Temperature Scales 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fahrenheit 1 Fahrenheit
Fahrenheit 1 Fahrenheit Fahrenheit is the temperature scale proposed in 1724 by, and named after, the physicist Daniel Gabriel Fahrenheit (1686–1736). Today, the temperature scale has been replaced by the Celsius scale in most countries.[1] It is still in use in few nations, such as United States and Belize.[2] Thermometer with Fahrenheit units on the outer scale and Celsius units on the inner scale Definition and conversions Fahrenheit temperature conversion formulae from Fahrenheit to Fahrenheit Celsius [°C] = ([°F] − 32) × 5 [°F] = [°C] × 9 + 32 ⁄9 ⁄5 Kelvin [K] = ([°F] + 459.67) × 5 [°F] = [K] × 9 − 459.67 ⁄9 ⁄5 Rankine [°R] = [°F] + 459.67 [°F] = [°R] − 459.67 For temperature intervals rather than specific temperatures, 1 °F = 1 °R = 5 °C = 5 K ⁄9 ⁄9 Comparisons among various temperature scales On the Fahrenheit scale, the freezing point of water is 32 degrees Fahrenheit (°F) and the boiling point 212 °F (at standard atmospheric pressure), placing the boiling and freezing points of water exactly 180 degrees apart.[3] A degree on the Fahrenheit scale is 1⁄ of the interval between the freezing point and the boiling point. On the Celsius 180 scale, the freezing and boiling points of water are 100 degrees apart. A temperature interval of 1 degree Fahrenheit is equal to an interval of 5⁄ degrees Celsius. The Fahrenheit and Celsius scales converge at −40 degrees (i.e. −40 °F 9 and −40 °C represent the same temperature).[3] Absolute zero is −459.67 °F.[4] The Rankine temperature scale was created to use degree intervals the same size as those of the Fahrenheit scale, such that a temperature difference of one degree Rankine (1 °R) is equal to a difference of 1 °F, except that absolute zero is 0 °R – the same way that the Kelvin temperature scale matches the Celsius scale, except that absolute zero is 0 K. -
Chemmatters December 2006 Reading Strategies
December 2006 Teacher's Guide About the Guide...............................................................................................................................3 Student Questions .........................................................................................................................4 Answers to Student Questions.............................................................................................5 Puzzle: Chemistry Drop-outs .................................................................................................7 Answers to Puzzle: Chemistry Drop-outs ....................................................................8 Content Reading Guide ......................................................................................................................9 National Science Education Content Standard Addressed.......................................................................9 Anticipation Guides ...........................................................................................................................10 Corn-the A’maiz’ing Grain .......................................................................................................................10 Sticky Situations: the Wonders of Glue...................................................................................................11 Unusual Sunken Treasure.......................................................................................................................12 Thermometers .........................................................................................................................................13 -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
The Kelvin and Temperature Measurements
Volume 106, Number 1, January–February 2001 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 106, 105–149 (2001)] The Kelvin and Temperature Measurements Volume 106 Number 1 January–February 2001 B. W. Mangum, G. T. Furukawa, The International Temperature Scale of are available to the thermometry commu- K. G. Kreider, C. W. Meyer, D. C. 1990 (ITS-90) is defined from 0.65 K nity are described. Part II of the paper Ripple, G. F. Strouse, W. L. Tew, upwards to the highest temperature measur- describes the realization of temperature able by spectral radiation thermometry, above 1234.93 K for which the ITS-90 is M. R. Moldover, B. Carol Johnson, the radiation thermometry being based on defined in terms of the calibration of spec- H. W. Yoon, C. E. Gibson, and the Planck radiation law. When it was troradiometers using reference blackbody R. D. Saunders developed, the ITS-90 represented thermo- sources that are at the temperature of the dynamic temperatures as closely as pos- equilibrium liquid-solid phase transition National Institute of Standards and sible. Part I of this paper describes the real- of pure silver, gold, or copper. The realiza- Technology, ization of contact thermometry up to tion of temperature from absolute spec- 1234.93 K, the temperature range in which tral or total radiometry over the tempera- Gaithersburg, MD 20899-0001 the ITS-90 is defined in terms of calibra- ture range from about 60 K to 3000 K is [email protected] tion of thermometers at 15 fixed points and also described. -
What Is Temperature
City Research Online City, University of London Institutional Repository Citation: Kyriacou, P. A. (2010). Temperature sensor technology. In: Jones, D. P. (Ed.), Biomedical Sensors. (pp. 1-38). New York: Momentum Press. ISBN 9781606500569 This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/3539/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Biomedical Sensors: Temperature Sensor Technology P A Kyriacou, PhD Reader in Biomedical Engineering School of Engineering and Mathematical Sciences City University, London EC1V 0HB “...the clinical thermometer ranks in importance with the stethoscope. A doctor without his thermometer is like a sailor without his compass” Family Physician, 1882 Celsius thermometer (attached to a barometer) made by J.G. Hasselström, Stockholm, late 18th century Page 1 of 39 1. Introduction Human body temperature is of vital importance to the well being of the person and therefore it is routinely monitored to indicate the state of the person’s health. -
Thermometry (Temperature Measurement)
