Article Is Available On- 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hurricane Outer Rainband Mesovortices
Presented at the 24th Conference on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, May 31 2000 EXAMINING THE PRE-LANDFALL ENVIRONMENT OF MESOVORTICES WITHIN A HURRICANE BONNIE (1998) OUTER RAINBAND 1 2 2 1 Scott M. Spratt , Frank D. Marks , Peter P. Dodge , and David W. Sharp 1 NOAA/National Weather Service Forecast Office, Melbourne, FL 2 NOAA/AOML Hurricane Research Division, Miami, FL 1. INTRODUCTION Tropical Cyclone (TC) tornado environments have been studied for many decades through composite analyses of proximity soundings (e.g. Novlan and Gray 1974; McCaul 1986). More recently, airborne and ground-based Doppler radar investigations of TC rainband-embedded mesocyclones have advanced the understanding of tornadic cell lifecycles (Black and Marks 1991; Spratt et al. 1997). This paper will document the first known dropwindsonde deployments immediately adjacent to a family of TC outer rainband mesocyclones, and will examine the thermodynamic and wind profiles retrieved from the marine environment. A companion paper (Dodge et al. 2000) discusses dual-Doppler analyses of these mesovortices. On 26 August 1998, TC Bonnie made landfall as a category two hurricane along the North Carolina coast. Prior to landfall, two National Oceanographic and Atmospheric Administration (NOAA) Hurricane Research Division (HRD) aircraft conducted surveillance missions offshore the Carolina coast. While performing these missions near altitudes of 3.5 and 2.1 km, both aircraft were required to deviate around intense cells within a dominant outer rainband, 165 to 195 km northeast of the TC center. On-board radars detected apparent mini-supercell signatures associated with several of the convective cells along the band. -
A Long-Lasting Vortex Rossby Wave–Induced Rainband of Typhoon Longwang (2005)
A Long-Lasting Vortex Rossby Wave–Induced Rainband of Typhoon Longwang (2005) YANLUAN LIN, YUANLONG LI, QINGSHAN LI, MINYAN CHEN, FANGHUA XU, YUQING WANG, AND BIN HUANG n 2 October 2005, a record-breaking rainfall event Tsai 2013). As Typhoon Longwang approached the with 152 mm of rainfall in an hour occurred as coast of Fujian Province at 0800 UTC, one type of this OTyphoon Longwang approached Fujian Province, transient rainband in the northeast sector started to China. The severe rainfall was unexpected and signifi- weaken and dissipate (Fig. 1b). At the same time, the cantly underpredicted by the local weather forecasters eyewall underwent an asymmetry transformation and caused a total of 96 deaths. Because of the severe accompanied by a bended convection pattern in the damage over Taiwan and mainland China, the name north (Fig. 1b). The bended convection transformed of Longwang, which means a dragon in charge of into a strong convective band along the eyewall to the rainfall in Chinese, was removed from the name list north and moved outward relative to the storm center for future typhoons. (Fig. 1c). The convective band continued to intensify with a sharp inner edge (Fig. 1d). An hour later, the EVOLUTION AND BASIC FEATURES OF convective band achieved its maximum intensity with THE RAINBAND. The formation and evolution a large area of stratiform precipitation outward and of the rainband associated with the rainfall event was downstream (Fig. 1e). At this time, cloud brightness captured by the radar mosaic produced by the Central temperatures as low as −80°C were measured by a Weather Bureau (CWB) of Taiwan (Fig. -
Department of Atmospheric and Environmental Sciences 2013-14
