Long Range Lightning Nowcasting Applications for Tropical Cyclones

Total Page:16

File Type:pdf, Size:1020Kb

Long Range Lightning Nowcasting Applications for Tropical Cyclones 19th International Lightning Detection Conference 24-25 April • Tucson, Arizona, USA 1st International Lightning Meteorology Conference 2006 26-27 April • Tucson, Arizona, USA LONG RANGE LIGHTNING NOWCASTING APPLICATIONS FOR TROPICAL CYCLONES Nicholas W.S. Demetriades1, John Molinari2, and Ronald L. Holle1 1Vaisala, Inc. Tucson, Arizona 2Department of Earth and Atmospheric Sciences The University at Albany/SUNY Albany, New York 1. INTRODUCTION (2004) found an intense lightning outbreak downshear from the center. "Downshear" The primary data sources for monitoring indicates the half of the circulation opposite the tropical cyclones beyond 625 km are (1) infrared vertical shear vector; if vertical shear is from the and visible satellite imagery from geostationary west, downshear represents the eastern half of satellites, (2) microwave and space-based radar the storm. Molinari et al. (2004) provided imagery from polar orbiting satellites and (3) evidence that this burst of lightning brought aircraft reconnaissance data. Geostationary about a downshear re-formation of the storm. satellite imagery is the only dataset that provides In addition, flash information in outer continuous monitoring of tropical cyclones far rainbands of tropical cyclones may provide from land. Unfortunately, such imagery often forecasters with a valuable diagnostic tool for does not provide detailed structural information identifying the most intense outer rainbands. in eyewalls and outer rainbands needed for For many areas that do not experience the inner nowcasting and forecasting tropical cyclones. core of a tropical cyclone, outer rainbands often The outer limit of cloud-to-ground (CG) flash contain the highest wind speeds and heaviest detection networks is 625 km from sensors in rainfall. the U.S. National Lightning Detection Network Since major questions remain about how (NLDN) and the Canadian Lightning Detection tropical cyclones form, lightning information is Network (CLDN). Prior studies found that CG potentially of significant value, both for prediction lightning information within several hundred km and understanding of storms. This paper will of the NLDN was a useful indicator of convective describe how the LLDN operates, show outbreaks in incipient and mature hurricanes, examples of spatial and temporal flash and may signal substantial deepening of the distributions in tropical cyclones, and investigate storms (Molinari et al. 1994; 1999; Lyons and the role of downshear convection in storm Keen 1994; Black and Hallett 1999; Cecil et al. development. 2002; Samsury and Orville 1994; Sugita and Matsui 2004; Demetriades and Holle 2005, 2. LONG RANGE LIGHTNING DETECTION 2006). However, most cases of hurricane NETWORK (LLDN) formation and early intensification in the North Atlantic and Pacific Oceans occur outside the NLDN and CLDN wideband sensors operate 625-km range of the NLDN. Vaisala is operating in the frequency range of about 0.5 to 400 kHz a VLF long range lightning detection network where return strokes in CG flashes radiate most (LLDN) over the North Atlantic and Pacific that strongly. The peak radiation from CG flashes detects flashes thousands of kilometers from comes near 10 kHz in the middle of the very low land and allows monitoring of tropical cyclones frequency (VLF) band. Signals in the VLF band over a much larger area than the NLDN and are trapped in the earth-ionosphere waveguide CLDN. and suffer less severe attenuation than higher The effect of vertical wind shear between frequency signals. Low frequency (LF) and VLF 850 and 200 hPa on the number of NLDN ground wave signals from CGs are attenuated flashes was investigated during the development strongly, and are almost imperceptible after a of Hurricane Danny (1997). Molinari et al. propagation distance of 500 to 1000 km. 1 However, VLF signals may be detected several storm. There is a much more defined pattern to thousand kilometers away after one or more the lightning activity in Hurricane Katrina (Fig. 2) reflections off the ground and the ionosphere. compared to its tropical storm stage (Fig. 1). Detection is best when both a lightning source The lightning pattern in category five and a sensor are on the night side of the earth, Hurricane Rita is similar to that in Katrina at that because of better ionospheric propagation intensity, except Rita had very little lightning in conditions at night. its outer rainbands (Fig. 3). The similar features The NLDN detects and processes lightning are a large eyewall lightning outbreak and signals at long distances because the standard minimal lightning activity in the central dense network sensors detect across a broad band overcast. However, these examples show a that includes all of the VLF range. Standard large variability in outer rainband lightning in NLDN sensors have been part of a long range strong hurricanes. network combining the CLDN, the Japanese Lightning Detection Network, the Meteo-France network, and the BLIDS, Benelux, and Central European networks. This combination detects CG flashes in sufficient numbers and with sufficient accuracy to identify small thunderstorm areas. The current study of tropical cyclones will use data in the North Atlantic where the nighttime detection efficiency exceeds 10% at the far reaches of the eastern Caribbean. The long range detection network is described in more detail in Murphy et al. (2006). 