THERMOMETRY Thermometry ................................................................................................................................................. 1 Applications .............................................................................................................................................. 2 Temperature metrology ............................................................................................................................. 2 The primary standard: the TPW-cell ..................................................................................................... 5 Temperature and the ITS-90 ..................................................................................................................... 6 The Celsius scale ................................................................................................................................... 6 Thermometers and thermal baths .......................................................................................................... 7 Metrological properties ............................................................................................................................. 7 Types of thermometers.............................................................................................................................. 9 Liquid-in-glass ...................................................................................................................................... 9 Thermocouple .................................................................................................................................... -
TEMPERATURE © 2019, 2008, 2004, 1990 by David A
TEMPERATURE © 2019, 2008, 2004, 1990 by David A. Katz. All rights reserved. A BRIEF HISTORY OF TEMPERATURE MEASUREMENT Ancient people were physically aware of hot and cold and probably related temperature by the size of the fire needed, and how close to sit, to keep warm. An Australian tribe, still primitive, uses dogs instead of blankets to keep warm, thus, they can relate temperature by the dog. (See Figure 1.) A moderately cool night may require two dogs to keep warm, thus it is a two-dog night. An icy night would be a six-dog night. Early people were, at first, fire tenders, maintaining fires originally Figure 1. Australian started by natural causes. Later, they learned how to make fire and aborginies use dogs became fire makers. Eventually, they became fire managers as they to keep warm. learned to work with fire to gain the heat needed to boil water, cook meat, fire pottery (500°F or 257°C), work with copper, tin, bronze (an alloy of copper and tin) and iron, and to make glass. (See Figure 2) Although they had no quantitative measuring devices to determine how hot a fire was, they developed recipes for building different types of fires and probably used a physical indicator, such as some mineral or metal melting, to indicate the correct Figure 2. Early people temperature for a particular process. used fire to cook food and later to work with The ancient Greeks knew that air expanded when heated and metals. applied the principle mechanically, but they developed no means of measuring temperature or amount of heat needed and devised no measuring instruments. -
The Science Behind Meaningful Temperature Measurement, Part 1: Introduction
Calibrating Thermometers: The Science Behind Meaningful Temperature Measurement, Part 1: Introduction By Maria Knake, Laboratory Assessment Program Manager Posted: May 2012 A Promise is a Promise I've said it myself: without calibration, we have no confidence in the measurements that we take. And if a measurement isn’t meaningful, why even bother? Nevertheless, if you’ve read my previous articles, "The Anatomy of a Liquid-in-Glass Thermometer" and "Let’s Get Digital," you know that, up to this point, I have (intentionally) avoided the subject of thermometer calibration. So, if calibration is such an important subject, why have I been avoiding it for so long? The answer is simple: I’ve been procrastinating. As I promised at the end of my last article, it’s time to finally talk about thermometer calibration, or what I like to call “the science behind meaningful temperature measurement.” If the cornerstone of any good measurement is calibration, then the cornerstone of any good calibration is the method(s) used to complete the calibration. Over my next few posts, I will explain some of the details of thermometer calibration. Units of Temperature Throughout history, many units and scales of temperature measurement have been developed for various applications around the world. In fact, historical accounts claim that over 35 different temperature scales had been developed by the 18th century. One of the most famous scales was developed by Daniel Gabriel Fahrenheit around 1714. Fahrenheit was the first scientist to use mercury in a liquid-in-glass thermometer. He used three fixed points to create his temperature scale. -
Lesson 1 the Nature and History of Temperature
Lektion 1 Sidan 2 av 5 © Pentronic AB 2017-01-19 ---------------------------------------------------------------------------------------------------------------------------------------------------- However, the thermometer had no real practical use until 1714, when the German physicist Daniel Gabriel Fahrenheit developed a temperature scale that made it possible to take comparative measurements. He is also considered to be the inventor of the mercury thermometer as it is today – that is, mercury inside a closed glass tube. It is worth pointing out that the glass thermometers containing mercury that may still be in use are being used by special exemption. Mercury is a stable substance but it becomes dangerous out in the environment. Today we use other liquids such as coloured alcohol. The temperature scales Fahrenheit Fahrenheit created a 100-degree scale in which zero degrees was the temperature of a mixture of sal ammoniac and snow – the coldest he could achieve in his laboratory in Danzig. As the upper fixed point he used the internal body temperature of a healthy human being and gave it the value of 100°F. In degrees Celsius this scale corresponds approximately to the range of -18 to +37 degrees. With this issue Pentronic begins its training in Becausetemperature it can be awkwardmeasurement to achieve .the We upper will fixed start point , he apparently introduced the more practical fixed points of +32°F and +96°F, which were respectively the freezing point of lesson 1 with a historical review and then continuewater and with the temperaturethermodynamics, of a human being’sheat armpittransfer. and quality assurance with calibration. Only after that will we move on to temperature sensors – primarily thermocouples and Pt100s.Fahrenheit’s scale was later extended to the boiling point of water, which was assigned the temperature value of +212°F. -
How Cold Is Cold: What Is Temperature?