August 22, 2013 Department of Atmospheric and Environmental Sciences 2013-14 Incoming Graduate Students Back (L-R): Chao-Yuan Yang, Hannah Huelsing, Casey Peirano, Chu-Chun Huang, Yang-Yang Song, Adrian Santiago and Ben Moore Front (L-R): Geng Xia, Joshua Alland, Matt Vaughan, Eric Adamchick, Jeremy Berman, Ted Letcher and Michael Fischer Missing from photo: Chris Selca & Paul Slaski July 29, 2013 National Geographic Daily News Why Predicting Sea Ice Cover Is So Difficult It's hard to pinpoint when the Arctic will be sea ice free in the summer. Meltwater streams from ice near Svalbard, Norway. - Photograph by Ralph Lee Hopkins, National Geographic Jane J. Lee National Geographic Published July 16, 2013 Predicting Mother Nature is never an exact science. Weather forecasters can get it wrong, leaving people dressed for a rainy day high and dry. And the further out researchers try to predict things like air temperature or sea ice cover, the more uncertainty there is. But knowing how Earth's climate will react to natural and human-induced changes is important for governments and industry. (Related: "As Arctic Ice Melts, Rush Is on for Shipping Lanes, More.") Perhaps nowhere are the stakes as high as in the Arctic. The mineral, gas, and biological bounties are powerful economic attractions, drawing countries into a modern-age gold rush fueled by disappearing sea ice. (Related: "Russia Plants Underwater Flag, Claims Arctic Seafloor.") Predicting when the Arctic will be sea ice free in the summer months has occupied researchers for years. Estimates under high greenhouse gas emissions range from the year 2011 to 2098. -
1 Vertical Structure of Tropical Cyclone Rainbands As Seen by The
Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar Deanna A. Hence and Robert A. Houze, Jr. University of Washington, Seattle, Washington Submitted to Journal of Atmospheric Sciences November 2011 Corresponding author address: Deanna Hence, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195 E-mail: [email protected] 1 ABSTRACT 1 Ten years of data from the Tropical Rainfall Measurement Mission satellite’s Precipitation 2 Radar (TRMM PR) show the vertical structure of tropical cyclone rainbands. Radar-echo 3 statistics show that rainbands have a two-layered structure, with distinct modes separated by the 4 melting layer. The ice layer is a combination of particles imported from the eyewall and ice left 5 aloft as convective cells collapse. This layering is most pronounced in the inner region of the 6 storm, and the layering is enhanced by storm strength. The inner-region rainbands are vertically 7 confined by outflow from the eyewall but nevertheless are a combination of strong embedded 8 convective cells and robust stratiform precipitation, both of which become more pronounced in 9 stronger cyclones. 10 Changes in rainband coverage, vertical structure, and the amount of active convection 11 indicate a change in the nature of rainbands between the regions inward and outward of a radius 12 of ~200 km. Beyond this radius, rainbands consist of more sparsely distributed precipitation that 13 is more convective in nature than that of the inner-region rainbands, and the outer-region 14 rainband structures are relatively insensitive to changes in storm intensity. -
Influence of Sea Salt Aerosols on the Development of Mediterranean
Atmos. Chem. Phys., 21, 13353–13368, 2021 https://doi.org/10.5194/acp-21-13353-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones Enrique Pravia-Sarabia1, Juan José Gómez-Navarro1, Pedro Jiménez-Guerrero1,2, and Juan Pedro Montávez1 1Physics of the Earth, Regional Campus of International Excellence (CEIR) “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain 2Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain Correspondence: Juan Pedro Montávez ([email protected]) Received: 23 December 2020 – Discussion started: 11 February 2021 Revised: 26 July 2021 – Accepted: 16 August 2021 – Published: 9 September 2021 Abstract. Medicanes are mesoscale tropical-like cyclones 1 Introduction that develop in the Mediterranean basin and represent a great hazard for the coastal population. The skill to accurately simulate them is of utmost importance to prevent econom- Mediterranean tropical-like cyclones, also known as medi- ical and personal damage. Medicanes are fueled by the la- canes (from mediterranean hurricanes), are mesoscale per- tent heat released in the condensation process associated turbations that exhibit tropical characteristics, such as an with convective activity, which is regulated by the pres- eye-like feature and warm core. These storms are character- ence and activation of cloud condensation nuclei, mainly ized by high wind speeds and vertically aligned geopoten- originating from sea salt aerosols (SSAs) for marine envi- tial height perturbations along different pressure levels. Just ronments. Henceforth, the purpose of this contribution is like regular tropical cyclones, medicanes represent a hazard twofold: assessing the effects of an interactive calculation of for the population of coastal areas. -