3. TROPICAL CYCLONE LIGHTNING NOWCASTING APPLICATIONS Tropical depressions and tropical storms are generally more prolific lightning producers than hurricanes. Lightning activity in these weaker systems does not show a preferential spatial Figure 1. CG lightning (red symbols) pattern. Figure 1 shows lightning in Tropical detected within Tropical Storm Katrina Storm Katrina when it was northeast of Cuba as between 1415 and 1445 UTC 24 August 2005. a minimal tropical storm with sustained winds of Infrared satellite image from 1445 UTC. 40 miles per hour (64 km per hour). Katrina was producing a large amount of lightning during this 30-minute time period in a number of convective clusters that covered most of the cloud mass of the storm. In hurricanes, lightning shows preferential spatial patterns. The eyewall usually contains a weak flash maximum. There is a well-defined minimum in flashes from 80 to 100 km outside the eyewall maximum due to stratiform rain processes that dominate most of the central dense overcast (Molinari et al. 1999). The outer rain bands typically contain a strong maximum in flash density. Figure 2 shows the lightning activity within Katrina after it strengthened to a category five hurricane on the Saffir-Simpson Scale. Lightning in Hurricane Katrina shows this pattern consisting of a large eyewall lightning outbreak, very little lightning in the central dense Figure 2. Same as Figure 1, between overcast, and a tremendous amount of lightning 1845 and 1915 UTC 28 August 2005. Infrared in the outer rainbands surrounding most of the satellite image from 1915 UTC. 2 Figure 5. Long range lightning data and infrared satellite image on 5 September 2003. Lightning is from 1253 to 1553 UTC. Yellow dots are flashes detected during the first two hours, and red are from the latest hour. Infrared Figure 3. Same as Figure 1, except for satellite image is from 1553 UTC. Hurricane Rita between 0615 and 0645 UTC 22 September 2005. Infrared satellite image toward the east of the center of Fabian (yellow) from 0645 UTC. to the north of Fabian’s center (red). In tropical depressions and storms, intense rainbands often 4. OUTER RAINBAND LIGHTNING contain the highest wind speeds and heaviest rainfall. In order to properly issue tropical Lightning activity can help identify the most depression and storm advisories and warnings, intense outer rainbands in a tropical cyclone. it is critical to be able to identify the location and These rainbands often contain flooding rains evolution of these features. and strong, gusty winds. Lightning can also show the evolution of growth and dissipation of 5. EYEWALL LIGHTNING OUTBREAKS outer rainbands as they rotate around the periphery of the storm. Figure 4 shows CG 5.1 Eyewall lightning patterns lightning detected within Hurricane Ivan as it moved toward the U.S. coast in the Gulf of The LLDN has detected numerous eyewall Mexico. Lightning activity delineates an intense lightning outbreaks in hurricanes over the outer rainband on the east side of Ivan. Atlantic and Eastern Pacific during the past Figure 5 shows the evolution of an outer several years. The larger outbreaks tend to rainband as it rotates counterclockwise around occur on relatively small time and space scales. the center of Hurricane Fabian on 5 September Lightning bursts in hurricane eyewalls 2003. Lightning indicated that the most intense sometimes rotate cyclonically around the center outer rainband rotated from a position located of circulation for some distance before they dissipate. However, eyewall lightning outbreaks that were studied in several hurricanes since 2002 show that these outbreaks tend to preferentially occur on one side of the hurricane track. Several hours may separate consecutive bursts of eyewall lightning or these bursts may occur continually for 24-48 hours. Figure 6 shows lightning detected along the track of Hurricane Frances on 3 September 2004. The track of Frances during this 24-hour period is shown by the yellow and red line. Three eyewall lightning outbreaks can be identified as Frances Figure 4. Same as Figure 1, except for moved toward the northwest. All three Hurricane Ivan between 1345 and 1415 UTC 15 outbreaks occurred on the northeast side of the September 2004. Infrared satellite image from storm track and are shown sequentially in 1415 UTC. shades of green, orange and red. 3 Impressive eyewall lightning signatures were change in structure and intensity. Lightning also produced by Hurricane Rita as it became a helps to identify intense convective cores with category five hurricane on 21 September 2005. larger updraft speeds embedded in the eyewalls At times, Rita produced significant eyewall of hurricanes. These lightning outbreaks may lightning that surrounded almost the entire be strongly, and perhaps uniquely, associated eyewall (Fig.
