Geosci. Model Dev., 13, 6051–6075, 2020 https://doi.org/10.5194/gmd-13-6051-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. TITAM (v1.0): the Time-Independent Tracking Algorithm for Medicanes Enrique Pravia-Sarabia1, Juan José Gómez-Navarro1, Pedro Jiménez-Guerrero1,2, and Juan Pedro Montávez1 1Physics of the Earth, Regional Campus of International Excellence (CEIR) “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain 2Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain Correspondence: Juan Pedro Montávez (
[email protected]) Received: 18 May 2020 – Discussion started: 24 June 2020 Revised: 9 October 2020 – Accepted: 13 October 2020 – Published: 2 December 2020 Abstract. This work aims at presenting TITAM, a time- cluding preprocessing and post-processing tools, is available independent tracking algorithm specifically suited for med- as free software extensively documented and prepared for its icanes. In the last decades, the study of medicanes has been deployment. As a final remark, this algorithm sheds some repeatedly addressed given their potential to damage coastal light on medicane understanding regarding medicane struc- zones. Their hazardous associated meteorological conditions ture, warm-core nature, and the existence of tilting. have converted them to a major threat. Even though medi- cane similarities to tropical cyclones have been widely stud- ied in terms of genesis mechanisms and structure, the fact that the former appear in baroclinic environments, as well 1 Introduction as the limited extension of the Mediterranean basin, makes them prone to maintaining their warm-cored and symmetric Cyclones can be broadly classified in terms of their ther- structure for short time periods.