Characteristics of Supercells in the Rainband of Numerically Simulated Cyclone Sidr
SOLA, 2010, Vol. 6A, 025−028, doi:10.2151/sola.6A-007 25 Characteristics of Supercells in the Rainband of Numerically Simulated Cyclone Sidr Nasreen Akter1 and Kazuhisa Tsuboki1, 2 1Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan 2Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan (Figs. 1b and 1c). The cell indicated in Fig. 1b is ~116 km away Abstract from the radar, and its local altitude is ~1 km. Also, no sounding data are available. The observed data are not sufficient for inves- Cyclone Sidr had an intense rainband east of the cyclone tigation of the detailed structure and intensity of the convective center. The rainband exhibited two strong convective lines (band cells along the band. axes) composed of convective cells. To study the characteristics of Therefore, the present study aims to clarify the characteristics the convective cells, a simulation was performed at 1-km resolu- of the convective cells in the rainband of Cyclone Sidr over the tion by using a cloud-resolving model. In both band axes, some sea and the environmental factors affecting cell development. For cells showed the characteristic structure of a supercell. Supercells this purpose, a high-resolution simulation was performed using within the outer axis had stronger updraft, more intense precipita- the Cloud-Resolving Storm Simulator (CReSS) model (Tsuboki tion, and a longer lifetime than those of the inner axis. The values and Sakakibara 2007). of the CAPE and helicity are different in the strong vertical shear environment of the inner and outer axes. A large moisture flux was present throughout the troposphere on the east side of the outer 2. -
The Precipitation Structure of the Mediterranean Tropical-Like Cyclone Numa: Analysis of GPM Observations and Numerical Weather Prediction Model Simulations
remote sensing Article The Precipitation Structure of the Mediterranean Tropical-Like Cyclone Numa: Analysis of GPM Observations and Numerical Weather Prediction Model Simulations Anna Cinzia Marra 1, Stefano Federico 1 , Mario Montopoli 1 , Elenio Avolio 2 , Luca Baldini 1 , Daniele Casella 1, Leo Pio D’Adderio 1, Stefano Dietrich 1 , Paolo Sanò 1 , Rosa Claudia Torcasio 1 and Giulia Panegrossi 1,* 1 Institute of Atmospheric Sciences and Climate, National Research Council (ISAC/CNR), 00133 Rome, Italy 2 Institute of Atmospheric Sciences and Climate, National Research Council (ISAC/CNR), 88046 Lamezia Terme, Italy * Correspondence: [email protected]; Tel.: +39-06-4993-4274 Received: 30 May 2019; Accepted: 11 July 2019; Published: 17 July 2019 Abstract: This study shows how satellite-based passive and active microwave (MW) sensors can be used in conjunction with high-resolution Numerical Weather Prediction (NWP) simulations to provide insights of the precipitation structure of the tropical-like cyclone (TLC) Numa, which occurred on 15–19 November 2017. The goal of the paper is to characterize and monitor the precipitation at the different stages of its evolution from development to TLC phase, throughout the storm transition over the Mediterranean Sea. Observations by the NASA/JAXA Global Precipitation Measurement Core Observatory (GPM-CO) and by the GPM constellation of MW radiometers are used, in conjunction with the Regional Atmospheric Modeling System (RAMS) simulations. The GPM-CO measurements are used to analyze the passive MW radiometric response to the microphysical structure of the storm, while the comparison between successive MW radiometer overpasses shows the evolution of Numa precipitation structure from its early development stage on the Ionian Sea into its TLC phase, as it persists over southern coast of Italy (Apulia region) for several hours. -
A Technique to Determine the Radius of Maximum Wind of a Tropical Cyclone