Recommended publications
  • Rapid Intensification of a Sheared Tropical Storm
    OCTOBER 2010 M O L I N A R I A N D V O L L A R O 3869 Rapid Intensification of a Sheared Tropical Storm JOHN MOLINARI AND DAVID VOLLARO Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York (Manuscript received 10 February 2010, in final form 28 April 2010) ABSTRACT A weak tropical storm (Gabrielle in 2001) experienced a 22-hPa pressure fall in less than 3 h in the presence of 13 m s21 ambient vertical wind shear. A convective cell developed downshear left of the center and moved cyclonically and inward to the 17-km radius during the period of rapid intensification. This cell had one of the most intense 85-GHz scattering signatures ever observed by the Tropical Rainfall Measuring Mission (TRMM). The cell developed at the downwind end of a band in the storm core. Maximum vorticity in the cell exceeded 2.5 3 1022 s21. The cell structure broadly resembled that of a vortical hot tower rather than a supercell. At the time of minimum central pressure, the storm consisted of a strong vortex adjacent to the cell with a radius of maximum winds of about 10 km that exhibited almost no tilt in the vertical. This was surrounded by a broader vortex that tilted approximately left of the ambient shear vector, in a similar direction as the broad precipitation shield. This structure is consistent with the recent results of Riemer et al. The rapid deepening of the storm is attributed to the cell growth within a region of high efficiency of latent heating following the theories of Nolan and Vigh and Schubert.
    [Show full text]
  • Hurricane Outer Rainband Mesovortices
    Presented at the 24th Conference on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, May 31 2000 EXAMINING THE PRE-LANDFALL ENVIRONMENT OF MESOVORTICES WITHIN A HURRICANE BONNIE (1998) OUTER RAINBAND 1 2 2 1 Scott M. Spratt , Frank D. Marks , Peter P. Dodge , and David W. Sharp 1 NOAA/National Weather Service Forecast Office, Melbourne, FL 2 NOAA/AOML Hurricane Research Division, Miami, FL 1. INTRODUCTION Tropical Cyclone (TC) tornado environments have been studied for many decades through composite analyses of proximity soundings (e.g. Novlan and Gray 1974; McCaul 1986). More recently, airborne and ground-based Doppler radar investigations of TC rainband-embedded mesocyclones have advanced the understanding of tornadic cell lifecycles (Black and Marks 1991; Spratt et al. 1997). This paper will document the first known dropwindsonde deployments immediately adjacent to a family of TC outer rainband mesocyclones, and will examine the thermodynamic and wind profiles retrieved from the marine environment. A companion paper (Dodge et al. 2000) discusses dual-Doppler analyses of these mesovortices. On 26 August 1998, TC Bonnie made landfall as a category two hurricane along the North Carolina coast. Prior to landfall, two National Oceanographic and Atmospheric Administration (NOAA) Hurricane Research Division (HRD) aircraft conducted surveillance missions offshore the Carolina coast. While performing these missions near altitudes of 3.5 and 2.1 km, both aircraft were required to deviate around intense cells within a dominant outer rainband, 165 to 195 km northeast of the TC center. On-board radars detected apparent mini-supercell signatures associated with several of the convective cells along the band.
