Chemmatters December 2006 Reading Strategies

Total Page:16

File Type:pdf, Size:1020Kb

Chemmatters December 2006 Reading Strategies December 2006 Teacher's Guide About the Guide...............................................................................................................................3 Student Questions .........................................................................................................................4 Answers to Student Questions.............................................................................................5 Puzzle: Chemistry Drop-outs .................................................................................................7 Answers to Puzzle: Chemistry Drop-outs ....................................................................8 Content Reading Guide ......................................................................................................................9 National Science Education Content Standard Addressed.......................................................................9 Anticipation Guides ...........................................................................................................................10 Corn-the A’maiz’ing Grain .......................................................................................................................10 Sticky Situations: the Wonders of Glue...................................................................................................11 Unusual Sunken Treasure.......................................................................................................................12 Thermometers .........................................................................................................................................13 The Race for Iodine.................................................................................................................................14 ChemMatters December 2006 Reading Strategies ...............................................................15 Corn—The A”maiz”ing Grain...................................................................................................................16 Sticky Situations: The Wonders of Glue..................................................................................................17 Unusual Sunken Treasure.......................................................................................................................18 Thermometers .........................................................................................................................................19 The Race for Iodine.................................................................................................................................20 Corn-the A’maiz’ing Grain...............................................................................................................21 Background Information ..........................................................................................................................21 Connections to Chemistry Concepts .......................................................................................................25 Possible Student Misconceptions............................................................................................................26 Demonstrations and Lessons..................................................................................................................27 Suggestions for Student Projects ............................................................................................................27 Anticipating Student Questions ...............................................................................................................28 Websites for additional Information .........................................................................................................29 Sticky Situations: The Wonders of Glue...................................................................................31 Background Information ..........................................................................................................................31 Connections to Chemistry Concepts .......................................................................................................36 Possible Student Misconceptions............................................................................................................36 Demonstrations and Lessons..................................................................................................................36 Student Projects ......................................................................................................................................37 Anticipating Student Questions ...............................................................................................................37 Websites for additional Information .........................................................................................................37 Unusual Sunken Treasure...............................................................................................................39 Background Information ..........................................................................................................................39 Connections to Chemistry Concepts .......................................................................................................41 Possible Student Misconceptions............................................................................................................42 Demonstrations and Lessons..................................................................................................................42 Student Projects ......................................................................................................................................43 Anticipating Student Questions ...............................................................................................................44 Websites for Additional Information.........................................................................................................44 Thermometers ......................................................................................................................................45 Background Information ..........................................................................................................................45 Connections to Chemistry Concepts .......................................................................................................51 1 Possible Student Misconceptions............................................................................................................51 Demonstrations and Lessons..................................................................................................................52 Suggestions for Student Projects ............................................................................................................53 Anticipating Student Questions ...............................................................................................................53 Websites for additional Information .........................................................................................................53 The Race for Iodine ............................................................................................................................56 Background Information ..........................................................................................................................56 