to measure attention without disrupting play. Copyright 2015 by Joshua Taylor ii ACKNOWLEDGEMENTS I would like to thank Marcus Hof, David Holland, Evgeny Grigoriev, David W. Skinner, and Rick Sladkey for giving me permission to use their Sokoban levels in my study. -
Diachronic Exploitation of Landscape Resources – Tangible and Intangible
Diachronic exploitation of landscape resources tangible and intangible industrial heritage and their synthesis suspended step Georgia Zacharopoulou*1 1 GREEK MINISTRY OF CULTURE - MOUSON 89-91, 54634, THESSALONIKI, Greece Abstract It is expected that industrial heritage actually tells the story of the emerging capitalism highlighting the dynamic social relationship between the “workers” and the owners of the “production means”. In current times of economic crisis, it may even involve a painful past with lost social, civil, gender and/or class struggles, a depressing present with abandoned, fragmented, degraded landscapes and ravaged factories, and a hopeless future for the former workers of the local (not only) society; or just a conquerable ground for controversial invest- ments. This is certainly an emotionally charged subject matter, with multiple readings and interpretations. However, this view is only partial when facing landscape during its historical evolution pro- cess. A diachronic study, thus, embraces all resources that probably gave rise to a variety of human activities; all of them embody heritage values -“subjectively” or “objectively” perceived- their evaluation, though, is a matter of an on-going process of the civil society. Greece's landscape accommodates a diversity of diachronic productive practices that may overlap historical periods, technological evolutions and social transformations. Pre-, early and industrial exploitation of resources does not remain firm but vary according to time and the needs of each society. The comparative scale of certain resource exploitation is highlighted as the key for the assessment methodology in close relation to the specific frame of a local landscape and a historical period. Even though archaeological evidence may possibly reveal and document continuity in a range of sustainable productive processes without conflicts, great controversies emerge when new investments are “offered” as an antidote to economic crisis -not harmonized to the local scale, traumatizing thus the “spirit” of the landscape. -
Puzzles from Around the World 5¿ Richard I
Contents Foreword iÜ Elwyn Berlekamp and Tom Rodgers I Personal Magic ½ Martin Gardner: A “Documentary” ¿ Dana Richards Ambrose, Gardner, and Doyle ½¿ Raymond Smullyan A Truth Learned Early ½9 Carl Pomerance Martin Gardner = Mint! Grand! Rare! ¾½ Jeremiah Farrell Three Limericks: On Space, Time, and Speed ¾¿ Tim Rowett II Puzzlers ¾5 A Maze with Rules ¾7 Robert Abbott Biblical Ladders ¾9 Donald E. Knuth Card Game Trivia ¿5 Stewart Lamle Creative Puzzle Thinking ¿7 Nob Yoshigahara v vi Contents Number Play, Calculators, and Card Tricks: Mathemagical Black Holes 4½ Michael W. Ecker Puzzles from Around the World 5¿ Richard I. Hess OBeirnes Hexiamond 85 Richard K. Guy Japanese Tangram (The Sei Shonagon Pieces) 97 Shigeo Takagi How a Tangram Cat Happily Turns into the Pink Panther 99 Bernhard Wiezorke Pollys Flagstones ½¼¿ Stewart Coffin Those Peripatetic Pentominoes ½¼7 Kate Jones Self-Designing Tetraflexagons ½½7 Robert E. Neale The Odyssey of the Figure Eight Puzzle ½¾7 Stewart Coffin Metagrobolizers of Wire ½¿½ Rick Irby Beautiful but Wrong: The Floating Hourglass Puzzle ½¿5 Scot Morris Cube Puzzles ½45 Jeremiah Farrell The Nine Color Puzzle ½5½ Sivy Fahri Twice: A Sliding Block Puzzle ½6¿ Edward Hordern Planar Burrs ½65 M. Oskar van Deventer Contents vii Block-Packing Jambalaya ½69 Bill Cutler Classification of Mechanical Puzzles and Physical Objects Related to Puzzles ½75 James Dalgety and Edward Hordern III Mathemagics ½87 A Curious Paradox ½89 Raymond Smullyan A Powerful Procedure for Proving Practical Propositions ½9½ Solomon W. Golomb Misfiring Tasks ½9¿ Ken Knowlton Drawing de Bruijn Graphs ½97 Herbert Taylor Computer Analysis of Sprouts ½99 David Applegate, Guy Jacobson, and Daniel Sleator Strange New Life Forms: Update ¾¼¿ Bill Gosper Hollow Mazes ¾½¿ M. -
Wikipedia Tangram Page