    [Show full text]
  • Rapid Intensification of DOI:10.1175/BAMS-D-16-0134.1 Hurricanes Is Particularly Problematic
    WILL GLOBAL WARMING MAKE HURRICANE FORECASTING MORE DIFFICULT? KERRY EMANUEL As the climate continues to warm, hurricanes may intensify more rapidly just before striking land, making hurricane forecasting more difficult. ince 1971, tropical cyclones have claimed about cyclone damage, rising on average 6% yr–1 in inflation- 470,000 lives, or roughly 10,000 lives per year, and adjusted U.S. dollars between 1970 and 2015 (CRED S caused 700 billion U.S. dollars in damages globally 2016). Thus, appreciable increases in forecast skill and/ (CRED 2016). Mortality is strongly dominated by a or decreases of vulnerability, for example, through small number of extremely lethal events; for example, better preparedness, building codes, and evacuation just three storms caused more than 56% of the tropical procedures, will be required to avoid increases in cyclone–related deaths in the United States since 1900. cyclone-related casualties. Tropical cyclone mortality and injury have been Unfortunately, there has been little improvement reduced by improved forecasts and preparedness, espe- in tropical cyclone intensity forecasts over the period cially in developed countries (Arguez and Elsner 2001; from 1990 to the present (DeMaria et al. 2014). While Peduzzi et al. 2012), but through much of the world hurricane track forecasts using numerical prediction this has been offset by large changes in coastal popula- models have steadily improved, there has been only tions. For example, Peduzzi et al. (2012) estimate that slow improvement in forecasts of intensity by these the global population exposed to tropical cyclone same models. Reasons for this include stiff resolu- hazards increased by almost threefold between 1970 tion requirements for the numerical simulations of and 2010, and they project this trend to continue for tropical cyclone intensity (Rotunno et al.
    [Show full text]
  • 2014 North Atlantic Hurricane Season Review
    2014 North Atlantic Hurricane Season Review WHITEPAPER Executive Summary The 2014 Atlantic hurricane season was a quiet season, closing with eight 2014 marks the named storms, six hurricanes, and two major hurricanes (Category 3 or longest period on stronger). record – nine Forecast groups predicted that the formation of El Niño and below consecutive years average sea surface temperatures (SSTs) in the Atlantic Main – that no major Development Region (MDR)1 through the season would inhibit hurricanes made development in 2014, leading to a below average season. While 2014 landfall over the was indeed quiet, these predictions didn’t materialize. U.S. The scientific community has attributed the low activity in 2014 to a number of oceanic and atmospheric conditions, predominantly anomalously low Atlantic mid-level moisture, anomalously high tropical Atlantic subsidence (sinking air) in the Main Development Region (MDR), and strong wind shear across the Caribbean. Tropical cyclone activity in the North Atlantic basin was also influenced by below average activity in the 2014 West African monsoon season, which suppressed the development of African easterly winds. The year 2014 marks the longest period on record – nine consecutive years since Hurricane Wilma in 2005 – that no major hurricanes made landfall over the U.S., and also the ninth consecutive year that no hurricane made landfall over the coastline of Florida. The U.S. experienced only one landfalling hurricane in 2014, Hurricane Arthur. Arthur made landfall over the Outer Banks of North Carolina as a Category 2 hurricane on July 4, causing minor damage. While Mexico and Central America were impacted by two landfalling storms and the Caribbean by three, Bermuda suffered the most substantial damage due to landfalling storms in 2014.Hurricane Fay and Major Hurricane Gonzalo made landfall on the island within a week of each other, on October 12 and October 18, respectively.
