Synopsis of Biological Data on the Spottail Pinfish, Diplodus Holbrooki (Pisces: Sparidae)

Total Page:16

File Type:pdf, Size:1020Kb

Synopsis of Biological Data on the Spottail Pinfish, Diplodus Holbrooki (Pisces: Sparidae) NOAA Technical Report NMFS 19 Synopsis of Biological Data on the Spottail Pinfish, Diplodus holbrooki (Pisces: Sparidae) George H. Darcy January 1985 FAG Fisheries Synopsis No. 142 U.S. DEPARTMENT OF COMMERCE Malcolm Baldrige, Secretary National Oceanic and Atmospheric Administration John V. Byrne, Administrator National Marine Fisheries Service William G. Gordon, Assistant Administrator for Fisheries The National Marine Fisheries Service (NMFS) does not approve, recom­ mend or endorse any propriety product or proprietary material mentioned in this publication. No reference shall be madeto NMFS, or to this publica­ tion furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised pro­ duct to be used or purchased because of this NMFS publication. CONTENTS Introduction.. 1 1 Identity. .. 1 1.1 Nomenclature . I 1.11 Valid name...... .. .. ) 1.12 Objective synonymy. ......... .. .. ......... 1 1.2 Taxonomy. ..... .................... 1 1.21 Affinities ........................ ............. .. .. 1 1.22 Taxonomic status. ....................................................... 2 1.23 Subspecies ................................................ .. .. 2 1.24 Standard common names, vernacular names . 2 1.3 Morphology. ............................. .......... .. 2 1.31 External morphology. .. ........ 2 *1.32 Cytomorphology *1.33 Protein specificity 2 Distribution ................... 3 2.1 Totalarea .. .. 3 2.2 Differential distribution. ..... 3 2.21 Spawn, larvae, and juveniles . 3 2.22 Adults... 4 2.3 Determinants of distribution changes . 4 2.4 Hybridization. .. 4 3 Bionomics and life history. ............. 4 3.1 Reproduction. ..................... 4 3.11 Sexuality................... 4 3.12 Maturity................... 5 3.13 Mating . 5 3.14 Fertilization . 5 *3.15 Gonads 3.16 Spawning.... 5 3.17 Spawn....... .. 5 3.2 Preadult phase. ................. 5 3.21 Embryonic phase. .................. 5 3.22 Larvae and adolescent phase . 5 3.3 Adult phase. .......................................... 5 3.31 Longevity . 5 3.32 Hardiness... 5 3.33 Competitors..................... 5 3.34 Predators . 6 *3.35 Parasites, diseases, injuries, and abnormalities *3.36 Chemical composition 3.4 Nutrition and growth . 6 3.41 Feeding . 6 3.42 Food.............................................. ................... 6 3.43 Growth rate . 6 3.5 Behavior. .................................................................. .. .. 8 3.51 Migrations and local movements. ........................ 8 3.52 Schooling . 8 3.53 Responses to stimuli . 8 4 Population. ........................................................................... 8 4.1 Structure . 8 4.11 Sex ratio .................................................. 8 *4.12 Age composition 4.13 Size composition.......................................... 8 4.14 Subpopulations . 8 4.2 Abundance and density . 8 4.3 Natality and recruitment __ . 9 4.31 Reproduction rates . 9 4.32 Factors affecting reproduction. ..................................... 9 4.33 Recruitment . 9 *4.4 Mortality and morbidity *4.5 Dynamics of population 4.6 The population in the community and the ecosystem . 9 5 Exploitation. ........................................................ .. 10 5.1 Fishing equipment . 10 5.2 Fishing areas . 10 5.3 Fishing seasons . 10 5.4 Fishing operations and results . 10 iii 5.41 Effort and intensity 10 *5.42 Selectivity 5.43 Catches. 10 6 Protection and management 10 *7 Pond fish culture ... 10 Acknowledgments .. 10 Literature cited .... 10 *No information available. iv Synopsis of Biological Data on the Spottail Pinfish, Diplodus holbrooki (Pisces: Sparidae) GEORGE H. DARCY I ABSTRACT Information on the biology and fishery resources of the spottail pinfish, Diplodus holbrook;, is compiled, reviewed, and analyzed in the FAD species synopsis slyle. INTRODUCTION Diplodus caudill/Clcula. Jordan and Gilbert 1883 (young, not caudimacula of Poey) The spottail pinfish, Diplodus holbrooki, is a common, shallow­ Diplodus holbrookii. Bean 1891 water sparid fish occurring along the southern Atlantic and Gulf of Mexico coasts of the United States. Individuals are especially 1.2 Taxonomy common along the Carolinas and on the west coast of Florida. They are sometimes quite abundant on grassflats and may be 1.21 Affinities among the dominant fish species on natural and artificial reefs, man-made platforms, and jetties. Because of their abundance, Suprageneric spottail pinfish may be ecologically important as forage for larger carnivores; they are among the dominant herbivores in shallow­ Phylum Chordata