Tangram - Wikipedia, the free encyclopedia 02/21/2008 08:37 PM Tangram From Wikipedia, the free encyclopedia Tangram (Chinese: 七巧板; pinyin: qī qiǎo bǎn; literally "seven boards of skill") is a dissection puzzle. It consists of seven pieces, called tans, which fit together to form a shape of some sort. The objective is to form a specific shape with seven pieces. The shape has to contain all the pieces, which may not overlap. Contents 1 History 2 Mathematical proofs 3 The pieces 4 See also A typical tangram 5 References construction 6 Further reading 7 External links History The Tangram very possibly originated from the yanjitu (燕几圖) furniture set during the Song Dynasty. According to historical Chinese records, the furniture set was originally a set of 6 rectangular tables. Later, an additional triangular table was added to the set, and people can arrange the 7 tables into a big square table. There is some variation to such furniture set during the Ming Dynasty, and later became a set of wooden blocks for playing. According to other authors, the earliest reference to tangram appears in a Chinese book dated 1813, which was probably written during the reign of the Emperor Jiajing.[1] Wooden Tangram Set Another legend states that a servant of a Chinese emperor was carrying a ceramic tile, extremely expensive and extremely fragile. The servant tripped, shattering the tile. In a panic, the servant desperately tried to reassemble the tile into a square, but could not. He spent many days trying to reassemble the pieces into a square again, but could not, and instead created thousands of patterns and pictures during his attempts. -
Gabriel Fernandes' Puzzle Collection: Modern Times 10/12/14, 3:29 PM
Gabriel Fernandes' Puzzle Collection: Modern Times 10/12/14, 3:29 PM HOME POSTS RSS GO MODERN TIMES Posted on by Gabriel | 5 comments Labels: Edge-Matching, Jean Claude Constantin, Wooden Puzzle About Me Gabriel I'm 31 and (Click to Enlarge) currently live in Portugal. This is a long overdue review I've been wanting to write for months, ever since I got this puzzle back in June, but time and other My favorite puzzles kept me from doing it... Until now. Modern Times has got to be one of the most strikingly beautiful puzzles from Jean hobby and greatest interest is Claude Constantin I've seen so far. The concept isn't new, although it does add a couple of new elements, but when I look at its collecting and solving visual appearance I don't really care if it's revolutionary or not. It's Gorgeous! mechanical puzzles. I started my collection in August 2008 with... The Rubik's Cube, what The first thing that surprised me about Modern Times was its size, which is bigger than I was expecting. This actually happens to else? I guess that's the puzzle me a lot when I'm browsing for puzzles, since their size is the last thing I check. I basically take a look the photo and its many collectors will say that description. I sometimes get surprised too, but on the bad side. Not this time though, as the puzzle measures a good 14cm x started their collections as 14cm (about 5.5"). well. I also have a website that shows all the puzzles in The puzzle is made by a combination of laser-cut woods in various colors, with each wheel having eight different colors. -
Read Ebook \\ Mechanical Toys / 4XGV1KFZXPM0
KC5LEBOZV84C « eBook > Mechanical toys Mech anical toys Filesize: 2.96 MB Reviews Very beneficial to all category of folks. I really could comprehended every little thing out of this created e publication. I found out this book from my dad and i encouraged this ebook to discover. (Maia O'Hara) DISCLAIMER | DMCA M3XMACUOUKBF / Kindle ^ Mechanical toys MECHANICAL TOYS To get Mechanical toys eBook, make sure you follow the web link beneath and save the file or gain access to other information that are highly relevant to MECHANICAL TOYS ebook. Reference Series Books LLC Okt 2012, 2012. Taschenbuch. Book Condition: Neu. 247x190x10 mm. Neuware - Source: Wikipedia. Pages: 78. Chapters: Mechanical puzzles, Soma cube, Tower of Hanoi, Flexagon, Rubik's Cube, Jigsaw puzzle, Peg solitaire, Combination puzzle, Speedcubing, Toy train, Rubik's Revenge, Fieen puzzle, Professor's Cube, Klotski, Square One, V-Cube 6, V-Cube 7, Pyramorphix, Megaminx, Rubik's Magic, Dogic, Cymbal- banging monkey toy, Helicopter Cube, Pyraminx, Rubik's Snake, Impossible bottle, Pocket Cube, Snake cube, Pyraminx Crystal, Happy Cube, Rush Hour, Impossiball, Skewb Ultimate, BrainTwist, Rubik's Clock, Mechanical toy, Sliding puzzle, Disentanglement puzzle, Secret decoder ring, Equilibrium, Rubik's Magic: Master Edition, Sudoku Cube, Rubik's 360, Puzzle jug, Alexander's Star, Minus Cube, Puzzle ring, Wind-up toy, Skewb Diamond, Baguenaudier, Nintendo tumbler puzzle, Burr puzzle, Egg of Columbus, Magnet Space Wheel, Eastsheen, Hoppers, Snapper Puzzle, Puzzle globe, Think-a-Dot, Rubik's Triamid, Puzzle box, Missing Link, Pyramid puzzle, Diabolical cube, Lock puzzle, Moo box, Yoshimoto Cube, Human knot, Fuddling cup, Mechanical bank, Puzzle jewelry, Gridlock, Libelle. -
Procedural Generation of Narrative Puzzles