Connections to Chemistry Concepts .......................................................................................................61 Possible Student Misconceptions............................................................................................................61 Demonstrations and Lessons..................................................................................................................61 Student Projects ......................................................................................................................................62 Anticipating Student Questions ...............................................................................................................62 Websites for additional Information .........................................................................................................63 2 About the Guide William Bleam, Donald McKinney, Mark Michalovic, and Ronald Tempest, TG Editors, created the teacher’s guide article material. [email protected] Susan Cooper prepared the national science education content, anticipation, and reading guides. [email protected] Terri Taylor, CM Administrative Editor, and Carl Heltzel, Editor, coordinated production and prepared the MS Word and PDF versions of the Guide. [email protected] David Olney created the puzzle. [email protected] NOTE: articles from past issues of ChemMatters can be accessed from a CD that is available from the American Chemical Society for $25. The CD contains all ChemMatters issues from 1983 to 2003. The 2006 ChemMatters Print Index can be purchased for $12 and covers all issues from 1983 to 2006. Purchase information can be found online at: http://chemistry.org/chemmatters/cd3.html 3 Student Questions Corn-the A’maiz’ing Grain 1. What is the meaning of “Frankenstein” in terms of science? 2. What is meant by “Franken-food”? 3. How are gene changes made in the DNA of plants? 4. What is meant by the term “pharming”? 5. What is the difference in composition between corn syrup and
Recommended publications
  • Thermometer 1 Thermometer
    Thermometer 1 Thermometer Developed during the 16th and 17th centuries, a thermometer (from the Greek θερμός (thermo) meaning "warm" and meter, "to measure") is a device that measures temperature or temperature gradient using a variety of different principles.[1] A thermometer has two important elements: the temperature sensor (e.g. the bulb on a mercury thermometer) in which some physical change occurs with temperature, plus some means of converting this physical change into a numerical value (e.g. the scale on a mercury thermometer). A clinical mercury-in-glass thermometer There are many types of thermometer and many uses for thermometers, as detailed below in sections of this article. Temperature While an individual thermometer is able to measure degrees of hotness, the readings on two thermometers cannot be compared unless they conform to an agreed scale. There is today an absolute thermodynamic temperature scale. Internationally agreed temperature scales are designed to approximate this closely, based on fixed points and interpolating thermometers. The most recent official temperature scale is the International Temperature Scale of 1990. It extends from 0.65 K (−272.5 °C; −458.5 °F) to approximately 1358 K (1085 °C; 1985 °F). Thermometer Thermometer 2 Development Various authors have credited the invention of the thermometer to Cornelius Drebbel, Robert Fludd, Galileo Galilei or Santorio Santorio. The thermometer was not a single invention, however, but a development. Philo of Byzantium and Hero of Alexandria knew of the principle that certain substances, notably air, expand and contract and described a demonstration in which a closed tube partially filled with air had its end in a container of water.[2] The expansion and contraction of the air caused the position of the water/air interface to move along the tube.
    [Show full text]
  • Chapter1.Pdf
    Chapter 1 -- Taking the Temperature of the Planet Peter deMenocal “The heat is on” - Glenn Frey 31 December, 1768: “No one can recall such a mild Autumn: the ground is as green as in the Spring, and today I have picked sufficient young nettles, dandelions, and other herbs to cook green cabbage tomorrow, which is New Year’s day.” Colorful mixes of meteorology and domestic concerns are typical of weather diaries kept by diligent observers for centuries. This example, from the Stockholm Observatory in Sweden, is not unusual, but it does pose prob- lems for those interested in climate change. For instance, exactly how mild was that autumn and how might it compare to autumn in 2007? To answer those questions and others like them, these qualitative descriptions are not sufficient—quantitative measures are required. Galileo Galilei developed the first thermomete in the late 1500s. The “thermoscope”, as beautiful as it was imprecise, was an elegant liquid-filled glass cylinder hosting several colorful, sealed glass bulbs that rose and sank with changes in temperature as their density relative to the liquid changed. More accurate measurements became available two centuries later, when German physicist Daniel Fahrenheit developed the sealed mercury thermometer in 1714 and the temperature scale that bears his name. As with many scientific advances, this new way of reducing nature to numbers lead to a new way of viewing the climate. No longer was the difference between one year and another simply a qualitative change – warmer, cooler, wetter – but a difference that could be reliably quantified. These records gave rise to the statistics of weather and eventually to the possibility of detecting subtle changes in climate.
    [Show full text]
  • Fall 2015 Vol 17 No 3 Mea-Mft.Org MEA-MFT a Publication for Members of MEA-MFT
    Trouble in Dawson 4 State employees Apply now for Amazing Member pay it forward 5 Karen Cox Grants 7 Josh Racki 12 Fall 2015 Vol 17 No 3 mea-mft.org MEA-MFT A publication for members of MEA-MFT Pushing back the classroom walls 2016 Montana Teacher of the Year Jessica Anderson Great teaching has a domino ef- fect. So it’s appropriate that Jessica Anderson showed up for school the day before Halloween dressed as a domino. Anderson has no objection to fun and games in the classroom. In fact, she uses games extensively to teach science concepts. “Our entire classroom is a game,” she said. Her students love it — to the point of not wanting to leave sometimes when class is over. “Students who typically struggle in school frequently excel under Jessica’s leadership,” says her school principal, Kerry Glisson. Anderson’s innovation and non- stop energy recently earned her the Finalist Derek Strahn, Teacher of the Year Jessica Anderson, and inalist Shelly title of 2016 Montana Teacher of Stanton at the Teacher of the Year Celebration Oct. 15. All are MEA-MFT members. the Year. She teaches earth science, chemistry, and physics at Powell MEA-MFT scores inal victory County High School in Deer Lodge and oceanography through the in saving our retirement beneits Montana Digital Academy. GABA preserved for employees still working and those who are She says her inspiration to teach & retirees in TRS & PERS retired. It means the yearly cost-of- came from her grandmother, who This August, MEA-MFT won the living increase they were guaranteed taught in a one-room school on last round in its two-year legal battle when they were hired — called “guar- the North Dakota plains where she to save public employees’ and anteed annual beneit adjustment” cleaned the school, tended to the teachers’ retirement beneits.