water grassbeds. Their flesh is of excellent quality, and spottail Class Osteichthyes pinfish probably make up a significant portion of the catch of sub­ Superorder Acanthopterygii sistence fishermen through much of their range. There is no Order Perciformes known directed fishery. This paper summarizes information on Suborder Percoidei this species. Family Sparidae IDENTITY Generic 1.1 Nomenclature The genus Diplodus Rafinesque, Indice d'lttilogia Siciliana 54, 1810, is best represented in the eastern Atlantic Ocean (Jordan 1.11 Valid name and Fesler 1893), though at least three species occur in the western Atlantic (Randall and Vergara R. 1978). Type of the Diplodus holbrooki (Bean 1878) (Fig. I). Also appears as Diplodus genus is Sparus Clnnularis Gmelin (Jordan and Fesler 1893 J. holbrookii (Bean 1878), bearing the original patronym emenda­ Members of the genus are characterized by an ovate, compres­ tion of Bean (e.g., Randall and Vergara R. 1978). sed body with the back notably elevated; broad, strongly flattened, unnotched, incisiform jaw teeth at the front of the mouth; Spottail pinfish, Diplodus holbrooki (Bean 1878: 198), type molariform teeth in several rows; a large, dark blotch on the locality: Charleston, S.C. The name comes from the Greek diploos, caudal peduncle; short gill rakers; about 12 dorsal fin spines: and meaning double. and odonlos, meaning tooth, referring to the two the absence of a procumbent (forward-pointing) spine preceding types of teeth. Named after John Edwards Holbrook, naturalist the dorsal fin (Hildebrand and Schroeder 1928; Randall and and author of "Ichthyology of South Carolina" (Jordan and Fesler Vergara R. 1978). The skull resembles that ofArchosarflus, but the 1893). cavernous or honeycombed structure of the interorbital area is more prominent (Jordan and Fesler 1893). 1.12 Objective synonymy Specific The following synonymy is based on Jordon and Fesler (1893) and Hildebrand and Schroeder (1928): The following species diagnosis is based on Randall and Vergara R. (1978): Body oval, compressed, and very deep, the Sargus holbrookii Bean 1878 body depth contained about 2.2 times in standard length (SL); Diplodus holbrooki. Jordan and Gilbert 1882 snout pointed, lateral profile nearly straight; posterior nostril rounded; mouth moderately developed, maxilla barely reaching to anterior eye margin; both jaws anteriorly with 6 well developed 'Southeast Fisheries Center, National Marine Fisheries Service. NOAA. 75 incisiform teeth; 3 rows of lateral molariform teeth: 17-21 gill Virginia Beach Drive. Miami. FL 33149-1099. rakers on first arch; dorsal fin XII, 13-16, not preceded by a small Figure I.-Adult Diplodus holbrooki. (From Goode 1884, plate 132.) forward-directed spine; longest dorsal spine about 2.5 times in Charleston bream, pin-fish (Goode 1884); jimmy (Goode and Gill head length; anal fin with 13-15 soft rays; pectoral fins long, 1903); spot, pinfish (Jordan and Evermann 1923); spot-tailed pin­ reaching at least to first anal spine when appressed; lateral line fish, sailor's choice (Hildebrand and Schroeder 1928); spot-tail scales 50-61. Steel blue color on back, sides silvery, with a large pinfish (Reid 1954); and spot tail (Springer and Woodburn 1960). black spot anteriorly on caudal peduncle which nearly reaches lower peduncular margin; opercular membrane blackish. 1.3 Morphology Two other species of Diplodus occur in the western Atlantic Ocean-D. argenteus and D. bermudensis. Diplodus holbrooki dif­ 1.31 External morphology fers from D. argenteus (D. argenteus caudimacula of Randall and Vergara R. 1978) in having lower dorsal and anal fins, a shallower The following morphological description is based on Jordan body, fewer lateral lines scales (50-61 vs. 56-65), and a larger JnJ Fesler (1893), Hildebrand and Schroeder (1928), Miller and caudal peduncle spot (extending well below midline in D. Jorgenson (1973), Hoese and Moore (1977), and Randall and holbrooki, only slightly below in D. argenteus) (Randall and Vergara R. (1978). Vergara R. 1978). Diplodus bermudensis has even more lateral line Body elliptical, compressed, and deep (depth about 2.1-2.2 in scales (62-67) and is known only from Bermuda, where D. SL). Dorsal profile regularly rounded; snout pointed, with nearly holbrooki has not been reported (Randall and Vergara R. 1978). straight profile. Head 3.25-3.65 in SL. Eye rather small, 1.75 in preorbital distance, 1.50 in snout, 4.35-4.50 in head. Mouth 1.22 Taxonomic status moderate to large, almost horizontal; maxillary 3.35 in head and not quite reaching anterior margin of eye. Six well developed Diplodus holbrooki is a morphospecies. incisiform teeth at frollt of each jaw, inserted obliquely; 3 rows of molariform teeth laterally. Posterior nostril rounded.