Procedural Generation of Narrative Puzzles by Barbara De Kegel, B.Sc. (Hons) Dissertation Presented to the University of Dublin, Trinity College in fulfillment of the requirements for the Degree of Master of Science in Computer Science (Interactive Entertainment Technology) University of Dublin, Trinity College September 2016 Declaration I, the undersigned, declare that this work has not previously been submitted as an exercise for a degree at this, or any other University, and that unless otherwise stated, is my own work. Barbara De Kegel August 30, 2016 Permission to Lend and/or Copy I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request. Barbara De Kegel August 30, 2016 Acknowledgments Firstly I want to thank my supervisor Mads Haahr for his advice and the interesting discussions we had over the course of this dissertation. I also want to thank the IET class, in particular Patrick and Dan, for their camaraderie and their patience with my endless questions, and Shane, for supporting me at the end. Finally I want to thank my family for their endless support throughout my education. Barbara De Kegel University of Dublin, Trinity College September 2016 iv Procedural Generation of Narrative Puzzles Barbara De Kegel University of Dublin, Trinity College, 2016 Supervisor: Mads Haahr Narrative puzzles involve exploration, logical thinking and progressing a story. This project proposes a system for the procedural generation of such puzzles for use in story-rich games or games with large open worlds. An extended type of context-free grammar forms the basis for both the generation algorithm and the puzzle solving. -
Thinking Outside the Cube - IEEE - the Institute
Thinking Outside The Cube - IEEE - The Institute http://staging.theinstitute.ieee.org/people/profiles/thinking-outside-the... Home ( /) / People ( /people ) / Profiles ( /people/profiles ) Thinking Outside The Cube The record for world’s largest Rubik’s Cube-style puzzle goes to an IEEE member By SUSAN KARLIN 16 April 2012 When the Rubik’s Cube craze erupted in 1980, most people wanted to solve it. IEEE Member Oskar van Deventer wanted to know how it was put together. The 3-D mechanical puzzle consists of six large outer sides built of layers of 3x3 matrices of smaller cubes, each consisting of one of six colors. Each layer can be turned independently of the others. The puzzle is “solved” when each layer is manipulated so each large outer side is returned to a solid color. Photo: Jose Remmerswaal By the ripe old age of 12, and before the Rubik’s Cube hit the headlines, van Deventer was already trying to teach himself how to design 3-D mechanical puzzles, after stumbling upon a book, Creative Puzzles of the World . So when the Rubik’s Cubes were delivered in limited quantities across Europe, he cycled 20 kilometers to an Amsterdam toy store—twice—once to order one and then to pick it up. He never outgrew its allure. Today, at 46, he’s the Guinness world record holder for designing the world’s largest Rubik’s Cube-style puzzle, called Over the Top—17x17x17 surface squares (and 15.2 centimeters on an outer side), as opposed to the original’s 3x3x3 squares (with an outer dimension of 5.7 cm). -
Its Solution and Analogy to the Chinese Rings
The Chinese String Its solution and analogy to the Chinese Rings Andreas Christopher Höck Dissertation an der Fakultät für Mathematik, Informatik und Statistik der Ludwig–Maximilians–Universität München vorgelegt von Andreas Christopher Höck München, den 04.05.2017 Erstgutachter: Prof. Dr. Andreas M. Hinz, LMU München Zweitgutachter: Prof. Dr. Jaka Smrekar, Univerza v Ljubljani Tag der mündlichen Prüfung: 07.09.2017 Zusammenfassung In der Kognitivpsychologie werden isomorphe mechanische Geschicklichkeitsspiele betrach- tet, um herauszufinden, wodurch Probleme ihre Schwierigkeit erhalten. Ein Beispiel für diese Art von Geschicklichkeitsspielen sind die zueinander isomorphen Spiele Turm von Hanoi und Monsters and Globes. Ihre Isomorphie ist durch das Vertauschen der Rollen der beweglichen und der festen Bestandteile gegeben. Ein weiteres Beispiel von zwei Geschicklichkeitsspielen, bei denen die Rollen der festen und beweglichen Bestandteile vertauscht sind, sind Chinesische Ringe und Chinese String. In dieser Dissertation wird der Zusammenhang zwischen Chinesi- sche Ringe und Chinese String genauer untersucht, um herauszufinden, inwiefern eine Isomor- phie zwischen diesen beiden gegeben ist. Zunächst wird eine Einleitung in Chinesische Ringe gegeben. Dabei werden Eigenschaften des zugehörigen Zustandsgraphen und der Zusammenhang zwischen Gros- und Gray-Code angege- ben. Darüber hinaus wird die Zugfolge der optimalen Lösung (mit abzählbar unendlich vielen Ringen), auch Gros-Folge genannt, betrachtet und festgestellt, dass diese gleich der "greedy square-free sequence" ist. Anschließend wird eine mechanische Lösung von Chinese String aufgezeigt. Mithilfe einer imaginären Linie werden Bewegungen definiert und diese Bewegungen werden verwendet, um einen rekursiven Lösungsalgorithmus für eine beliebige Anzahl an Ringen anzugeben. Anhand des Algorithmus werden weitere Eigenschaften der Lösung untersucht und es wird festgestellt, dass diese Lösung zum Lösen von Chinesische Ringe verwendet werden kann, da deren Zug- folgen identisch sind.