    [Show full text]
  • Investigation and Prediction of Hurricane Eyewall
    INVESTIGATION AND PREDICTION OF HURRICANE EYEWALL REPLACEMENT CYCLES By Matthew Sitkowski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2012 Date of final oral examination: 4/9/12 The dissertation is approved by the following members of the Final Oral Committee: James P. Kossin, Affiliate Professor, Atmospheric and Oceanic Sciences Daniel J. Vimont, Professor, Atmospheric and Oceanic Sciences Steven A. Ackerman, Professor, Atmospheric and Oceanic Sciences Jonathan E. Martin, Professor, Atmospheric and Oceanic Sciences Gregory J. Tripoli, Professor, Atmospheric and Oceanic Sciences i Abstract Flight-level aircraft data and microwave imagery are analyzed to investigate hurricane secondary eyewall formation and eyewall replacement cycles (ERCs). This work is motivated to provide forecasters with new guidance for predicting and better understanding the impacts of ERCs. A Bayesian probabilistic model that determines the likelihood of secondary eyewall formation and a subsequent ERC is developed. The model is based on environmental and geostationary satellite features. A climatology of secondary eyewall formation is developed; a 13% chance of secondary eyewall formation exists when a hurricane is located over water, and is also utilized by the model. The model has been installed at the National Hurricane Center and has skill in forecasting secondary eyewall formation out to 48 h. Aircraft reconnaissance data from 24 ERCs are examined to develop a climatology of flight-level structure and intensity changes associated with ERCs. Three phases are identified based on the behavior of the maximum intensity of the hurricane: intensification, weakening and reintensification.
    [Show full text]
  • Modelling Global Tropical Cyclone Wind Footprints
    https://doi.org/10.5194/nhess-2019-207 Preprint. Discussion started: 2 July 2019 c Author(s) 2019. CC BY 4.0 License. Modelling Global Tropical Cyclone Wind Footprints James M. Done1,2, Ming Ge1, Greg J. Holland1,2, Ioana Dima-West3, Samuel Phibbs3, Geoffrey R. Saville3, and Yuqing Wang4 5 1National Center for Atmospheric Research, 3090 Center Green Drive, Boulder CO 80301, US 2Willis Research Network, 51 Lime St, London, EC3M 7DQ, UK 3Willis Towers Watson, 51 Lime St, London, EC3M 7DQ, UK 4International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, HI 96822, US. 10 Correspondence to: James M. Done ([email protected]) Abstract. A novel approach to modelling the surface wind field of landfalling tropical cyclones (TCs) is presented. The modelling system simulates the evolution of the low-level wind fields of landfalling TCs, accounting for terrain effects. A two- step process models the gradient-level wind field using a parametric wind field model fitted to TC track data, then brings the winds down to the surface using a full numerical boundary layer model. The physical wind response to variable surface drag 15 and terrain height produces substantial local modifications to the smooth wind field provided by the parametric wind profile model. For a set of U.S. historical landfalling TCs the simulated footprints compare favourably with surface station observations. The model is applicable from single event simulation to the generation of global catalogues. One application demonstrated here is the creation of a dataset of 714 global historical TC overland wind footprints.
    [Show full text]
  • A Long-Lasting Vortex Rossby Wave–Induced Rainband of Typhoon Longwang (2005)
    A Long-Lasting Vortex Rossby Wave–Induced Rainband of Typhoon Longwang (2005) YANLUAN LIN, YUANLONG LI, QINGSHAN LI, MINYAN CHEN, FANGHUA XU, YUQING WANG, AND BIN HUANG n 2 October 2005, a record-breaking rainfall event Tsai 2013). As Typhoon Longwang approached the with 152 mm of rainfall in an hour occurred as coast of Fujian Province at 0800 UTC, one type of this OTyphoon Longwang approached Fujian Province, transient rainband in the northeast sector started to China. The severe rainfall was unexpected and signifi- weaken and dissipate (Fig. 1b). At the same time, the cantly underpredicted by the local weather forecasters eyewall underwent an asymmetry transformation and caused a total of 96 deaths. Because of the severe accompanied by a bended convection pattern in the damage over Taiwan and mainland China, the name north (Fig. 1b). The bended convection transformed of Longwang, which means a dragon in charge of into a strong convective band along the eyewall to the rainfall in Chinese, was removed from the name list north and moved outward relative to the storm center for future typhoons. (Fig. 1c). The convective band continued to intensify with a sharp inner edge (Fig. 1d). An hour later, the EVOLUTION AND BASIC FEATURES OF convective band achieved its maximum intensity with THE RAINBAND. The formation and evolution a large area of stratiform precipitation outward and of the rainband associated with the rainfall event was downstream (Fig. 1e). At this time, cloud brightness captured by the radar mosaic produced by the Central temperatures as low as −80°C were measured by a Weather Bureau (CWB) of Taiwan (Fig.