Recommended publications
  • Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
    Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis
    [Show full text]
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Cobia Database Articles Final Revision 2.0, 2-1-2017
    Revision 2.0 (2/1/2017) University of Miami Article TITLE DESCRIPTION AUTHORS SOURCE YEAR TOPICS Number Habitat 1 Gasterosteus canadus Linné [Latin] [No Abstract Available - First known description of cobia morphology in Carolina habitat by D. Garden.] Linnaeus, C. Systema Naturæ, ed. 12, vol. 1, 491 1766 Wild (Atlantic/Pacific) Ichthyologie, vol. 10, Iconibus ex 2 Scomber niger Bloch [No Abstract Available - Description and alternative nomenclature of cobia.] Bloch, M. E. 1793 Wild (Atlantic/Pacific) illustratum. Berlin. p . 48 The Fisheries and Fishery Industries of the Under this head was to be carried on the study of the useful aquatic animals and plants of the country, as well as of seals, whales, tmtles, fishes, lobsters, crabs, oysters, clams, etc., sponges, and marine plants aml inorganic products of U.S. Commission on Fisheries, Washington, 3 United States. Section 1: Natural history of Goode, G.B. 1884 Wild (Atlantic/Pacific) the sea with reference to (A) geographical distribution, (B) size, (C) abundance, (D) migrations and movements, (E) food and rate of growth, (F) mode of reproduction, (G) economic value and uses. D.C., 895 p. useful aquatic animals Notes on the occurrence of a young crab- Proceedings of the U.S. National Museum 4 eater (Elecate canada), from the lower [No Abstract Available - A description of cobia in the lower Hudson Eiver.] Fisher, A.K. 1891 Wild (Atlantic/Pacific) 13, 195 Hudson Valley, New York The nomenclature of Rachicentron or Proceedings of the U.S. National Museum Habitat 5 Elacate, a genus of acanthopterygian The universally accepted name Elucate must unfortunately be supplanted by one entirely unknown to fame, overlooked by all naturalists, and found in no nomenclator.
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Faunistic Resources Used As Medicines by Artisanal Fishermen from Siribinha Beach, State of Bahia, Brazil'
    Journal of Ethnobiology 20(1): 93-109 Summer 2000 FAUNISTIC RESOURCES USED AS MEDICINES BY ARTISANAL FISHERMEN FROM SIRIBINHA BEACH, STATE OF BAHIA, BRAZIL' ERALOO M. COSTA-NETOAND jost GERALOO w. MARQUES Departamento de CiCllcias BioJ6gicas Universidade Estadual de Feim de Santana, Km 3, 8R 116, Call/pus Ulliversitririo, CEP 44031-460, Feirn de Salltalla, Bahia, Brasil ABSTRACT.- Artisanal fishermen from Siribinha Beach in the State of Bahia, Northeastern Brazil, have been using several marine/estuarine animal resources as folk medicines. Wf.> hilve recorded the employment of mollusks, crustaceans, echinoderms, fishes, reptiles, and cetace<lns, and noted a high predominance of fishes over other aquatic animals. Asthma, bronchitis, stroke, and wounds arc the most usual illnesses treated by animal-based medicines. These results corroborate Marques' zoothcrapeutic universality hypothesis. According to him, all human cultures that prcscnt a developed medical system do use animals as medicines. Further studies are requested in order to estimate the existence of bioactive compounds of ph<lrmacological value in these bioresources. Key words: Fishennen, marine resources, medicine, Bahia, Brazil RESUMO.-Pescadores artcsanais da Praia de Siribinha, estado da Bahia, Nordeste do Brasil, utilizam varios recursos animais marinhos/estuarinos como remedios populares. Registramos 0 e.mprego de moluscos, crustaceos, equinoderrnos, peixes, repteis e cetaceos. Observou-se uma alta predominilncia de peixes sobre outros animais aquaticos. Asma, bronquite, derrame e ferimentos sao as afecr;6es mais usualmente tratadas com remedios Ii. base de animais. Estes resultados corroboram a hip6tese da universalidadc zooterapeutica de Marqucs. De <lcordo com cle, toda cultura humana quc .1preSe.nta urn sistema medico desenvolvido utiliza-se de animais como remlidios, Estudos posteriores sao neccssarios a fim de avaliar a existcncia de compostos bioativos de valor farmacol6gico nesses biorrecursos.