    [Show full text]
  • Oil in Galileo Thermometer
    Page 1/11 Safety Data Sheet according to 1907/2006/EC (REACH), 1272/2008/EC (CLP), and GHS Printing date 26.06.2014 Revision: 26.06.2014 1 Identification of the substance/mixture and of the company/undertaking · 1.1 Product identifier · Trade name: Oil of Galileo Thermometer · CAS Number: 8008-20-6 · EC number: 232-366-4 · Index number: 649-404-00-4 · 1.2 Relevant identified uses of the substance or mixture and uses advised against No further relevant information available. · Application of the substance / the mixture Product Component · 1.3 Details of the supplier of the Safety Data Sheet · Manufacturer/Supplier: H-B Instrument – A Division of Bel-Art Products 102 West Seventh Avenue Trappe, PA 19426 USA Phone: (610) 489-5500 · 1.4 Emergency telephone number: ChemTel Inc. (800)255-3924, +1 (813)248-0585 2 Hazards identification · 2.1 Classification of the substance or mixture · Classification according to Regulation (EC) No 1272/2008 The following classifications are applicable only to the general GHS regulations and not the specific CLP regulation: H227 - Combustible liquid. H227: Combustible Liquid. (General GHS and USA only) health hazard Carc. 2 H351 Suspected of causing cancer. Asp. Tox. 1 H304 May be fatal if swallowed and enters airways. · Classification according to Directive 67/548/EEC or Directive 1999/45/EC Xn; Harmful R65: Harmful: may cause lung damage if swallowed. · Information concerning particular hazards for human and environment: Not applicable. · 2.2 Label elements · Labelling according to Regulation (EC) No 1272/2008 The following classifications are applicable only to the general GHS regulations and not the specific CLP regulation: combustible liquid.
    [Show full text]
  • How Cold Is Cold: What Is Temperature?
    How_Cold_is_Cold:_What_is_Temperature? Hi. My name is Rick McMaster and I work at IBM in Austin, Texas. I'm the STEM advocate and known locally as Dr. Kold because of the work that I do with schools in central Texas. Think about this question. Was it cold today when you came to school? Was it hot? We'll come back to that shortly, but let's start with something that I think we would all agree is cold, ice. Here's a picture of a big piece of ice. An iceberg, in fact. Now take a few minutes to discuss how much of the iceberg you see above the water, and why this happens. Welcome back. The density of water is about 0.92 grams per cubic centimeter, and sea water about 1.025. If we divide the first by the second, you see that about 90% of the iceberg is below the surface, something for a ship to watch out for. Why did we start with density and not temperature? Density is something that's a much more common experience. If something floats in water, it's less dense than water. If it sinks, it's more dense. That can't be argued. Let's take a little more time to talk about water and ice because it will be important later. So why is ice less dense than water? The solid form of water forms hexagonal crystals with the Hydrogen atoms shown in white, forming bonds with neighboring Oxygen atoms in red. With the water molecules no longer able to move readily, the ice is less dense and the iceberg floats.