    [Show full text]
  • A Preliminary Observational Study of Hurricane Eyewall Mesovortices
    AA PreliminaryPreliminary ObservationalObservational StudyStudy ofof HurricaneHurricane EyewallEyewall MesovorticesMesovortices Brian D. McNoldy and Thomas H. Vonder Haar Department of Atmospheric Science, Colorado State University e-mail: [email protected] ABSTRACT SATELLITE OBSERVATIONS The observational study of fine-scale features in A series of recent case studies will be presented that demonstrate the existence of mesovortices, vortex mergers, polygonal eyewalls, and vortex crystals. All cases were collected from the GOES-8 geosynchronous satellite centered over 0°N 75°W. Some cases were taken from “Normal Operations”, meaning images are taken every 15 or 30 minutes (depending on location). In special cases, the satellite images the storm every seven minutes; this is called “Rapid Scan Operations”. Finally, in high- the eye and eyewall of intense tropical cyclones (TC) priority situations, images can be taken every minute; this is called “Super Rapid Scan Operations”. has been made possible with high temporal and spatial To view loops of all the cases using the highest temporal resolution available, visit http://thor.cira.colostate.edu/tropics/eyewall/. The following four cases are small excerpts from the full loops. resolution imagery from geosynchronous satellites. The current Geosynchronous Operational Environmental BRET, 22Aug99 (1845Z-2010Z) ALBERTO, 12Aug00 (1445Z-1915Z) Satellite (GOES) Series is capable of producing 1-km resolution visible images every minute, resulting in an immense dataset which can be used to study convective cloud tops as well as transient low-level cloud swirls. Computer models have shown that vorticity redistribution in the core of a TC can result in the formation of local vorticity maxima, or mesovortices.
    [Show full text]
  • Lightning Activity in Tropical Cyclones in the South-West Indian Ocean
    XV International Conference on Atmospheric Electricity, 15-20 June 2014, Norman, Oklahoma, U.S.A. Lightning activity in tropical cyclones in the South-West Indian ocean Christophe Bovalo1;2 and Christelle Barthe1∗ 1Laboratoire de l’Atmosphere` et des Cyclones (LACy) – CNRS - Universite´ de La Reunion´ - Met´ eo-France,´ Saint-Denis, La Reunion,´ France 2Now at Laboratoire d’Aerologie´ (LA) – CNRS - Universite´ de Toulouse, Toulouse, France ABSTRACT: Lightning activity is investigated within tropical convective events of the South-West Indian Ocean (SWIO). The World Wide Lightning Location Network (WWLLN) provides global lightning data since 2005 and is therefore a well suited network for the study of systems like tropical cyclones as they remain over ocean most of their life. Firstly, a 7-year lightning climatology over the South West Indian Ocean has been performed using the WWLLN data from 2005 to 2011. Results show the same main features presented in other studies: the ”hot spots” in this region are found in Madagascar and over the Great Lakes in East Africa (> 10-20 fl. km−2 yr−1). Lightning flashes within tropical cyclones represent 50% to 100% of the total lightning activity in some oceanic areas (between 10◦S and 20◦S). Moreover, lightning activity is more intense during the November-to-April period which corresponds to the wet/cyclonic season. Then, lightning activity in tropical storms of the basin was studied using both WWLLN data and best- tracks from the Regional Specialized Meteorological Center La Reunion´ from January 2005 to May 2013. The South-West Indian Ocean is divided into three distinct regions (open ocean, Mozambique channel, and the oceanic region 400 km offshore the eastern coast of Madagascar) to account for the impact of land on the tropical storm structure.
