Characteristics of Supercells in the Rainband of Numerically Simulated Cyclone Sidr

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Supercells in the Rainband of Numerically Simulated Cyclone Sidr SOLA, 2010, Vol. 6A, 025−028, doi:10.2151/sola.6A-007 25 Characteristics of Supercells in the Rainband of Numerically Simulated Cyclone Sidr Nasreen Akter1 and Kazuhisa Tsuboki1, 2 1Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan 2Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan (Figs. 1b and 1c). The cell indicated in Fig. 1b is ~116 km away Abstract from the radar, and its local altitude is ~1 km. Also, no sounding data are available. The observed data are not sufficient for inves- Cyclone Sidr had an intense rainband east of the cyclone tigation of the detailed structure and intensity of the convective center. The rainband exhibited two strong convective lines (band cells along the band. axes) composed of convective cells. To study the characteristics of Therefore, the present study aims to clarify the characteristics the convective cells, a simulation was performed at 1-km resolu- of the convective cells in the rainband of Cyclone Sidr over the tion by using a cloud-resolving model. In both band axes, some sea and the environmental factors affecting cell development. For cells showed the characteristic structure of a supercell. Supercells this purpose, a high-resolution simulation was performed using within the outer axis had stronger updraft, more intense precipita- the Cloud-Resolving Storm Simulator (CReSS) model (Tsuboki tion, and a longer lifetime than those of the inner axis. The values and Sakakibara 2007). of the CAPE and helicity are different in the strong vertical shear environment of the inner and outer axes. A large moisture flux was present throughout the troposphere on the east side of the outer 2. Numerical simulation and verification axis. On the other hand, the upper level west of the inner axis was relatively dry. These are additional factors affecting the differ- The high-resolution simulation was carried out using a ences in cell characteristics in the two band axes. horizontal grid spacing of 1 km. The horizontal grid number was 903 × 1206. The computational domain was 85.69°E−94.78°E 1. Introduction Cyclone Sidr is a category-4-equivalent cyclone of the Indian Ocean, which originated in the Bay of Bengal and made landfall over Bangladesh on November 15, 2007. It had a prominent rainband east of the center, which was associated with heavy rain- fall and severe flooding as well as damaging winds. The intense precipitation of the rainband was determined by its constituent convective cells. Previous studies have found supercells in tropical cyclone rainbands (Spratt et al. 1997; Lee et al. 2008; Eastin and Link 2009). They have a deep, continuously rotating updraft that is not interrupted by a downdraft. Supercells found in the rainband are mostly the mini-supercell type. Mini-supercells are smaller and short-lived, having shallow mesocyclones (MCs) (Burgess et al. 1995; Suzuki et al. 2000), in contrast to typical midlatitude super- cells (Moller et al. 1994). They are characterized by maximum reflectivities of less than 50−55 dBZ and echo tops < 10 km (NWS 2004). McCaul and Weisman (1996) proposed that in a hurricane environment, weak low-level cold pools restrict surface vorticity development, resulting in shallow supercells. It is evident from the literature that environmental characteristics, such as strong low-level wind shear, moderate storm-relative environmental he- licity (SREH), and moderate to large CAPE, are favorable for the development of supercells in the rainband at the time of landfall or over land (McCaul 1991; McCaul and Weisman 1996; Baker et al. 2009). McCaul and Weisman (2001) suggested that the CAPE and shear are important determinants of the morphology and intensity of convective cells. However, studies of the characteristics of cells in the rainbands and their environment over the ocean are still limited. Moreover, during the approach of Cyclone Sidr, only a single Doppler radar at a range of 440 km was operating over the entire coast. Its horizontal resolution in Doppler mode is 625 m, and the azimuthal resolution is roughly 2.5 km. Supercell-like structures (weak hook-shaped echoes and positive-negative velocity cou- plets) are observed with much data noise in the velocity signature Fig. 1. (a) Plan position indicator (PPI) display of radar reflectivity at 0° elevation for 1000 UTC November 15, 2007 with the observed track (solid red line). (b) Reflectivity and (c) Doppler velocity, respectively, indicated in (a). (d) Simulated rain rate (shading) at 1000 UTC and track (solid red Corresponding author: Nasreen Akter, Hydrospheric Atmospheric Research −2 −1 Center, Nagoya University, Nagoya 464-8601, Japan. E-mail: akter@rain. line). Arrows represent surface moisture flux vectors (kg m s ). Dashed hyarc.nagoya-u.ac.jp. ©2010, the Meteorological Society of Japan. lines indicate the two band axes. Oval shows the north cluster. 