    [Show full text]
  • Weld County School District RE-1 Disbursement Detail Listing
    Weld County School District RE-1 Disbursement Detail Listing Bank Name: General Fund Operating Date Range: 05/01/2015 - 05/30/2015 Sort By: Check Bank Account: 4420500259 Voucher Range: - Dollar Limit: $0.00 Fiscal Year: 2014-2015 Print Employee Vendor Names Exclude Voided Checks Exclude Manual Checks Include Non Check Batches Check Number Date Voucher Payee Invoice Account Description Amount Bank Name: General Fund Operating Bank Account: 4420500259 83623 05/05/2015 1147 Mama Ruth's Pizza Shop Assist Supt Committe 10.654.00.2832.0580.000.0000 Assistant Supt. Committee $42.75 Check Total: $42.75 83624 05/12/2015 1148 4 Rivers Equipment 33 3303193 10.760.00.2630.0430.000.0000 Grounds Maint & Repairs $1,059.23 83624 05/12/2015 1148 4 Rivers Equipment 33 3303263 10.760.00.2630.0430.000.0000 Grounds Maint & Repairs ($94.47) Check Total: $964.76 83625 05/12/2015 1148 A&E Tire Inc. 127183-00 10.770.00.2742.0610.000.0000 Pool Vehicle Supplies $543.24 Check Total: $543.24 83626 05/12/2015 1148 AbleNet, Inc. CI1505020 10.331.00.1780.0610.000.3130 Battery device adapter AA $38.40 83626 05/12/2015 1148 AbleNet, Inc. CI1505020 10.331.00.1780.0610.000.3130 Pretty Poodle $49.00 83626 05/12/2015 1148 AbleNet, Inc. CI1505020 10.331.00.1780.0610.000.3130 Pudgy the Piglet $49.00 Check Total: $136.40 83627 05/12/2015 1148 Ace Hardware of Greeley 056427 10.331.00.2640.0610.000.0000 Supplies Maintenance $12.59 83627 05/12/2015 1148 Ace Hardware of Greeley 056515 10.331.00.2620.0614.000.0000 Maint.
    [Show full text]
  • Structural and Thermal Analysis on Composite
    Vol.2, No.1 ISSN Number (online): 2454-9614 Proceedings of International Conference on Recent Trends in Mechanical Engineering-2K15(NECICRTME-2K15), 20th – 21st November,2015 STRUCTURAL AND THERMAL ANALYSIS ON COMPOSITE CYLINDER 1 K.Swaroop Kumar, 2 K.Kiran Chand 1 M.Tech Student, Narasaraopeta Engineering College, JNTU Kakinada 2 Assistant Professor, Narasaraopeta Engineering College, JNTU Kakinda 1 [email protected] 3 [email protected] Abstract: Fiber reinforced composites due to their high 1.2 Cryogenics stiffness to weight ratio and strength to weight ratio are being considered for liquid nitrogen cylinders. Tests The branches of physics and engineering that involve have been shown that graphite/epoxy composites have the study of very low temperatures, how to produce tendency to micro crack at very low temperatures. In the them, and how materials behave at those temperatures. case of cylinders these micro cracks can act as passages for the cryogenic liquid to penetrate which could 1.3 Industrial applications ultimately lead to failure of the whole structure, hence it is very important to understand the fracture behavior of Liquefied gases, such as liquid nitrogen and liquid fibre composites at cryogenic temperatures before they helium, are used in many cryogenic applications. Liquid are used in cryogenic storage systems. nitrogen is the most commonly used element in cryogenics and is legally purchasable around the world. Earlier research are focused on the effect of Liquid helium is also commonly used and allows for the higher temperatures on the behavior of composites, very lowest attainable temperatures to be reached. little research is made to determine the low temperatures response of composites.
    [Show full text]
  • Let's Repair the Broken Galileo Thermometer
    c e p s Journal | Vol.8 | No1 | Year 2018 77 doi: 10.26529/cepsj.320 Let’s Repair the Broken Galileo Thermometer Marián Kireš1 • We have developed and verified laboratory work as guided inquiry for upper secondary level students, focusing on conceptual understand- ing of the physical principle that forms the basis of temperature meas- urement, and on improvement of selected skills. Conceptual pre-test questions initiate the students’ interest and help identify input miscon- ceptions. Using the method of interactive lecture demonstration, the students are introduced to the measurement principles of the Galileo thermometer. The students are then set the problem of how to repair a broken thermometer when tap water is used instead of ethanol. Since the density of water is greater than that of ethanol, the buoys must be adjusted by the students to achieve correct temperature measurement. The next steps of the activity have a hands-on orientation. The students work in pairs, guided by worksheet instructions. At the end of the activ- ity, they complete self-assessment rubrics focused on skill improvement and final conceptual understanding. The results of the conceptual pre- test questions and of the self-assessment rubrics from 461 participants are analysed and recommendations are made for teachers. Keywords: conceptual understanding, Galileo thermometer, guided inquiry 1 Pavol Jozef Šafárik University in Košice, Faculty of Science, Slovakia; [email protected]. 78 let’s repair the broken galileo thermometer Popravimo pokvarjen Galilejev termometer Marián Kireš • Razvili in evalvirali smo laboratorijsko vajo, vključujoč učenje z razisko- vanjem, za dijake, osredinjeno na konceptualno razumevanje fizikalne- ga principa, ki je osnova za merjenje temperature, in na izboljšanje iz- branih veščin.