    [Show full text]
  • Final Report Characterization of Commercial Reef Fish Catch And
    SEDAR 15-RD07 Final Report Characterization of commercial reef fish catch and bycatch off the southeast coast of the United States. CRP Grant No. NA03NMF4540416 Funding amount: $100,000 Federal $4,130 Match Patrick J. Harris and Jessica Stephen Marine Resources Research Institute South Carolina Department of Natural Resources 217 Fort Johnson Road P.O. Box 12559 Charleston, SC 29412 I. Characterization of commercial reef fish catch and bycatch off the southeast coast of the United States. Patrick J. Harris, South Carolina Department of Natural Resources, Charleston, SC 29412. Grant Number: NA03NMF4540416 July 2005. II. Abstract There is clearly a need to characterize the entire catch of commercial fishermen and compare differences in abundance and species diversity to what is caught in fishery-independent gear. As we move towards a multi-species management approach, these types of data are essential. In addition, estimates of release mortality are needed for stock assessments but currently this is not being measured for fishery-dependent data. Many reef fishes captured at depths greater than ~ 20 m often have problems submerging when released by commercial fishermen. The goal of the research project was to characterize the entire (retained and discarded) catch of reef fishes from a selected commercial fisherman including total catch composition and disposition of fishes that were released. During April- November 2004, Captain Mark Marhefka dedicated one fishing trip (5-7 day duration) each month to the collection of fishery-dependent data. Date, location and collection number were recorded for each site fished by Captain Marhefka using a PDA equipped with a GPS.
    [Show full text]
  • Applied Sciences
    applied sciences Article Changing Isotopic Food Webs of Two Economically Important Fish in Mediterranean Coastal Lakes with Different Trophic Status Simona Sporta Caputi 1, Giulio Careddu 1 , Edoardo Calizza 1,2,*, Federico Fiorentino 1, Deborah Maccapan 1, Loreto Rossi 1,2 and Maria Letizia Costantini 1,2 1 Department of Environmental Biology, Sapienza University of Rome, via dei Sardi 70, 00185 Rome, Italy; [email protected] (S.S.C.); [email protected] (G.C.); federico.fi[email protected] (F.F.); [email protected] (D.M.); [email protected] (L.R.); [email protected] (M.L.C.) 2 CoNISMa, piazzale Flaminio 9, 00196 Rome, Italy * Correspondence: [email protected] Received: 22 February 2020; Accepted: 13 April 2020; Published: 16 April 2020 Abstract: Transitional waters are highly productive ecosystems, providing essential goods and services to the biosphere and human population. Human influence in coastal areas exposes these ecosystems to continuous internal and external disturbance. Nitrogen-loads can affect the composition of the resident community and the trophic relationships between and within species, including fish. Based on carbon (δ13C) and nitrogen (δ15N) stable isotope analyses of individuals, we explored the feeding behaviour of two ecologically and economically important omnivorous fish, the eel Anguilla anguilla and the seabream Diplodus annularis, in three neighbouring lakes characterised by different trophic conditions. We found that A. anguilla showed greater generalism in the eutrophic lake due to the increased contribution of basal resources and invertebrates to its diet. By contrast, the diet of D. annularis, which was mainly based on invertebrate species, became more specialised, focusing especially on polychaetes.