26 Akter and Tsuboki, Characteristics of Supercells in Cyclone Sidr and 13.97°N−25.05°N. The height of the domain was 30 km with into the north cluster (Fig. 1d). For this purpose, three isolated stretched grid spacing from 100 m at the surface to 564 m at the convective cells of the inner axis (a, b, and c) and three of the top level. The cloud microphysical process used to predict the outer axis (d, e, and f) were selected. Cells a, d, and e are marked mixing ratios of cloud water, rain, cloud ice, snow, and graupel in Fig 1d. The results of an inner-axis cell (a) and an outer-axis and the number densities of cloud, ice, snow, and graupel was the cell (d) are presented in detail as representative cells. The proper- bulk cold rain type. The subgrid-scale turbulence was parameter- ties of other cells are summarized later. ized using 1.5-order closure with turbulent kinetic energy. The The time sequences of cells a and d are shown in Fig. 2a. Cell radiation process was considered in calculating the heat balance of d is more intense and larger than cell a. Figures 2b and 2c show the ground surface. The references for the physical parameterized the vertical component of vorticity at 0950 UTC for cell a (cross schemes we used were cited in Tsuboki and Sakakibara (2007). section at 90.17°E) and cell d (at 90.58°E), respectively. In both The initial and boundary conditions were provided by the six- cases, positive and negative vorticities are present in the cells. hourly data of the Japan Meteorological Agency-Global Spectrum Both cells have strong positive vorticity on the east side and weak Model (JMA-GSM) output. The JMA-Merged satellite and in-situ negative vorticity on the west. A strong updraft is associated with data Global Daily Sea Surface Temperature (MGDSST) data were the positive vorticity, and a weak downdraft is associated with the used for the lower boundary condition in the ocean region. The negative vorticity. Inner-axis cell a has a weaker vortex pair and period of the simulation experiment was 24 h, from 0000 UTC weaker vertical velocity than outer-axis cell d. November 15 to 0000 UTC November 16, 2007. As indicated in Figs. 3a and 3b, the mixing ratio of precipita- Cyclone Sidr was simulated well in the experiment. The result tion (sum of rain, snow, and graupel) of cell a is ~9 g kg−1 and is verified by radar data. Figures 1a and 1d show the observed extends up to ~8 km in height. The downdraft is very weak (~ and simulated rainfall distributions, respectively, at 1000 UTC −1 m s−1). In cell d (Figs. 3c and 3d), the horizontal precipitation November 15, along with the cyclone track. Both the simulated structure shows a bean-shaped pattern with the intense updraft and and observed rainbands exhibit two band axes (strong convection vorticity of an MC. The strong updraft results in a large mixing lines). The outer axis contains isolated cells, and the inner axis is ratio of precipitation (> 10 g kg−1), which extends up to ~16 km. mostly composed of isolated cells as well as cluster or line types The downdraft is ~−5 m s−1 in the cell. In both cases, the updraft of convection. The radar reflectivity image (Fig. 1a) shows that is separated from the downdraft, and cell-relative flows approach the rainfall intensity in the outer axis is greater than that in the cells from the east below 2 km in height. inner axis. Similar differences in convection intensity are also The characteristics of the six simulated cells are summarized found in the simulation (Fig. 1d). in Table 1. The outer-axis cells contain MCs at higher levels with vorticity > 0.014 s−1. The dimensions, updraft, downdraft, and pre- cipitation intensities are larger than those of inner-axis cells. The 3. Convective cells lifetime of a cell, which is defined as the period from formation to dissipation or merging into the north cluster, is ≥ 2 h for outer-axis Convective cells were formed and were arranged along low- cells, whereas it is less than 1.5 h for inner-axis cells. The heights level convergence lines. After forming, they moved north-north- of inner-axis cells are ≤ 10 km, whereas those of outer-axis cells westward. Some cells dissipated and others merged. To examine are ≥ 14 km. A boundary of 2 × 10−3 s−1 vorticity contours is the basic characteristics of the convective cells, we investigated considered to mark the height and diameter of an MC. Cell dimen- isolated cells from formation to dissipation or until they merged sions are confined to the precipitation mixing ratio of 2 g kg−1. Fig. 3. Cell a: (a) horizontal cross section of precipitation mixing ratio Fig.