    [Show full text]
  • Examining Tropical Cyclone Structure and Intensification with The
    NOVEMBER 2017 M A R T I N E Z E T A L . 4401 Examining Tropical Cyclone Structure and Intensification with the FLIGHT1 Dataset from 1999 to 2012 JONATHAN MARTINEZ AND MICHAEL M. BELL Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado JONATHAN L. VIGH National Center for Atmospheric Research, Boulder, Colorado ROBERT F. ROGERS Hurricane Research Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida (Manuscript received 19 January 2017, in final form 28 July 2017) ABSTRACT A comprehensive examination of tropical cyclone (TC) kinematic and thermodynamic structure in the Atlantic basin is created from the Extended Flight Level Dataset for Tropical Cyclones (FLIGHT1, version 1.1). In situ data collected at the 700-hPa flight level by NOAA WP-3D and USAF WC-130 aircraft from 1999 to 2012 are analyzed. A total of 233 azimuthal mean profiles comprising 1498 radial legs are stratified by TC intensity and 12-h intensity change. A matrix of composite structures is created for minor (category 1 and 2) 2 and major (category 3 and above) hurricanes that are intensifying [intensity increase $10 kt (12 h) 1], steady 2 2 state [intensity change between 65 kt (12 h) 1], and weakening [intensity decrease #210 kt (12 h) 1]. Ad- ditional considerations to the impacts of age on TC structure are given as well. Axisymmetric radial com- posites reveal that intensifying TCs have statistically significant structural differences from TCs that are steady state or weakening, but that these differences also depend on the intensity of the TC. Intensifying TCs (both minor and major hurricanes) are characterized by steep tangential wind gradients radially inward of the radius of maximum tangential wind (RMW) that contribute to a ringlike structure of vorticity and inertial stability.
    [Show full text]
  • 1 Vertical Structure of Tropical Cyclone Rainbands As Seen by The
    Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar Deanna A. Hence and Robert A. Houze, Jr. University of Washington, Seattle, Washington Submitted to Journal of Atmospheric Sciences November 2011 Corresponding author address: Deanna Hence, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195 E-mail: [email protected] 1 ABSTRACT 1 Ten years of data from the Tropical Rainfall Measurement Mission satellite’s Precipitation 2 Radar (TRMM PR) show the vertical structure of tropical cyclone rainbands. Radar-echo 3 statistics show that rainbands have a two-layered structure, with distinct modes separated by the 4 melting layer. The ice layer is a combination of particles imported from the eyewall and ice left 5 aloft as convective cells collapse. This layering is most pronounced in the inner region of the 6 storm, and the layering is enhanced by storm strength. The inner-region rainbands are vertically 7 confined by outflow from the eyewall but nevertheless are a combination of strong embedded 8 convective cells and robust stratiform precipitation, both of which become more pronounced in 9 stronger cyclones. 10 Changes in rainband coverage, vertical structure, and the amount of active convection 11 indicate a change in the nature of rainbands between the regions inward and outward of a radius 12 of ~200 km. Beyond this radius, rainbands consist of more sparsely distributed precipitation that 13 is more convective in nature than that of the inner-region rainbands, and the outer-region 14 rainband structures are relatively insensitive to changes in storm intensity.
    [Show full text]
  • Characteristics of Supercells in the Rainband of Numerically Simulated Cyclone Sidr
    SOLA, 2010, Vol. 6A, 025−028, doi:10.2151/sola.6A-007 25 Characteristics of Supercells in the Rainband of Numerically Simulated Cyclone Sidr Nasreen Akter1 and Kazuhisa Tsuboki1, 2 1Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan 2Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan (Figs. 1b and 1c). The cell indicated in Fig. 1b is ~116 km away Abstract from the radar, and its local altitude is ~1 km. Also, no sounding data are available. The observed data are not sufficient for inves- Cyclone Sidr had an intense rainband east of the cyclone tigation of the detailed structure and intensity of the convective center. The rainband exhibited two strong convective lines (band cells along the band. axes) composed of convective cells. To study the characteristics of Therefore, the present study aims to clarify the characteristics the convective cells, a simulation was performed at 1-km resolu- of the convective cells in the rainband of Cyclone Sidr over the tion by using a cloud-resolving model. In both band axes, some sea and the environmental factors affecting cell development. For cells showed the characteristic structure of a supercell. Supercells this purpose, a high-resolution simulation was performed using within the outer axis had stronger updraft, more intense precipita- the Cloud-Resolving Storm Simulator (CReSS) model (Tsuboki tion, and a longer lifetime than those of the inner axis. The values and Sakakibara 2007). of the CAPE and helicity are different in the strong vertical shear environment of the inner and outer axes. A large moisture flux was present throughout the troposphere on the east side of the outer 2.
    [Show full text]