OCTOBER 2008 LAJOIEANDWALSH 1007 A Technique to Determine the Radius of Maximum Wind of a Tropical Cyclone FRANCE LAJOIE AND KEVIN WALSH School of Earth Sciences, University of Melbourne, Parkville, Victoria, Australia (Manuscript received 2 October 2007, in final form 22 January 2008) ABSTRACT A simple technique is developed that enables the radius of maximum wind of a tropical cyclone to be estimated from satellite cloud data. It is based on the characteristic cloud and wind structure of the eyewall of a tropical cyclone, after the method developed by Jorgensen more than two decades ago. The radius of maximum wind is shown to be partly dependent on the radius of the eye and partly on the distance from the center to the top of the most developed cumulonimbus nearest to the cyclone center. The technique proposed here involves the analysis of high-resolution IR and microwave satellite imagery to determine these two parameters. To test the technique, the derived radius of maximum wind was compared with high-resolution wind analyses compiled by the U.S. National Hurricane Center and the Atlantic Oceano- graphic and Meteorological Laboratory. The mean difference between the calculated radius of maximum wind and that determined from observations is 2.8 km. Of the 45 cases considered, the difference in 50% of the cases was Յ2 km, for 33% it was between 3 and 4 km, and for 17% it was Ն5 km, with only two large differences of 8.7 and 10 km. 1. Introduction Another sensor on board a polar-orbiting satellite that can produce high-resolution surface wind fields r To determine m, the radius of maximum wind for a over the ocean is the Wind Field Synthetic Aperture tropical cyclone, one needs to analyze the strong sur- Radar (WiSAR). -
P9.6 Radar Observations of a Tornadic Severe Frontal Rainband
P9.6 RADAR OBSERVATIONS OF A TORNADIC SEVERE FRONTAL RAINBAND Jenni Rauhala* and Ari-Juhani Punkka Finnish Meteorological Institute, Helsinki, Finland 1. INTRODUCTION Although a warning for thunderstorm wind gusts was issued well before the onset of the event, the On the afternoon of 26 August 2005, severe magnitude of the damage was not anticipated by FMI convective storms caused vast wind damage in forecasters. western Finland: 382 wind damage or flood reports A closer look into radar reflectivity and velocity and 9 tornado cases (Fig. 1). Two rainbands patterns indicated small scale bowing segments in the developed over western Finland: while, the pre-frontal reflectivity fields co-located with mesovortices, similar rainband caused minor flooding, almost all of the to those shown in previous studies (e.g. Weisman and observed severe weather (Fig. 1) occurred along the Trapp 2003) to be capable of producing both straight- second rainband associated with a cold front. line wind damage and tornadoes. The storm environment, with significant low level vertical wind shear, had likely influenced the mesovortex formation. Fortunately, some of these mesovortices occurred near a polarimetric radar, which offered insight into their small scale precipitation structures. 2. DATA The case occurred partly over the Helsinki Testbed mesoscale observation network area (Saltikoff et al. 2005) during the August 2005 campaign period. The radar analysis was based on data from two 5.32 cm Doppler radars of the FMI and the polarimetric radar of the University of Helsinki. The lowest elevations were not used for velocity analysis because of velocity folding. Complete volume scans from FMI radars and the Kumpula radar were available for 5-minute and 10-minute intervals, respectively. -
Performing Spatial Analysis on Tropical Cyclone Rainband Structures After
A spatial analysis of Hurricane Katrina’s outer rainbands prior to landfall in Louisiana BCS-1053864 Corene J. Matyas, Jingyin Tang, Ian Comstock, Stephanie E. Zick Department of Geography, University of Florida Introduction Results: Rain Event Timing The rain fields of tropical cyclones (TCs) can affect people hours prior to The hour of issuance for a TC warning conveys the anticipated landfall, particularly in the case of large hurricanes such as Katrina (2005). Breakpoint Start Day Dist. to Avg. 6 hr Max. 6 Hour Center (km) Rain hr Rain window of time remaining until gale-force winds arrive, yet TC Preparedness actions such as securing outdoor property and evacuating Morgan City, LA 2905 