Recommended publications
  • A Study of Synoptic-Scale Tornado Regimes
    Garner, J. M., 2013: A study of synoptic-scale tornado regimes. Electronic J. Severe Storms Meteor., 8 (3), 1–25. A Study of Synoptic-Scale Tornado Regimes JONATHAN M. GARNER NOAA/NWS/Storm Prediction Center, Norman, OK (Submitted 21 November 2012; in final form 06 August 2013) ABSTRACT The significant tornado parameter (STP) has been used by severe-thunderstorm forecasters since 2003 to identify environments favoring development of strong to violent tornadoes. The STP and its individual components of mixed-layer (ML) CAPE, 0–6-km bulk wind difference (BWD), 0–1-km storm-relative helicity (SRH), and ML lifted condensation level (LCL) have been calculated here using archived surface objective analysis data, and then examined during the period 2003−2010 over the central and eastern United States. These components then were compared and contrasted in order to distinguish between environmental characteristics analyzed for three different synoptic-cyclone regimes that produced significantly tornadic supercells: cold fronts, warm fronts, and drylines. Results show that MLCAPE contributes strongly to the dryline significant-tornado environment, while it was less pronounced in cold- frontal significant-tornado regimes. The 0–6-km BWD was found to contribute equally to all three significant tornado regimes, while 0–1-km SRH more strongly contributed to the cold-frontal significant- tornado environment than for the warm-frontal and dryline regimes. –––––––––––––––––––––––– 1. Background and motivation As detailed in Hobbs et al. (1996), synoptic- scale cyclones that foster tornado development Parameter-based and pattern-recognition evolve with time as they emerge over the central forecast techniques have been essential and eastern contiguous United States (hereafter, components of anticipating tornadoes in the CONUS).
    [Show full text]
  • Hurricane Outer Rainband Mesovortices
    Presented at the 24th Conference on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, May 31 2000 EXAMINING THE PRE-LANDFALL ENVIRONMENT OF MESOVORTICES WITHIN A HURRICANE BONNIE (1998) OUTER RAINBAND 1 2 2 1 Scott M. Spratt , Frank D. Marks , Peter P. Dodge , and David W. Sharp 1 NOAA/National Weather Service Forecast Office, Melbourne, FL 2 NOAA/AOML Hurricane Research Division, Miami, FL 1. INTRODUCTION Tropical Cyclone (TC) tornado environments have been studied for many decades through composite analyses of proximity soundings (e.g. Novlan and Gray 1974; McCaul 1986). More recently, airborne and ground-based Doppler radar investigations of TC rainband-embedded mesocyclones have advanced the understanding of tornadic cell lifecycles (Black and Marks 1991; Spratt et al. 1997). This paper will document the first known dropwindsonde deployments immediately adjacent to a family of TC outer rainband mesocyclones, and will examine the thermodynamic and wind profiles retrieved from the marine environment. A companion paper (Dodge et al. 2000) discusses dual-Doppler analyses of these mesovortices. On 26 August 1998, TC Bonnie made landfall as a category two hurricane along the North Carolina coast. Prior to landfall, two National Oceanographic and Atmospheric Administration (NOAA) Hurricane Research Division (HRD) aircraft conducted surveillance missions offshore the Carolina coast. While performing these missions near altitudes of 3.5 and 2.1 km, both aircraft were required to deviate around intense cells within a dominant outer rainband, 165 to 195 km northeast of the TC center. On-board radars detected apparent mini-supercell signatures associated with several of the convective cells along the band.