    [Show full text]
  • St. Kitts Final Report
    ReefFix: An Integrated Coastal Zone Management (ICZM) Ecosystem Services Valuation and Capacity Building Project for the Caribbean ST. KITTS AND NEVIS FIRST DRAFT REPORT JUNE 2013 PREPARED BY PATRICK I. WILLIAMS CONSULTANT CLEVERLY HILL SANDY POINT ST. KITTS PHONE: 1 (869) 765-3988 E-MAIL: [email protected] 1 2 TABLE OF CONTENTS Page No. Table of Contents 3 List of Figures 6 List of Tables 6 Glossary of Terms 7 Acronyms 10 Executive Summary 12 Part 1: Situational analysis 15 1.1 Introduction 15 1.2 Physical attributes 16 1.2.1 Location 16 1.2.2 Area 16 1.2.3 Physical landscape 16 1.2.4 Coastal zone management 17 1.2.5 Vulnerability of coastal transportation system 19 1.2.6 Climate 19 1.3 Socio-economic context 20 1.3.1 Population 20 1.3.2 General economy 20 1.3.3 Poverty 22 1.4 Policy frameworks of relevance to marine resource protection and management in St. Kitts and Nevis 23 1.4.1 National Environmental Action Plan (NEAP) 23 1.4.2 National Physical Development Plan (2006) 23 1.4.3 National Environmental Management Strategy (NEMS) 23 1.4.4 National Biodiversity Strategy and Action Plan (NABSAP) 26 1.4.5 Medium Term Economic Strategy Paper (MTESP) 26 1.5 Legislative instruments of relevance to marine protection and management in St. Kitts and Nevis 27 1.5.1 Development Control and Planning Act (DCPA), 2000 27 1.5.2 National Conservation and Environmental Protection Act (NCEPA), 1987 27 1.5.3 Public Health Act (1969) 28 1.5.4 Solid Waste Management Corporation Act (1996) 29 1.5.5 Water Courses and Water Works Ordinance (Cap.
    [Show full text]
  • Amorphometric and Meristic Study of the Halfbeak, Hyporhamphus
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1993 Amorphometric and Meristic Study of the Halfbeak, Hyporhamphus unifasciatus (Teleostei: Hemiramphidae) from the Western Atlantic, with the Description of a New Species Heidi M. Banford College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Oceanography Commons Recommended Citation Banford, Heidi M., "Amorphometric and Meristic Study of the Halfbeak, Hyporhamphus unifasciatus (Teleostei: Hemiramphidae) from the Western Atlantic, with the Description of a New Species" (1993). Dissertations, Theses, and Masters Projects. Paper 1539617658. https://dx.doi.org/doi:10.25773/v5-pbsc-sy52 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. A MORPHOMETRIC AND MERISTIC STUDY OF THE HALFBEAK, HYPORHAMPHUS UNIFASCIATUS (TELEOSTEI: HEMIRAMPHIDAE) FROM THE WESTERN ATLANTIC, WITH THE DESCRIPTION OF A NEW SPECIES A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts by Heidi M. Banford 1993 This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Heidi M. Banford Approved, July 1993 Jojm A. Musick,' Ph.D. flmittee Chairman/Advisor ~ t M . ^ Herbert M. Austin, Ph.D.
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Growth and Mortality of Lagodon Rhomboides (Pisces: Sparidae)
    GROWTH AND MORTALITY OF LAGODON RHOMBOIDES (PISCES: SPARIDAE) IN A TROPICAL COASTAL LAGOON IN NORTHWESTERN YUCATAN, MEXICO CRECIMIENTO Y MORTALIDAD DE LAGODON RHOMBOIDES (PISCES: SPARIDAE) EN UNA LAGUNA TROPICAL COSTERA EN EL NOROESTE DE YUCATÁN, MÉXICO José Luis Bonilla-Gómez1*, Jorge A. López-Rocha2, Maribel Badillo Alemán2, Juani Tzeek Tuz2 and Xavier Chiappa-Carrara2 ABSTRACT Growth and mortality were estimated for the Lagodon rhomboides pinfish inhabiting La Carbonera, a tropical coastal lagoon on the northwestern coast of the Yucatan Peninsula, Mexico. A total of 448 juvenile and adult individuals were collected monthly between April 2009 and May 2010. The length-weight relationship was calculated and the monthly variation in the condition factor was analyzed. Growth was estimated through the von Bertalanffy growth equation using a length frequency analysis. In addition, mortality was estimated and analyzed. Results showed that fish caught were between 2.1 and 20.0 cm long with an average length of 9.42 cm. The length-weight relationship showed isometric growth. The von Bertalanffy growth model parameters -1 were: L∞ = 21.0 cm, W∞ = 163.46 g, k = 1.1 year and t0 = - 0.158 years. Instantaneous mortality rates were 2.11 and 2.61 year-1 as estimated by the method used. According to the results, growth estimates of L. rhomboi- des along the northwestern coast of Yucatan are higher than those found in the population studied in Florida, suggesting a strong influence of environmental conditions in the growth pattern of this species. This study provides the first growth and mortality estimates forL. rhomboides in the Yucatan Peninsula, which is relevant for the proper implementation of conservation measures for this species.
    [Show full text]