255 3.30 5.02 rainfall lacks a formal definition. We identify rainfall onset at are hindered when rainfall commences. This study focuses on the outer Grand Isle, LA 2818 350 5.04 14.99 coastal locations for 43 landfalling TCs 2002-2012 and find that the rainbands associated with Hurricane Katrina (2005)’s Louisiana and Mouth Miss. River 2818 320 3.14 8.85 Lake Maurepas, LA 2905 280 5.38 9.14 average rainfall onset occurs 12 h prior to landfall when the TC is Mississippi landfalls. Estimating the time when rain begins along the Lake Ponchartrain 2821 400 2.49 5.26 250-300 km from the breakpoints (Fig. 2). Katrina is large (ROCI coastline allows a distance and time to be calculated relative to the arrival Mouth Pearl River 2822 375 1.98 3.14 555 – 650 km), which is in the 90th percentile for the Atlantic basin of the storm’s center. -
Large-Scale Dynamics of the Meiyu-Baiu Rainband: Environmental Forcing by the Westerly Jet*
1JANUARY 2010 SAMPEANDXIE 113 Large-Scale Dynamics of the Meiyu-Baiu Rainband: Environmental Forcing by the Westerly Jet* TAKEAKI SAMPE AND SHANG-PING XIE1 International Pacific Research Center, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii (Manuscript received 10 March 2009, in final form 3 July 2009) ABSTRACT Meiyu-baiu is the major rainy season from central China to Japan brought by a zonally elongated rainband from June to mid-July. Large-scale characteristics and environmental forcing of this important phenomenon are investigated based on a reanalysis dataset. The meiyu-baiu rainband is accompanied by a trough of sea level pressure, horizontal shears, and sharp moisture gradients near the surface, a westerly jet tilted northward with height, and large northeastward moisture transport from the south. The analysis here reveals the westerly jet as an important culprit for meiyu-baiu. Along the rainband, mean ascending motion corresponds well with a band of warm horizontal temperature advection in the mid- troposphere throughout summer. This adiabatic induction of upward motion originates from the advection of warm air by the westerlies from the eastern flank of the Tibetan Plateau. The ascending motion both induces convection and is enhanced by the resultant condensational heating. The westerly jet anchors the meiyu-baiu rainband also by steering transient eddies, creating periods conducive to convection through convective in- stability and adiabatic updrafts. Indeed, in meiyu-baiu, the probability distribution of convective instability shows large spreads and is strongly skewed, with a sharp cutoff on the unstable side resulting from the ef- fective removal of instability by convection. Thus, active weather disturbances in the westerly waveguide explain a paradox that convection is active in the meiyu-baiu rainband while mean convective instability is significantly higher to the south over the subtropical North Pacific warm pool. -
Cyclone Contribution to the Mediterranean Sea Water Budget
Cyclone contribution to the Mediterranean Sea water budget Emmanouil Flaounas, Alejandro Di Luca, Philippe Drobinski, Sylvain Mailler, Thomas Arsouze, Sophie Bastin, Karine Beranger, Cindy Lebeaupin Brossier To cite this version: Emmanouil Flaounas, Alejandro Di Luca, Philippe Drobinski, Sylvain Mailler, Thomas Arsouze, et al.. Cyclone contribution to the Mediterranean Sea water budget. Climate Dynamics, Springer Verlag, 2016, 46 (3), pp.913-927. 10.1007/s00382-015-2622-1. insu-01152451 HAL Id: insu-01152451 https://hal-insu.archives-ouvertes.fr/insu-01152451 Submitted on 27 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cyclone contribution to the Mediterranean Sea water budget E. Flaounas1 · A. Di Luca1,6 · P. Drobinski1 · S. Mailler1 · T. Arsouze2 · S. Bastin3 · K. Beranger2,4 · C. Lebeaupin Brossier5 Abstract This paper analyzes the impact of cyclones to rainfall and evaporation, suggesting a weak net impact of the atmospheric components on the Mediterranean Sea cyclones on the Mediterranean Sea water budget. The sen- Water Budget, namely the cyclones contribution to precipi- sitivity of our results with respect to rapid SST changes tation and evaporation over the Mediterranean Sea. Three during the development of cyclones was also investigated.