    [Show full text]
  • Observed Cyclone–Anticyclone Tropopause Vortex Asymmetries
    JANUARY 2005 H A K I M A N D CANAVAN 231 Observed Cyclone–Anticyclone Tropopause Vortex Asymmetries GREGORY J. HAKIM AND AMELIA K. CANAVAN University of Washington, Seattle, Washington (Manuscript received 30 September 2003, in final form 28 June 2004) ABSTRACT Relatively little is known about coherent vortices near the extratropical tropopause, even with regard to basic facts about their frequency of occurrence, longevity, and structure. This study addresses these issues through an objective census of observed tropopause vortices. The authors test a hypothesis regarding vortex-merger asymmetry where cyclone pairs are repelled and anticyclone pairs are attracted by divergent flow due to frontogenesis. Emphasis is placed on arctic vortices, where jet stream influences are weaker, in order to facilitate comparisons with earlier idealized numerical simulations. Results show that arctic cyclones are more numerous, persistent, and stronger than arctic anticyclones. An average of 15 cyclonic vortices and 11 anticyclonic vortices are observed per month, with maximum frequency of occurrence for cyclones (anticyclones) during winter (summer). There are are about 47% more cyclones than anticyclones that survive at least 4 days, and for longer lifetimes, 1-day survival probabilities are nearly constant at 65% for cyclones, and 55% for anticyclones. Mean tropopause potential-temperature amplitude is 13 K for cyclones and 11 K for anticyclones, with cyclones exhibiting a greater tail toward larger values. An analysis of close-proximity vortex pairs reveals divergence between cyclones and convergence be- tween anticyclones. This result agrees qualitatively with previous idealized numerical simulations, although it is unclear to what extent the divergent circulations regulate vortex asymmetries.
    [Show full text]
  • Central Region Technical Attachment 95-08 Examination of an Apparent
    CRH SSD APRIL 1995 CENTRAL REGION TECHNICAL ATTACHMENT 95-08 EXAMINATION OF AN APPARENT LANDSPOUT IN THE EASTERN BLACK HILLS OF WESTERN SOUTH DAKOTA David L. Hintz1 and Matthew J. Bunkers National Weather Service Office Rapid City, South Dakota 1. Abstract On June 29, 1994, an apparent landspout occurred in the Black Hills of South Dakota. This landspout exhibited most of the features characteristic of traditional landspouts documented in eastern Colorado. The landspout lasted 3 to 8 minutes, had a width of less than 20 m and a path of 1 to 3 km, produced estimated wind speeds of Fl intensity (33 to 50 m s1), and emanated from a towering cumulus (TCU) cloud located along a quasi-stationary convergencq/cyclonic shear zone. No radar echo was observed with this event; however, a supercell thunderstorm was located 80-100 km to the east. National Weather Service meteorologists surveyed the “very localized” damage area and ruled out the possibility of the landspout being related to microburst, gustnado, or dust devil activity, as winds away from the landspout were less than 3 m s1. The landspout apparently “detached” from the parent TCU and damaged a farm which resulted in $1,000 dollars in expenses. 2. Introduction During the late 1980’s and early 1990’s researchers documented a phe­ nomenon with subtle differences from traditional tornadoes and waterspouts, herein referred to as the landspout (Seargent 1994; Brady and Szoke 1988, 1989; Bluestein 1985). The term “landspout” was actually coined by Bluestein (I985)(in the formal literature) when he observed this type of vortex along an Oklahoma squall line.
    [Show full text]
  • A Long-Lasting Vortex Rossby Wave–Induced Rainband of Typhoon Longwang (2005)
    A Long-Lasting Vortex Rossby Wave–Induced Rainband of Typhoon Longwang (2005) YANLUAN LIN, YUANLONG LI, QINGSHAN LI, MINYAN CHEN, FANGHUA XU, YUQING WANG, AND BIN HUANG n 2 October 2005, a record-breaking rainfall event Tsai 2013). As Typhoon Longwang approached the with 152 mm of rainfall in an hour occurred as coast of Fujian Province at 0800 UTC, one type of this OTyphoon Longwang approached Fujian Province, transient rainband in the northeast sector started to China. The severe rainfall was unexpected and signifi- weaken and dissipate (Fig. 1b). At the same time, the cantly underpredicted by the local weather forecasters eyewall underwent an asymmetry transformation and caused a total of 96 deaths. Because of the severe accompanied by a bended convection pattern in the damage over Taiwan and mainland China, the name north (Fig. 1b). The bended convection transformed of Longwang, which means a dragon in charge of into a strong convective band along the eyewall to the rainfall in Chinese, was removed from the name list north and moved outward relative to the storm center for future typhoons. (Fig. 1c). The convective band continued to intensify with a sharp inner edge (Fig. 1d). An hour later, the EVOLUTION AND BASIC FEATURES OF convective band achieved its maximum intensity with THE RAINBAND. The formation and evolution a large area of stratiform precipitation outward and of the rainband associated with the rainfall event was downstream (Fig. 1e). At this time, cloud brightness captured by the radar mosaic produced by the Central temperatures as low as −80°C were measured by a Weather Bureau (CWB) of Taiwan (Fig.