    [Show full text]
  • Thermodynamic Temperature
    Thermodynamic temperature Thermodynamic temperature is the absolute measure 1 Overview of temperature and is one of the principal parameters of thermodynamics. Temperature is a measure of the random submicroscopic Thermodynamic temperature is defined by the third law motions and vibrations of the particle constituents of of thermodynamics in which the theoretically lowest tem- matter. These motions comprise the internal energy of perature is the null or zero point. At this point, absolute a substance. More specifically, the thermodynamic tem- zero, the particle constituents of matter have minimal perature of any bulk quantity of matter is the measure motion and can become no colder.[1][2] In the quantum- of the average kinetic energy per classical (i.e., non- mechanical description, matter at absolute zero is in its quantum) degree of freedom of its constituent particles. ground state, which is its state of lowest energy. Thermo- “Translational motions” are almost always in the classical dynamic temperature is often also called absolute tem- regime. Translational motions are ordinary, whole-body perature, for two reasons: one, proposed by Kelvin, that movements in three-dimensional space in which particles it does not depend on the properties of a particular mate- move about and exchange energy in collisions. Figure 1 rial; two that it refers to an absolute zero according to the below shows translational motion in gases; Figure 4 be- properties of the ideal gas. low shows translational motion in solids. Thermodynamic temperature’s null point, absolute zero, is the temperature The International System of Units specifies a particular at which the particle constituents of matter are as close as scale for thermodynamic temperature.
    [Show full text]
  • 5. Galileo Thermometer
    Ambient Weather WS-YG901 Galileo Thermometer and Glass Fluid Barometer Table of Contents 1. Introduction ..................................................................................................................................... 2 2. Preparation ...................................................................................................................................... 2 3. Care and Cleaning ........................................................................................................................... 2 4. Storm Glass Barometer ................................................................................................................... 2 4.1 How the storm glass works .................................................................................................... 2 4.2 Filling the storm glass ............................................................................................................ 3 4.3 Emptying the storm glass ....................................................................................................... 3 5. Galileo Thermometer ...................................................................................................................... 4 5.1 How the Galileo thermometer works ..................................................................................... 4 5.2 How to read the Galileo thermometer .................................................................................... 4 5.3 Galileo thermometer warnings ..............................................................................................
    [Show full text]
  • Chemical Engineering Thermodynamics
    CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY | 1 TABLE OF CONTENTS Symbol Dictionary ........................................................................................................................ 3 1. Measured Thermodynamic Properties and Other Basic Concepts .................................. 5 1.1 Preliminary Concepts – The Language of Thermodynamics ........................................................ 5 1.2 Measured Thermodynamic Properties .......................................................................................... 5 1.2.1 Volume .................................................................................................................................................... 5 1.2.2 Temperature ............................................................................................................................................. 5 1.2.3 Pressure .................................................................................................................................................... 6 1.3 Equilibrium ................................................................................................................................... 7 1.3.1 Fundamental Definitions .......................................................................................................................... 7 1.3.2 Independent and Dependent Thermodynamic Properties ........................................................................ 7 1.3.3 Phases .....................................................................................................................................................
    [Show full text]
  • Temperature and Ocean Temperature Are Often Included in a Weather Report! Air Temperature Is the Main Value Reported in Weather Reports
    Both air temperature and ocean temperature are often included in a weather report! Air temperature is the main value reported in weather reports. It gives us a good indication of how the day will feel. Does anyone know what the today’s temperature is? Before we get started exploring temperature, lets chat about the weather measuring devices and weather diaries we started in the last session… 1 Bring along a printed weather forecast for the day of the session from the Bureau of Meteorology. Compare to student forecasts! Discuss the weather between the last session and today with the students. Did they observe any rainfall? Were they able to measure it? Has it been hot or cold? Has it been windy? Has there been one prevailing wind direction, or many directions? Has the air pressure varied day to day? Has it varied morning to night? Discuss weather diary entries with students, comparing their recorded values for similar days / times. How similar were the readings from their devices? Were there differences based on time of day, and location of device? Have a discussion about how their devices performed. Would they make the devices differently next time, or place them somewhere else? Did anyone forecast the sessions weather for today? Were they correct? 2 We think of temperature as how warm or cold something is. But what is it really? Temperature is a measure of energy or heat. There are several ways to determine temperature. One way is by just using your senses. Objects with more energy will be warm or hot to the touch.
    [Show full text]