How_Cold_is_Cold:_What_is_Temperature? Hi. My name is Rick McMaster and I work at IBM in Austin, Texas. I'm the STEM advocate and known locally as Dr. Kold because of the work that I do with schools in central Texas. Think about this question. Was it cold today when you came to school? Was it hot? We'll come back to that shortly, but let's start with something that I think we would all agree is cold, ice. Here's a picture of a big piece of ice. An iceberg, in fact. Now take a few minutes to discuss how much of the iceberg you see above the water, and why this happens. Welcome back. The density of water is about 0.92 grams per cubic centimeter, and sea water about 1.025. If we divide the first by the second, you see that about 90% of the iceberg is below the surface, something for a ship to watch out for. Why did we start with density and not temperature? Density is something that's a much more common experience. If something floats in water, it's less dense than water. If it sinks, it's more dense. That can't be argued. Let's take a little more time to talk about water and ice because it will be important later. So why is ice less dense than water? The solid form of water forms hexagonal crystals with the Hydrogen atoms shown in white, forming bonds with neighboring Oxygen atoms in red. With the water molecules no longer able to move readily, the ice is less dense and the iceberg floats. -
Structural and Thermal Analysis on Composite
Vol.2, No.1 ISSN Number (online): 2454-9614 Proceedings of International Conference on Recent Trends in Mechanical Engineering-2K15(NECICRTME-2K15), 20th – 21st November,2015 STRUCTURAL AND THERMAL ANALYSIS ON COMPOSITE CYLINDER 1 K.Swaroop Kumar, 2 K.Kiran Chand 1 M.Tech Student, Narasaraopeta Engineering College, JNTU Kakinada 2 Assistant Professor, Narasaraopeta Engineering College, JNTU Kakinda 1 [email protected] 3 [email protected] Abstract: Fiber reinforced composites due to their high 1.2 Cryogenics stiffness to weight ratio and strength to weight ratio are being considered for liquid nitrogen cylinders. Tests The branches of physics and engineering that involve have been shown that graphite/epoxy composites have the study of very low temperatures, how to produce tendency to micro crack at very low temperatures. In the them, and how materials behave at those temperatures. case of cylinders these micro cracks can act as passages for the cryogenic liquid to penetrate which could 1.3 Industrial applications ultimately lead to failure of the whole structure, hence it is very important to understand the fracture behavior of Liquefied gases, such as liquid nitrogen and liquid fibre composites at cryogenic temperatures before they helium, are used in many cryogenic applications. Liquid are used in cryogenic storage systems. nitrogen is the most commonly used element in cryogenics and is legally purchasable around the world. Earlier research are focused on the effect of Liquid helium is also commonly used and allows for the higher temperatures on the behavior of composites, very lowest attainable temperatures to be reached. little research is made to determine the low temperatures response of composites. -
Thermodynamic Temperature
Thermodynamic temperature Thermodynamic temperature is the absolute measure 1 Overview of temperature and is one of the principal parameters of thermodynamics. Temperature is a measure of the random submicroscopic Thermodynamic temperature is defined by the third law motions and vibrations of the particle constituents of of thermodynamics in which the theoretically lowest tem- matter. These motions comprise the internal energy of perature is the null or zero point. At this point, absolute a substance. More specifically, the thermodynamic tem- zero, the particle constituents of matter have minimal perature of any bulk quantity of matter is the measure motion and can become no colder.[1][2] In the quantum- of the average kinetic energy per classical (i.e., non- mechanical description, matter at absolute zero is in its quantum) degree of freedom of its constituent particles. ground state, which is its state of lowest energy. Thermo- “Translational motions” are almost always in the classical dynamic temperature is often also called absolute tem- regime. Translational motions are ordinary, whole-body perature, for two reasons: one, proposed by Kelvin, that movements in three-dimensional space in which particles it does not depend on the properties of a particular mate- move about and exchange energy in collisions. Figure 1 rial; two that it refers to an absolute zero according to the below shows translational motion in gases; Figure 4 be- properties of the ideal gas. low shows translational motion in solids. Thermodynamic temperature’s null point, absolute zero, is the temperature The International System of Units specifies a particular at which the particle constituents of matter are as close as scale for thermodynamic temperature.