    [Show full text]
  • Synoptic Meteorology
    Lecture Notes on Synoptic Meteorology For Integrated Meteorological Training Course By Dr. Prakash Khare Scientist E India Meteorological Department Meteorological Training Institute Pashan,Pune-8 186 IMTC SYLLABUS OF SYNOPTIC METEOROLOGY (FOR DIRECT RECRUITED S.A’S OF IMD) Theory (25 Periods) ❖ Scales of weather systems; Network of Observatories; Surface, upper air; special observations (satellite, radar, aircraft etc.); analysis of fields of meteorological elements on synoptic charts; Vertical time / cross sections and their analysis. ❖ Wind and pressure analysis: Isobars on level surface and contours on constant pressure surface. Isotherms, thickness field; examples of geostrophic, gradient and thermal winds: slope of pressure system, streamline and Isotachs analysis. ❖ Western disturbance and its structure and associated weather, Waves in mid-latitude westerlies. ❖ Thunderstorm and severe local storm, synoptic conditions favourable for thunderstorm, concepts of triggering mechanism, conditional instability; Norwesters, dust storm, hail storm. Squall, tornado, microburst/cloudburst, landslide. ❖ Indian summer monsoon; S.W. Monsoon onset: semi permanent systems, Active and break monsoon, Monsoon depressions: MTC; Offshore troughs/vortices. Influence of extra tropical troughs and typhoons in northwest Pacific; withdrawal of S.W. Monsoon, Northeast monsoon, ❖ Tropical Cyclone: Life cycle, vertical and horizontal structure of TC, Its movement and intensification. Weather associated with TC. Easterly wave and its structure and associated weather. ❖ Jet Streams – WMO definition of Jet stream, different jet streams around the globe, Jet streams and weather ❖ Meso-scale meteorology, sea and land breezes, mountain/valley winds, mountain wave. ❖ Short range weather forecasting (Elementary ideas only); persistence, climatology and steering methods, movement and development of synoptic scale systems; Analogue techniques- prediction of individual weather elements, visibility, surface and upper level winds, convective phenomena.
    [Show full text]
  • Massachusetts Tropical Cyclone Profile August 2021
    Commonwealth of Massachusetts Tropical Cyclone Profile August 2021 Commonwealth of Massachusetts Tropical Cyclone Profile Description Tropical cyclones, a general term for tropical storms and hurricanes, are low pressure systems that usually form over the tropics. These storms are referred to as “cyclones” due to their rotation. Tropical cyclones are among the most powerful and destructive meteorological systems on earth. Their destructive phenomena include storm surge, high winds, heavy rain, tornadoes, and rip currents. As tropical storms move inland, they can cause severe flooding, downed trees and power lines, and structural damage. Once a tropical cyclone no longer has tropical characteristics, it is then classified as a post-tropical system. The National Hurricane Center (NHC) has classified four stages of tropical cyclones: • Tropical Depression: A tropical cyclone with maximum sustained winds of 38 mph (33 knots) or less. • Tropical Storm: A tropical cyclone with maximum sustained winds of 39 to 73 mph (34 to 63 knots). • Hurricane: A tropical cyclone with maximum sustained winds of 74 mph (64 knots) or higher. • Major Hurricane: A tropical cyclone with maximum sustained winds of 111 mph (96 knots) or higher, corresponding to a Category 3, 4 or 5 on the Saffir-Simpson Hurricane Wind Scale. Primary Hazards Storm Surge and Storm Tide Storm surge is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide. Storm surge and large waves produced by hurricanes pose the greatest threat to life and property along the coast. They also pose a significant risk for drowning. Storm tide is the total water level rise during a storm due to the combination of storm surge and the astronomical tide.
    [Show full text]
  • 1 Vertical Structure of Tropical Cyclone Rainbands As Seen by The
    Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar Deanna A. Hence and Robert A. Houze, Jr. University of Washington, Seattle, Washington Submitted to Journal of Atmospheric Sciences November 2011 Corresponding author address: Deanna Hence, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195 E-mail: [email protected] 1 ABSTRACT 1 Ten years of data from the Tropical Rainfall Measurement Mission satellite’s Precipitation 2 Radar (TRMM PR) show the vertical structure of tropical cyclone rainbands. Radar-echo 3 statistics show that rainbands have a two-layered structure, with distinct modes separated by the 4 melting layer. The ice layer is a combination of particles imported from the eyewall and ice left 5 aloft as convective cells collapse. This layering is most pronounced in the inner region of the 6 storm, and the layering is enhanced by storm strength. The inner-region rainbands are vertically 7 confined by outflow from the eyewall but nevertheless are a combination of strong embedded 8 convective cells and robust stratiform precipitation, both of which become more pronounced in 9 stronger cyclones. 10 Changes in rainband coverage, vertical structure, and the amount of active convection 11 indicate a change in the nature of rainbands between the regions inward and outward of a radius 12 of ~200 km. Beyond this radius, rainbands consist of more sparsely distributed precipitation that 13 is more convective in nature than that of the inner-region rainbands, and the outer-region 14 rainband structures are relatively insensitive to changes in storm intensity.
    [Show full text]
  • Lecture 14. Extratropical Cyclones • in Mid-Latitudes, Much of Our Weather
    Lecture 14. Extratropical Cyclones • In mid-latitudes, much of our weather is associated with a particular kind of storm, the extratropical cyclone Cyclone: circulation around low pressure center Some midwesterners call tornadoes cyclones Tropical cyclone = hurricane • Extratropical cyclones derive their energy from horizontal temperature con- trasts. • They typically form on a boundary between a warm and a cold air mass associated with an upper tropospheric jet stream • Their circulations affect the entire troposphere over a region 1000 km or more across. • Extratropical cyclones tend to develop with a particular lifecycle . • The low pressure center moves roughly with the speed of the 500 mb wind above it. • An extratropical cyclone tends to focus the temperature contrasts into ‘fron- tal zones’ of particularly rapid horizontal temperature change. The Norwegian Cyclone Model In 1922, well before routine upper air observations began, Bjerknes and Sol- berg in Bergen, Norway, codified experience from analyzing surface weather maps over Europe into the Norwegian Cyclone Model, a conceptual picture of the evolution of an ET cyclone and associated frontal zones at ground They noted that the strongest temperature gradients usually occur at the warm edge of the frontal zone, which they called the front. They classified fronts into four types, each with its own symbol: Cold front - Cold air advancing into warm air Warm front - Warm air advancing into cold air Stationary front - Neither airmass advances Occluded front - Looks like a cold front
    [Show full text]
  • The Precipitation Structure of the Mediterranean Tropical-Like Cyclone Numa: Analysis of GPM Observations and Numerical Weather Prediction Model Simulations
    remote sensing Article The Precipitation Structure of the Mediterranean Tropical-Like Cyclone Numa: Analysis of GPM Observations and Numerical Weather Prediction Model Simulations Anna Cinzia Marra 1, Stefano Federico 1 , Mario Montopoli 1 , Elenio Avolio 2 , Luca Baldini 1 , Daniele Casella 1, Leo Pio D’Adderio 1, Stefano Dietrich 1 , Paolo Sanò 1 , Rosa Claudia Torcasio 1 and Giulia Panegrossi 1,* 1 Institute of Atmospheric Sciences and Climate, National Research Council (ISAC/CNR), 00133 Rome, Italy 2 Institute of Atmospheric Sciences and Climate, National Research Council (ISAC/CNR), 88046 Lamezia Terme, Italy * Correspondence: [email protected]; Tel.: +39-06-4993-4274 Received: 30 May 2019; Accepted: 11 July 2019; Published: 17 July 2019 Abstract: This study shows how satellite-based passive and active microwave (MW) sensors can be used in conjunction with high-resolution Numerical Weather Prediction (NWP) simulations to provide insights of the precipitation structure of the tropical-like cyclone (TLC) Numa, which occurred on 15–19 November 2017. The goal of the paper is to characterize and monitor the precipitation at the different stages of its evolution from development to TLC phase, throughout the storm transition over the Mediterranean Sea. Observations by the NASA/JAXA Global Precipitation Measurement Core Observatory (GPM-CO) and by the GPM constellation of MW radiometers are used, in conjunction with the Regional Atmospheric Modeling System (RAMS) simulations. The GPM-CO measurements are used to analyze the passive MW radiometric response to the microphysical structure of the storm, while the comparison between successive MW radiometer overpasses shows the evolution of Numa precipitation structure from its early development stage on the Ionian Sea into its TLC phase, as it persists over southern coast of Italy (Apulia region) for several hours.
    [Show full text]
  • A Technique to Determine the Radius of Maximum Wind of a Tropical Cyclone
    OCTOBER 2008 LAJOIEANDWALSH 1007 A Technique to Determine the Radius of Maximum Wind of a Tropical Cyclone FRANCE LAJOIE AND KEVIN WALSH School of Earth Sciences, University of Melbourne, Parkville, Victoria, Australia (Manuscript received 2 October 2007, in final form 22 January 2008) ABSTRACT A simple technique is developed that enables the radius of maximum wind of a tropical cyclone to be estimated from satellite cloud data. It is based on the characteristic cloud and wind structure of the eyewall of a tropical cyclone, after the method developed by Jorgensen more than two decades ago. The radius of maximum wind is shown to be partly dependent on the radius of the eye and partly on the distance from the center to the top of the most developed cumulonimbus nearest to the cyclone center. The technique proposed here involves the analysis of high-resolution IR and microwave satellite imagery to determine these two parameters. To test the technique, the derived radius of maximum wind was compared with high-resolution wind analyses compiled by the U.S. National Hurricane Center and the Atlantic Oceano- graphic and Meteorological Laboratory. The mean difference between the calculated radius of maximum wind and that determined from observations is 2.8 km. Of the 45 cases considered, the difference in 50% of the cases was Յ2 km, for 33% it was between 3 and 4 km, and for 17% it was Ն5 km, with only two large differences of 8.7 and 10 km. 1. Introduction Another sensor on board a polar-orbiting satellite that can produce high-resolution surface wind fields r To determine m, the radius of maximum wind for a over the ocean is the Wind Field Synthetic Aperture tropical cyclone, one needs to analyze the strong sur- Radar (WiSAR).
    [Show full text]
  • P9.6 Radar Observations of a Tornadic Severe Frontal Rainband
    P9.6 RADAR OBSERVATIONS OF A TORNADIC SEVERE FRONTAL RAINBAND Jenni Rauhala* and Ari-Juhani Punkka Finnish Meteorological Institute, Helsinki, Finland 1. INTRODUCTION Although a warning for thunderstorm wind gusts was issued well before the onset of the event, the On the afternoon of 26 August 2005, severe magnitude of the damage was not anticipated by FMI convective storms caused vast wind damage in forecasters. western Finland: 382 wind damage or flood reports A closer look into radar reflectivity and velocity and 9 tornado cases (Fig. 1). Two rainbands patterns indicated small scale bowing segments in the developed over western Finland: while, the pre-frontal reflectivity fields co-located with mesovortices, similar rainband caused minor flooding, almost all of the to those shown in previous studies (e.g. Weisman and observed severe weather (Fig. 1) occurred along the Trapp 2003) to be capable of producing both straight- second rainband associated with a cold front. line wind damage and tornadoes. The storm environment, with significant low level vertical wind shear, had likely influenced the mesovortex formation. Fortunately, some of these mesovortices occurred near a polarimetric radar, which offered insight into their small scale precipitation structures. 2. DATA The case occurred partly over the Helsinki Testbed mesoscale observation network area (Saltikoff et al. 2005) during the August 2005 campaign period. The radar analysis was based on data from two 5.32 cm Doppler radars of the FMI and the polarimetric radar of the University of Helsinki. The lowest elevations were not used for velocity analysis because of velocity folding. Complete volume scans from FMI radars and the Kumpula radar were available for 5-minute and 10-minute intervals, respectively.
    [Show full text]